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Abstract
The interactions between plants and their herbivores are highly complex systems generating on one side an extraordinary
diversity of plant protection mechanisms and on the other side sophisticated consumer feeding strategies. Herbivores have
evolved complex, integrative sensory systems that allow them to distinguish between food sources having mere bad flavors
from the actually toxic ones. These systems are based on the senses of taste, olfaction and somatosensation in the oral and nasal
cavities, and on post-ingestive chemosensorymechanisms. The potential ability of plant defensive chemical traits to induce tissue
damage in foragers is mainly encoded in the latter through chemesthetic sensations such as burning, pain, itch, irritation, tingling,
and numbness, all of which induce innate aversive behavioral responses. Here, we discuss the involvement of transient receptor
potential (TRP) channels in the chemosensory mechanisms that are at the core of complex and fascinating plant-herbivore
ecological networks. We review how Bsensory^ TRPs are activated by a myriad of plant-derived compounds, leading to cation
influx, membrane depolarization, and excitation of sensory nerve fibers of the oronasal cavities in mammals and bitter-sensing
cells in insects. We also illustrate how TRP channel expression patterns and functionalities vary between species, leading to
intriguing evolutionary adaptations to the specific habitats and life cycles of individual organisms.
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Introduction

Plants have evolved multiple detection and defense mecha-
nisms to withstand extensive tissue damage triggered by her-
bivores. Many species have developed tolerance to their con-
sumers by increasing photosynthetic rate, growing compensa-
tory tissues, and mobilizing resources from roots to shoots
[201]. Another strategy involves production of specialized
chemicals that induce repellant, toxic, and/or antinutritional
effects in the herbivores. These compounds can be divided into
several classes depending on their chemical properties and
include alkaloids, terpenoids, phenolics, sulfur-containing
compounds, proteinase, and growth inhibitors. On the other

hand, as herbivores clearly cannot reject all food sources, they
co-evolved complex protective mechanisms to avoid or resist
the plants defensive traits. While plant-derived protective
chemicals can cause serious negative effects such as liver dam-
age, heart failure, or even death, herbivores may still consume
them because of dietary superiority, palatability, or even addic-
tive properties. For instance, locoweed (crazyweed) or larkspur
plants are vastly consumed by grazing livestock due to their
large protein content and pleasant taste [41]. However, over-
consumption generates a variety of symptoms, including visual
impairment, trembling, and neurological damage. Although
intoxication of wild animals, such as deer, could be explained
by a change of perception when starved, triggering consump-
tion of more palatable species, the livestock behavior is an
example of pure addiction to plant-induced psychoactive ef-
fect. Evidently, herbivores evolved complex sensory mecha-
nisms to avoid intoxication. Essentially, taste, olfaction, and
somatosensation in the oral and nasal cavities, as well as
post-oral chemosensory mechanisms in the digestive tract
serve to detect and avoid potentially toxic plants. In general,
animals are attracted to sweet, floral fragrances, and flavors
and repelled by bitter and pungent traits. Since many
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unpleasant, bitter-tasting plants are not harmful, it is essential
to distinguish between mere bad taste and chemesthetic sensa-
tions such as heat, cold, pain, irritation, tingling, or numbness.
The latter sensations are largely mediated by modulation of ion
flow via voltage-gated Na+ and K+ channels, whose activation
sustains the development and extinction of the action potential
in somatosensory neurons, and via acid-sensing ion channels
(ASIC) and transient receptor potential (TRP) channels, whose
activation produces cationic influx, and an associated depolar-
ization that initiates and/or modulates action potential firing.
Because of their rising relevance for the understanding of the
mechanisms of chemosensation, in this review, we will focus
on the ecological role of TRP channels asmediators ofmultiple
interactions between different classes of plant defensive
chemicals and herbivores (Table 1).

Olfaction, gustation,
and chemesthesis—detection frontiers

The sense of olfaction serves to the detection of airborne
chemicals and in most vertebrates is mediated by two distinct
systems. The main system perceives airborne chemicals and
the accessory system detects fluid-phase chemicals. Olfaction
arises once odorant molecules bind to the olfactory (odorant)
receptors (OR) located on the cilia of olfactory neurons in the
epithelium at the roof of the nasal cavity (Fig. 1; [177]).

The OR gene superfamily is one of the largest in the human
genome comprising 390 putatively functional genes and 465
pseudogenes organized into 18 gene families and 300 subfam-
ilies [167]. It covers up to 3% of the human genome, illustrat-
ing their critical function in mammalian physiology [179].
The ratios of gene to pseudogene are highest in rodents and
lowest in human, indicative of a greater evolutionary pressure
for olfaction in the rodent survival. Allelic exclusion of OR
genes causes expression of typically one odorant receptor al-
lele in each sensory neuron, although the mechanism under-
lying this process is still not fully understood [167]. ORs are
activated in different combinations, allowing multitude odor-
ants discrimination [96].

Taste is the sensory impression of the food or other sub-
stances on the tongue and in the soft tissues of the mouth. The
five basic tastes modalities, recognized by humans as well as
most animals are bitter, salty, sour, sweet, and umami, all
giving information on the nutrient composition of food and
helping to prevent ingestion of toxic and harmful products.
The taste buds are the basic anatomical structures detecting
tastes, located in the stratified epithelium of the tongue, palate,
pharynx, larynx, and epiglottis [177]. In humans, most of the
taste buds are situated at the back of the tongue with the
number that varies significantly between different people
(Fig. 1c) [98, 177]. Taste receptor cells (TRCs) can be divided
into three types, each responding to diverse gustatory

stimulation. In contrast, the so-called Bchemesthesis^ (also
known as trigeminality or general chemical sense) is related
to the chemical activation of sensory nerves resulting in touch
and thermal sensations, as well as a wide variety of other
sensations such as tingling, itch, numbness, and pain [116].
Chemesthesis (Fig. 2) is associated with nerve fibers originat-
ing from the trigeminal (TG) and dorsal root ganglia (DRG)
[193, 194] and their stimulation by different chemicals in-
duces pungent sensation as burning, tingling, or cooling also
in absence of an olfactory stimulation [116].

Most odorants at sufficient concentrations stimulate TG
nerve endings in addition to the olfactory nerve [86, 199].
Trigeminal chemosensory nerve endings in the nasal and oral
cavity are a first recognition mechanism protecting from nox-
ious stimuli, and these present in the mouth also enhance the
flavor. Nociceptive TG neurons can be stimulated by a large
group of chemicals classified as irritants, including natural
plant compounds, air pollutants, and endogenous substances.
It has been clearly established that several members of the
TRP protein superfamily are essential for olfaction, taste, ther-
mo-, osmo-, mechano-, and chemosensation (Fig. 3) [24, 39,
94, 154, 156, 176, 186].

Transient receptor potential cation channels

TRPs are cation channels, with variable permeability to Ca2+

and Mg2+, ranging from Ca2+ impermeable (TRPM4 and
TRPM5 are only permeable to monovalent cations), over
non-selective Ca2+-permeable (most TRP channels) to highly
Ca2+ selective (TRPV5 and TRPV6) [125, 157, 158]. Many
TRPs are able to conduct other divalent cations such as Ba2+,
Cd2+, Co2+, Mn2+, or Zn2+ [27]. The cation permeability of
TRP channels highly depends on the pore structure. The
structure-function analysis of TRP pores revealed essential
residues of the selectivity filter necessary to distinguish be-
tween different ions. For instance, neutralization of D546 of
TRPV1 and the corresponding 682 of TRPV4 reduces their
Ca2+ and Mg2+ conductance. A further mutation of D672
amino acid of TRPV4 promotes additional selectivity de-
crease for divalent cations and changes the monovalent per-
meability [170].

TRP channels are expressed in numerous tissues and cell
types, and exhibit great diversity in activation mechanisms
[40, 145, 176, 215]. They are formed by homo- or hetero-
multimerization of four subunits consisting of six transmem-
brane (TM) segments with the cationic pore loop located be-
tween fifth and sixth TM segments (Fig. 3). The carboxyl-(C)-
and amino-(N)-termini are located intracellularly and are in-
volved in the mechanisms of channel opening and closing
(gating), enzymatic activity, and interactions with many pro-
teins through various residues or domains, as for instance
ankyrin (ANK) repeats [64, 156].
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Plant secondary metabolites—elaborate
chemical defense system

Alkaloids—psychoactive modulators

Alkaloids such as caffeine, nicotine, strychnine, cocaine, and
quinine are widely produced by many plants. They function as
insect repellents and vertebrate deterrents by inducing neurotoxic
effects due to their functional similarity with endogenous neuro-
transmitters. For that reason, they often induce drug addiction in
animals, as for instance, wallabies search for opioid containing
poppy plants [43], dogs learn to harass certain toads releasing
hallucinogen bufotenin [42], and dolphins eat toxic pufferfish
[161]. Drug dependence is mediated by cortico-mesolimbic do-
paminergic system and reward/pleasure pathways and modifies
neuronal signaling pathways in the brain, which in turn alters
behaviors. It has been shown that members of the canonical
(TRPC) and vanilloid (TRPV) subfamilies of TRP channels are
involved in drug abuse due to their function in psychostimulant-
induced behavioral and neuronal plasticity [222].

Plants from the Nicotiana genus produce nicotine (3-[(2S)-
1-methylpyrrolidin-2-yl]pyridine) in the roots as a response to
leaf wounding (Fig. 4). This alkaloid activates nicotinic ace-
tylcholine receptors (nAChRs) in plant consumers, influenc-
ing sensory and motor functions controlled by the cholinergic
pathway [45, 57, 120].

One of the best examples is a role of TRPCs in nicotine-
induced behaviors of Caenorhabditis elegans [63]. This nema-
tode expresses TRP-1 and TRP-2 (TRPC homologs) in multi-
ple types of neurons [226, 229], acting downstream of nAChRs
signaling pathway involved in a variety of responses to nico-
tine, such as stimulated crawl-speed followed by adaptation to
this chemical. When nicotine addicted C. elegans were placed
in nicotine-free environment they presented withdrawal symp-
toms, where the worms became dependent on nicotine for their
normal locomotion patterns [63]. Moreover, C. elegans worms
having null mutations in trp-1 and trp-2 display reduced behav-
ioral responses to nicotine. Although the precise mechanism is
not clear it was proposed that TRP-2 acts as a receptor-operated
cation channel coupled to the Gq-PLCβ pathway. This signal-
ing is a common pathway in mammalian responses to nicotine,
suggesting evolutionarily conserved role of TRPC channels and
nAChRs in nicotine sensing.

Cholinergic neurons and nAChRs also play a role in learn-
ing and memory pathways, mood and processing of painful
stimuli [143]. Because of its toxicity, nicotine has been used
historically in agriculture to control pests. However, its high
toxicity in mammals, short life span, and shallow insecticide
efficiency (acting only on soft bodied insects with piercing
mouth apparatus and mites) nicotine use has been limited.
Nicotine poisoning produces various symptoms related to mal-
function of the central nervous system. For example, nicotine
intoxication of honeybees induces ascending motor paralysis

of the nerve cord resulting in complete body paralysis with
occasional twitching of tarsus, antenna, or abdomen [139].
The pungency of nicotine was originally related to a specific
activation of nAChRs present in nociceptive fibers [57, 120,
195, 196]. However, nicotinewas later found to activatemouse
and human TRPA1 channels, to activate mouse sensory neu-
rons, and to trigger ventilatory responses in mice in a TRPA1-
dependent manner [57, 206]. Interestingly, nicotine was shown
to have a relatively slow but sustained stimulatory effect on
TRPA1 (Fig. 5a), which contrast with the rapidly-installing and
quickly desensitizing action on nAChRs. Furthermore, nico-
tine induced two types of intracellular Ca2+ responses in mouse
trigeminal ganglion neurons: rapid and quickly desensitizing
ones mediated by nAChRs and slower, more sustained ones
mediated by TRPA1. It could be therefore concluded that
nAChRs and TRPA1 confer sensory neurons the ability to
respond to nicotine in a wide range of concentrations over
prolonged periods. Of note, nicotine has a bimodal effect on
mouse TRPA1, activating when applied in low micromolar
concentrations and inhibiting in the milimolar range (Fig.
5b). However, the physiological relevance of the inhibitory
effect is not yet clear. Taken together, these findings indicate
that the irritating effects of nicotine in mammals may be attrib-
uted to nAChRs and TRPA1 activation. This further supported
the already existing notion that TRPA1 mediates the detection
of chemicals such as isothiocyanates, caffeine, and phenols,
whose production in plants is enhanced upon herbivore attack.

The tobacco specialistManduca sexta (tobacco hornworm)
tolerates nicotine at doses (LD50 1.5 g/kg BW) that are fatal to
other herbivores (LD50 for mice 0.0003 g/kg BW, birds
0.0178 g/kg BW, and humans 0.002 g/kg BW) [223] and is
less prone to parasitoids when fed with a nicotine-rich diet
[19]. The larvae cope with high doses of nicotine via at least
three different strategies. First, after absorption from food, the
alkaloid is transported via hemolymph and excreted with feces
by Malpighian tubes containing specific ABC transporters
[11, 114, 133]. Second, nicotine is metabolized in the neural
sheath. Third, it has been proposed that M. sexta larval neu-
rons are less sensitive to nicotine when compared to those of
other animals. This change in sensitivity could be attributed to
the insect nervous tissue, which is protected by a very efficient
ion-impermeable sheath, or to a distinct composition of
nAChR subunits and/or different TRPA1 activation proper-
ties. It has been shown that the genome of M. sexta encodes
a single TrpA1 gene and that the protein is expressed in the
lateral and medial styloconic sensilla [2]. It was proposed that
MsexTrpA1 functions as a molecular integrator of chemical
and thermal input in gustatory receptor neurons (GRNs) stim-
ulated by aristolochic acid, a bitter compound produced by the
plant family Aristolochiaceae (birthworts).

Caffeine (1,3,7-trimethylxanthine), a drug of choice for
many, is another alkaloid produced by many plants with an
associated protective function against herbivores (Fig. 6a).
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Caffeine is biosynthesized from the plant nucleotide xanthosine
in a four-step sequence involving three methylations (Fig. 6b)
[14, 53]. Few ecological theories exist to explain caffeine

function in plants. The autotoxic theory claims that caffeine,
released from leaves and seeds falling into the ground, inhibits
germination and growth of other plants around the coffee

Table 1 Summary of the discussed compound activity on the TRP channels

Plant genus Compound name Cellular
targets

Reference Response

Nicotiana
Solanum
Lycopersicon
Brassica
Apium

Nicotine TRP-1
TRP-2
TRPA1

[57, 63, 206] Influences behavioral and motor function

Coffea
Camellia
Cola
Citrus
Ilex
Paullinia

Caffeine TRPA1 [122, 146, 149, 150] Behavioral alteration, memory enhancement,
cardiovascular and respiratory effects

Cannabis Δ9-Tetrahydrocannabinol
Tetrahydrocannabinolic acid
Cannabinol
Cannabichromene
Cannabigerol
Cannabidiol

TRPA1
TRPV1
TRPM8

[49, 51, 92, 124, 234] Psychoactive or non-psychoactive, motor
and behavioral function, antinociception,
antihyperalgesia

Capsicum Capsaicin TRPV1 [33, 46, 72, 75, 93, 119, 162] Respiratory and GI effect, irritant (skin, eyes,
mouth), analgesic and anti-inflammatory

Vanilla Vanillin TRPV1
TRPA1
TRPV3

[130, 227] Behavioral alterations, allergen, irritant

Syzygium
Cinnamomu,
Myristica

Ocimum
Zingiber
Vanilla
Laurus

Eugenol TRPV1
TRPA1
TRPM8

[17, 38, 105, 121, 173, 174, 227, 230] Behavioral alterations, allergen, respiratory
effects, analgesic and anti-inflammatory

Zingiber Zingerone TRPV1
TRPA1

[72, 112, 127] GI effects, antimicrobial

Piper Piperine
Isopiperine isochavicine
Piperanine
Piperolein
N-tetra

TRPV1
TRPA1

[140, 166] Respiratory effects, antioxidant,
anti-inflammatory, and antimicrobial
agent

Brassica
Raphanus
Armoracia

Allyl isothiocyanate TRPA1
TRPV1

[5, 20, 61, 73, 164] Respiratory effects, irritant, cytotoxic,
antimicrobial

Allium Diallyl sulfide
Diallyl disulfide
Diallyl trisulfide
Allicin

TRPA1
TRPV1

[20, 109, 132, 187] Respiratory, GI and irritant effects,
genotoxic, cytotoxic

Satyrium
Mimulus

Linalool
Eucalyptol
Elemicin
α-pinene
Myrcene
Limonene

TRPA1
TRPM8

[21, 118, 165, 185] Repellent or attractant action, analgesic,
antimicrobial, anti-inflammatory,
antinociception

Corymbia
Cymbopogon
Java

Citronellal
Citronellol
Citral
Geraniol

TRPA1
TRPV1
TRPM8
TRPV3

[76, 178, 200] Repellent or attractant action, analgesic,
antiseptic, antimicrobial,
anti-inflammatory,
antinociception
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plants. Exogenously applied caffeine affects metabolic path-
ways as well as can inhibit cell division. Secondly, the chemical
defense theory postulates a protective effect of caffeine against
the fungus Gibberella xylarioides [79] and against herbivores.
Caffeine sprays prevent feeding of tobacco horn-worms or
snails [83] and inhibit enzymes in the insect nervous system
causing paralysis and death. Caffeine can producemore intrigu-
ing behavioral effects in insects, such as construction of spider
webs with no symmetry [221] and drowning of mosquitoes
larvae. Interestingly, some Citrus flowers contain caffeine to
protect them from its main pathogens, e.g., Hemileia vastatrix,
Colletotrichum kahawae, and low, non-repellent caffeine con-
centrations (below 0.058 mg/ml) in their nectars, attracting pol-
linating honeybees [225]. Bees detect caffeine with neurons
located in sensilla of the mouthparts, which express HsTRPA
[108], a member of the TRPA channel subfamily, which may

serve as sensor for this bitter chemical [95]. Caffeinated honey-
bees show altered pollinating behavior, with increased recogni-
tion of caffeine containing nectars, suggesting a chemical-
induced enhancement of the insect’s memory [225].

This is beneficial for both species, as plants ensure pollina-
tions and bees may locate and revisit their food sources more
easily. In birds, exposure to caffeine doses below 30 mg/kg
causes several cardiovascular and respiratory effects, inducing
more awakeness and alertness and enhancement of their pro-
ductivity [70]. Higher doses are highly toxic, causing seizures
and death. In larger animals, caffeine can induce symptoms as
hyperactivity, restlessness, vomiting, an elevated heart rate and
hypertension, seizures, and finally death. For humans, the le-
thal caffeine dose is approximately 10 g if taken at once, which
corresponds to roughly 105 cups of coffee. Several mecha-
nisms are responsible for caffeine’s pharmacological and toxic

Fig. 1 Human olfaction and gustation. a Localization of olfactory
epithelium covering the superior nasal concha and directions of air
entering nasal cavity. Modified from P.J. Lynch and C. Jaffe. b
Schematic representation of laminar and circuit organization of the
olfactory bulb. Olfactory bipolar neurons, located in the olfactory
epithelium, contain 5 to 20 hair-like cilia trapping odorant molecules.
Neurons are surrounded by columnar supporting cells, containing
yellow-brown pigment, giving them yellow tint. Together with olfactory
glands, supporting cells produce mucus that helps to dissolve and detect
airborne chemicals. Olfactory stimulation is the only sensory information

that directly reaches the cerebral cortex, while other sensations are con-
veyed through the thalamus. c Structure of human taste buds. Taste buds
are located along the edges of upper surface of the tongue and palate in
different types of papillae. They are flask-shaped consisting of 50 to 150
cells (gustatory or basal cells). Gustatory hairs, which extend through the
taste pore from the gustatory cells, are sensitive to chemicals present in
the saliva. Sensory dendrites present around the gustatory cells receive
signals from several receptor cells and conduct a signal to brain.Modified
from Marieb and Hoehn [137]
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effects. For instance, activation of ryanodine receptors (RyRs)
leading to the emptying of intracellular Ca2+ stores represents a
well-known and widely studied effect [214, 230]. Caffeine also
inhibits phosphodiesterases increasing cAMP, thereby causing
cardiovascular modulation [59], and blocks adenosine recep-
tors playing key roles in behavioral and cognitive functions
[34]. Mouse TRPA1 is rapidly activated by caffeine in
transfected cells as well as in capsaicin-insensitive DRG neu-
rons. Neurons from animals lacking TRPA1 are deficient in
rapid responses to caffeine and only exhibit a slower intracel-
lular Ca2+ increase that may be attributed to RyR receptors
activity [150]. Wild-type mice show highly aversive behavior
towards caffeine in drinking water, but this aversion is much
less pronounced in mice not expressing TRPA1. This raises the
possibility that the detection of this compound occurs via a
trigeminal-dependent pathway. Interestingly, caffeine has a
suppressing action on human TRPA1, and mutation of the
amino acid residue methionine in the position 268 to proline
was shown to be responsible for the differences between spe-
cies (Fig. 7) [149]. Since the M268 residue is conserved in
rodents, it is possible that, in addition to its bitterness, caffeine
has also a pungent character that may enhance its ability to
evoke aversive behavior in these animals. Conversely, the pres-
ence of a proline at this position in primate TRPA1 may allow
intake of caffeine, with the consequent beneficial

pharmacological effects. The bitter perception of caffeine in
mammals is attributed to the family of taste receptors that are
evolutionary similar to insect gustatory receptors [36, 37, 181].

In insects, TRPA1 was found to be expressed in bitter-
sensing GRNs responsible for aversion behaviors. Although
this channel is not directly activated by caffeine, it is clear that
it contributes to aversive behavior in insects. In Drosophila,
several gustatory receptors such as Gr66a, Gr93a, and Gr32a
are implicated in caffeine-evoked action potentials [122, 146].
Accordingly, aversive behavior towards the bitter aristolochic
acid was reported to be TRPA1-dependent. However,
dTRPA1 is not directly activated by aristolochic acid, but via
a phospholipase C (PLC) signaling cascade [104].

Cannabinoids—addictive guardians

The Cannabis genus contains multiple species of flowering
plants as Cannabis sativa, Cannabis ruderalis, or Cannabis
indica, producing more than 100 different cannabinoids along
with the primary psychoactive component, Δ9-tetrahydrocan-
nabinol (Δ9-THC) [9, 198]. These compounds ensure plant
survival in many different climates, from hot, tropical regions
to very cold and harsh conditions in mountains. Cannabinoids
such as tetrahydrocannabinolic acid (THCA) are toxic to cells
and are produced in the extracellular compartment of the

Fig. 2 Involvement of themammalian TRP channels in chemosthesis and
taste. Chemesthesis comprises a broad range of sensations, associated
with diverse mechanisms present in a wide array of sensory structures,
including nociceptors, other free nerve endings, and keratinocytes.
Oronasal chemesthetic signals are conducted by somatosensory fibers in
the trigeminal (V), glossopharyngeal (IX), and vagus (X) nerves [186].
Sensory neurons and oronasal keratinocytes express multiple TRP chan-
nels implied in chemesthesis and gustation. Another member of the TRP

superfamily, TRPM5, has been identified in the subset of taste bud cells
(type II) that to function in signal transduction for sweet, bitter, and
umami taste [181, 182]. The molecular mechanism of sensing these tastes
involves activation of G protein-coupled receptors (GPCRs), followed by
IP3-mediated release of Ca2+ from intracellular stores resulting in Ca2+-
induced activation of TRPM5 [126, 180, 182]. Reproduced with permis-
sion from Roper [186]
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trichomes, hair-like growths on the plant leaves and buds [9],
where they protects plant tissues from insects and herbivores
[197]. THCA, together with other chemicals including terpenes
and flavonoids, cause cannabis plant extracts to have bitter,
unpleasant taste, strong aroma, as well as antimicrobial activity
[12]. THCA is a precursor ofΔ9-THC, which is formed during
progressive decarboxylation in the course of drying process
[81]. In contrast to Δ9-THC, THCA is a non-psychoactive
chemical that have been found to have multiple health benefits.
Consumption of THC may induce hyperemesis syndrome, im-
paired coordination and performance, anxiety, suicidal idea-
tions/tendencies, and psychotic symptoms [117, 198].
Cannabinoids actions have been attributed to activation of me-
tabotropic cannabinoid receptors CB1 and CB2. These recep-
tors are present in the central and peripheral nervous system and
are endogenously activated by endocannabinoid neurotransmit-
ters such as N-arachidonoylethanolamine (anandamide) and sn-
2-arachidonoylglycerol (2-AG) [198]. The endocannabinoid
system (ECS) is involved in many physiological and cognitive
processes, including appetite, pain, mood, and memory. The
ECS functions in exercise-induced euphoria, as well as in the
modulation of locomotor activity and motivational salience for
rewards. Thus, due its structural similarity to ECS signaling
molecules, Δ9-THC mimics rewords correlated with fitness,
whichmay explain the addictive effects of the compound [203].

Further, cannabinoids induce supraspinal, spinal, and pe-
ripheral antinociception and antihyperalgesia in different pain
syndromes [30, 31, 44]. Moreover, chemicals belonging to the
aminoalkylindole family of cannabinoids produce peripheral-
ly mediated antinociception in acute pain models [135] and
alleviate hyperalgesia/allodynia induced by capsaicin [82, 89],
heat [90], inflammation [148, 234], and nerve injury [65, 184,
227]. Δ9-THC and cannabinol were shown to relax hepatic
and mesenteric arteries, via activation of CGRP-containing
sensory nerve endings that innervate the vascular smooth
muscle. This effect was independent of cannabinoid receptors
and TRPV1 [235]. The population of capsaicin-sensitive TG
neurons was responsive to both AITC and Δ9-THC, suggest-
ing a contribution of TRPA1 to cannabinoid-induced inflam-
matory hypersensitivity and vasodilation [92].

Phytocannabinoids such as cannabichromene (CBC),
cannabigerol (CBG), cannabidiol (CBD), Δ9-THC, THCA,
or CBDAwere shown to influence the TRPA1- and TRPM8-
mediated elevation of Ca2+ in DRG sensory neurons and in an
overexpression system [49, 51]. The potency of these com-
pounds followed the strength of their electrophilic nature, sug-
gesting the formation of covalent bonds with cysteine residues
as underlying mechanism of channel activation [51, 80, 131].
Although, cells expressing TRPA1 responded to multiple
phytocannabinoids, the responses in TRPA1 expressing DRG

Fig. 3 The phylogenetic tree and main structural features of mammalian
TRP channels. TRPs can be classified into six subgroups containing
TRPA (ankyrin), TRPC (canonical), TRPM (melastatin), TRPV
(vanilloid), TRPP (polycystin), and TRPML (mucolipin) [155, 156].

Seventh subgroup contains non-mammalian, TRPN (NOMPC-like),
expressed in fish [192] and invertebrates [218]. All TRP channels have
an ancient origin related to TRPY subfamily of fungi [23, 52, 171].
Reproduced with permission from Nilius et al. [159]
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neurons were lower. This could be attributed to the lower ex-
pression levels in comparison with the overexpression system,
as well presence of other channels. Both human and rat recom-
binant TRPV1 were shown to be insensitive to most of
phytocannabinoids, with only CBD, CBG, and CBDA being
TRPV1 activators [124]. On the other hand, pre-incubation
with CBC and CBG inhibited Ca2+ elevation in cells overex-
pressing TRPA1 and in DRG neurons. Moreover, in TG neu-
rons, the synthetic cannabinoids WIN and AM1241 inhibit the
responses to capsaicin and AITC, via activation of TRPA1
expressed in the sensory neurons [3]. Finally, TRPM8

responses to menthol and icillin were inhibited by some
phytocannabinoids [51], as well as endocannabinoids such as
anandamide and N-arachidonoyldopamine [49, 50].

Potential roles of reactive oxygen and nitrogen
species

Many Cannabis, Solanum, and Arabidopsis plants are able to
generate hydrogen peroxide (H2O2), in response to plant
wounding by herbivores and pathogens. The production of
reactive oxygen species (ROS) such as O2

−, OH−, or H2O2,

Fig. 5 Activation of mTRPA1 by nicotine. a Time course of the effects of
nicotine on the amplitude of mTRPA1 currents measured at − 75 and +
50 mV in stably transfected CHO cells. The horizontal lines indicate the
periods of extracellular application of nicotine at the indicated

concentrations. The colored data points correspond to the current traces
shown to the inset. b Concentration-dependent modulation of mTRPA1
currents by nicotine. Reproduced with permission from Talavera et al.
[206]

Fig. 4 Nicotine synthesis in plants. a Tissue damage caused by herbivory
attack enhances the production of the plant phythormone jasmonate (JA),
which is transported into the roots, activating nicotine synthesis by
condensation of the methylpyrrolinium cation derived from putrescine
and nicotinic acid [100, 101]. Nicotine is then transported to leaves,

where is deposited into vacuoles. b Simplified biosynthesis diagram of
the four main tobacco alkaloids. Diverse amino acids are used as building
blocks in the synthesis of the pyridine, pyrrolidine, and piperidine rings,
required to produce nicotine, nornicotine, anabasine, and anatabine [29,
100]
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also called the oxidative burst [6, 56, 115, 169], is induced by
activation of a membrane-bound NADPH oxidase [54, 103].

ROS plays several function during pathogen infection, being
direct antimicrobial agents, activator of several defense genes,

Fig. 7 Differential effect of TRPA1 activation by caffeine. a, b Current
recordings using two-electrode voltage clamp (− 100 to + 100 mV) from
Xenopus oocytes expressing mouse TRPA1 (a) or human TRPA1 (b).
Agonist application is indicated by the bars. Right panels represent an

expanded view of the boxed region in a and b. Reproduced with permis-
sion from Nagatomo and Kubo [150] BCopyright (2008) National
Academy of Sciences, U.S.A.^

Fig. 6 Caffeine-producing plants and its biosynthesis. a Phylogeny tree
of the evolutionary position of caffeine-producing plants with respect to
other eudicots. Caffeine is commonly produced by plants belonging to
Coffea and Rubia genus and many other plants such as Theobroma (ca-
cao), Ilex (yerba mate), Paullinia (guaraná), Cola (cola nut), and
Camellia tea (tea) species, although they evolved distinct pathways to
produce this chemical [47, 53]. Coffea plants are hard wood trees or
shrubs producing a fruit, containing usually two seeds called coffee beans
[47]. Caffeine is present in the highest concentrations in the young shoots

and leaves. Depending on species green coffee beans contain variable
amounts of caffeine (up to 3.3% of dry mass) [14, 15]. b Simplified
schema of the caffeine biosynthetic pathway involving threemethylations
of nucleotide xanthosine. Three methyltransferase enzymes are essential
in the synthesis: xanthosine methyltransferase (XMT), theobromine syn-
thase [7-methylxanthine methyltransferase (MXMT)], and caffeine syn-
thase [3,7-dimethylxanthine methyltransferase (DXMT)]. Reproduced
with permission from Denoeud et al. [53]
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inducer of the hypersensitive response (HR), cell death,
salicylic acid production, and systemic acquired resistance
(SAR) [56, 115]. ROS can be sensed by multiple TRP chan-
nels in sensory neurons, including TRPA1, TRPV1, TRPV4,
TRPC3–5, TRPM2, TRPM7, and TRPM8 [7, 142, 152, 153,
160, 191, 216].

Indisputably, TRPA1 acts as a one of the major sensors of
ROS and reactive nitrogen species (RNS), including nitric
oxide (NO) and peroxynitrite (ONOO−) [144, 205, 208]. It
is known that these chemicals produce covalent S-
nitrosylation of TRPA1, but the full mechanism of activation
by reactive species is still unclear. It is possible that channel is
directly gated by these compounds [8] or an indirect activation
mechanism could be involved induced by for instance gener-
ation of lipid peroxidation products [202]. TRPA1 activation
is also essential in responses to hypoxic conditions, resulting
in cardiovascular and respiratory regulatory reflexes [111]. In
Trpa1KOmice, VG neurons responses to hyperoxia and mild
hypoxia were abolished. TRPA1 may be activated by hypoxia
via the reduction of proline hydroxylase activity, leading to
decreased hydroxylation of P394 within the channel ankyrin
repeats relieving inhibition. On the other hand, hyperoxia in-
duces channels C633 and C856 oxidation [204]. Taken to-
gether, the recent literature on the interactions between reac-
tive molecules and TRPA1 or other sensory TRP channels
suggest their roles as alarm systems protecting herbivores
from harmful plant defenses.

Vanilloids

Belonging to the plant genusCapsicum (Greek kapto, Bto bite^),
chili peppers are well-known for their pungency. Fruits of the
plants from this genus contain the chemical capsaicin (8-methyl-
N-vanillyl-6-nonenamide) and other structurally related com-
pounds, called capsaicinoids, such as dihydrocapsaicin,
nordihydrocapsaicin, homodihydrocapsaicin, and
homocapsaicin [147]. Capsaicin belongs to the vanilloid family,
which also includes vanillin (vanilla bean), eugenol (bay leaves
or cloves oil), and zingerone (ginger) (Fig. 8d). Capsaicin is
highly lipophilic, which explains the lack of pungency allevia-
tion by drinking water after oral intake. The main function of
these chemicals is to discourage consumption by plant herbi-
vores, but on the other hand, the primary function of the plant
fruit should be facilitation of the seed distribution. Without
doubt, Capsicum plants evolved a specific strategy through
whichmammals are repelled, but birds are not and serve as main
seed distributors [210]. It has been observed that consumption
by birds is advantageous to these plants, as these animals excrete
the seeds in places convenient for germination, such as under
other plants, assuring shade beneficial for seed survival and
shelter from consumers [209, 210]. Interestingly, seeds excreted
by birds are able to germinate, but no germination occurs after
ingestion by mice. This was attributed to the distinct ways in

which the seeds are ingested by those animals. In birds, seeds are
not chewed on, pass the gut very quickly and come out intact. In
contrast rodents and other mammals damage the seeds by
chewing and by the effects of acidic juices during food diges-
tion. For example, it was found that seeds of Capsicum
chacoense (native to Bolivia, Argentina, and Paraguay) that pass
through the digestive system of the small-billed Elaenia, a bird
of the family Tyrannidae had less pathogens (Fusarium fungi)
and were devoid of volatile chemicals that attract granivorous
ants. This resulted in a 370% rise in seed survival rate [67].
Reduction in fungi load on C. chaocense seeds is extremely
important because it represents a major seed mortality factor
[67, 211]. A key question is why mammals, but not birds, dis-
play such strong aversion towards hot peppers? The answer lays
in the different sensitivity of nociceptive nerve fibers of these
animals towards capsaicin, a specific agonist of TRPV1 (Fig. 8).
It was shown that bird TRPV1 orthologs lack sensitivity to
capsaicin and other vanilloids [93]. Comparison of mammalian
and different avian TRPV1 sequences revealed only 68% amino
acid sequence conservation [93]. The capsaicin-TRPV1 interac-
tions have been studied extensively by creation of mammalian
channels chimeras with vanilloid-insensitive TRPV2 or avian or
rabbit capsaicin-insensitive TRPV1. These studies identified es-
sential residues in the TM2 and TM3 necessary for capsaicin
binding with a single, evolutionary conserved amino acid
(Y511), crucial for vanilloid sensitivity [93]. The sensitivity dif-
ferences between species could be attributed to I550 residue as
substitution of this amino acid to threonine rendered rabbit
TRPV1 vanilloid sensitive [72]. Moreover, the inverse substitu-
tion, T550I, produced reduction of capsaicin responses in hu-
man and rat TRPV1 [72]. Taken together, these results sug-
gested that the hydrophobic tail of capsaicin interacts with aro-
matic Y511 residue and that several polar amino acids including
M547, S512, and R491 are important in accommodating its
vanilloid moiety [72, 93]. Multiple molecular dynamics simula-
tions showed Btail-up, head-down^ configurations of capsaicin
in the vanilloid pocket (Fig. 8c), where the aliphatic Btail^ forms
van der Waals interaction with the channel and contributes to
binding affinity. The vanillyl Bhead^ and amide Bneck^ of the
molecule interact with the channel via hydrogen bonds, which
grant specificity for the capsaicin binding [46, 75, 119, 162].
The cryo-EM confirmed the localization of the vanilloid binding
pocket, where interactions occur between the vanillyl group of
capsaicin and Y511, while the adjacent S512 also participates
via hydrogen bonds [33, 119]. Moreover, depending on the

�Fig. 8 TRPV1 activation by capsaicin. a Effect of peppers extracts with
different pungencies on currents recorded in a Xenopus laevis oocyte
expressing TRPV1 channels. Reproduced with permission from Caterina
et al. [35]. bConcentration-response curve (top) and single channel record-
ings (bottom) of TRPV1 upon application of capsaicin. c Localization of
the binding site of capsaicin (orange) in the TRPV1 structure. Reproduced
with permission from Yang et al. [232]. d Chemical structures of capsaicin
and structurally related vanilin, eugenol and zingerone.
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presence of vanilloids, Y511 assumes two distinct rotamers,
suggesting an Binduced fit^ mechanism [33]. TRPV1 opening,
upon capsaicin binding, is associated with major structural rear-
rangements of the pore helix and selectivity filter, in addition to
distinct dilation of a hydrophobic constriction at the lower gate
[33]. Therefore, capsaicin sensitivity that greatly varies between
animals has important implications for understanding the com-
plexity of the interactions between plant survival strategies and
plant consumers. For birds, lack of sensitivity to capsaicin is
beneficial as they can forge on this food source. On the other
hand, the high sensitivity of other species, in particular mam-
mals, acts and allows plants to use capsaicin as a strong repel-
lent. Overall, these mechanisms are highly beneficial for the
plants, as they ensure that their seeds are spread by the optimal
vector and protect the plant from overconsumption.

Vanillin, a volatile chemical structurally similar to capsaicin,
is produced by approximately 110 species of the vanilla plants,
including Vanilla planifolia, Vanilla tahitensis, and Vanilla
pompon [69]. This primary component of the vanilla bean ex-
tract is largely used in foods, beverages, cosmetics, and pharma-
ceutical industries as a flavoring agent. Vanillin has antimicro-
bial activity [129] and is a biologically active attractant of orchid
bees [62]. Together with vanillin, more than 40 other chemicals
such as 8-cineole, eugenol, or linalool are present in bees
attracting extracts [62]. Vanillin has mild CNS effects and is
often regarded as an aphrodisiac. Although, vanillin acts mainly
on the olfactory system, this compound was shown to act also
on TG neurons. Inmammals, this odorant was shown to activate
TRPV3 at rather high concentrations (above 10 mM) [228].
Later, it was shown to activate trigeminal TRPA1 and TRPV1
and inhibit TASK1 channels [130]. Since TG were activated
with lower vanillin concentrations (1 mM) and TRPV3 expres-
sion in trigeminal neurons is arguable, TRPA1 and TRPV1 ac-
tivation was linked with the observed activity.

Eugenol is a volatile chemical produced by various plants,
where it functions as a floral attractant for pollinators as well
as an antimicrobial agent [107]. Eugenol and its derivatives
are present in essential clove and clocimum oils obtained from
Eugenia carophyllata andOcimum gratissimum, nutmeg, cin-
namon, basil, and pimento berry [102]. This compound con-
tributes the specific aroma of many fruits, as in the case of ripe
strawberries [13]. Eugenol acts as repellent of beetles, inhibits
egg and larvae development of the greater grain weevil
Sitophilus zeamais [163], and can be toxic for humans, induc-
ing liver damage and failure, respiratory distress syndrome,
and CNS depression [60]. The structural similarity between
eugenol and capsaicin suggests analogous molecular mecha-
nisms of action. Indeed, it has been shown that it possesses
antinociceptive properties similar to once induced by capsai-
cin, attributed to TRPV1 activation [228, 231]. However,
eugenol-induced responses were slower and characterized by
smaller amplitudes, than those to capsaicin [173, 231].
Additionally, eugenol shares many properties with local

anesthetics, such as the ability to alleviate tooth pain, which
relate to the inhibitions of voltage-gated Ca2+ and Na+ chan-
nels [38, 121, 174]. Eugenol can also block production of
inflammatory pain-metabolites as prostaglandins through in-
hibition of cyclooxygenase-2 and lipoxygenase activity [55,
213]. Other TRP channels, namely, TRPA1, TRPM8, and
TRPV3 are also activated by this volatile chemical [17,
228]. Oral application of eugenol induces pungent sensations
as warmth and thermal pain, which were proposed to be me-
diated by TRPV3 and TRPV3-mediated enhancement of ther-
mal gating of TRPV1 expressed in lingual polymodal
nociceptors [105].

Zingerone is a crucial contributor to the specific flavor of
dried and cooked ginger (Zingiber officinale). It is produced
by heat conversion of gingerol, another active ginger chemical
[88]. It is structurally similar to capsaicin, suggesting that it
may act on TRPV1, but has a shorter hydrophobic moiety and
lacks an acyl-amide moiety. These structural differences are
likely to be responsible for a more rapid onset and a faster
decay of zingerone’s gustatory and trigeminal responses, com-
pared to those of capsaicin [127]. On the other hand,
zingerone induces TG desensitization and tachyphylaxis, sim-
ilarly to capsaicin [127]. As described above, the aromatic
portion of the Y511 residue in TRPV1 is necessary for the
interaction with the vanilloid moiety of capsaicin. It was pro-
posed that zingerone and other capsaicin-related chemicals
can interact only partially with Y511, resulting in weaker
TRPV1 agonist activity [72].

Another target of zingerone is TRPA1, acting through a
mechanism distinct from that of AITC. Instead, it was pro-
posed that TRPA1 activation by zingerone involves intracel-
lular Ca2+ mobilization from internal stores through Ca2+-in-
duced Ca2+-release mechanisms [112]. Finally, different fruit
fly species are distinctly attracted to plants producing
zingerone, eugenol, and its derivatives, suggesting for a dif-
ferential expression of the relevant chemosensory TRP chan-
nels in these species [207].

Plants from the Piper genus, such as black pepper and long
pepper, produce another pungent vanillamide, piperine. In addi-
tion, pepper plants contain roughly 145 different chemicals, in-
cluding chavicine, piperettine, piperiline, piperlonguminine, 4,5-
dihydropiperlongumine, pellitorine, pipercide, guineensine, and
sylvatine, all contributing to the characteristic spicy, tingling,
and warming sensations induced by black pepper [48]. These
compounds are all deterrent to many animals. In nature, these
chemicals act as insecticides, exhibiting low levels of threat to
the environment or to human health. In fact, pepper is broadly
used as flavoring agent having many beneficial effects as an
antioxidant, anti-inflammatory, and antimicrobial agent [141].
Although at first glance piperine seems to be tasteless, this im-
pression is quickly replaced by a burning sensation attributed to
activation of TRPV1 [140]. Another member of the TRP super-
family, TRPA1, is also activated by pepper chemicals including

224 Pflugers Arch - Eur J Physiol (2019) 471:213–236



piperine, isopiperine, isochavicine, piperanine, piperolein A,
piperolein B, and N-tetra, although at concentrations higher than
those required to activate TRPV1 [166]. Therefore, the pungent
flavor of pepper may be attributed to the activation of both
channels.

Garlic, onion, and mustard: organosulfur-based
defense systems

Plants from the Brassica genus, also known as mustard plants
(mustard, broccoli, Brussels sprouts, watercress, wasabi, and
cauliflower), produce the highly pungent compound allyl iso-
thiocyanate (AITC) upon disruption of the plant tissue by path-
ogens or herbivores. Isothiocyanates (ITC), and several other
compounds such as nitriles, thiocyanates, oxazolidine-2-thiones,
and epithionitriles, are produced from glucosinolates that are
hydrolyzed by the enzyme myrosinase [175]. These volatile
compounds reduce oviposition and feeding activities of insects,
and their strong pungency induces aversion behavior in other
herbivores [68]. The pungent sensation that AITC produces in
mammals was initially attributed to a specific activation of
TRPA1 expressed in nociceptive neurons [20]. ITCs are highly
electrophilic chemicals and can form conjugates with accessible
thiol groups in proteins. In the case of human TRPA1, these
were reported to be cysteines at positions C619, C639, and
C663 and to a lesser extent lysine 708, all located in the cyto-
plasmic N-terminal tail of the channel between the last ankyrin
repeat and the first transmembrane segment [80]. It was also
shown that immunoprecipitated mouse TRPA1 can be covalent-
ly modified by electrophilic agonists and at least 14 other cys-
teine residues can contribute to channels activation [131]. The
key cysteine residues of mouse TRPA1 (C415, C422, and
C622) are close and within the ankyrin repeats presenting in-
triguing differences between two species [131]. Moreover, cys-
teines located in the mouse TRPA1 N-terminal can form disul-
fide bridges that stabilize channel structure [236]. Actually, res-
idues can be shared to form bridges as for example in mouse
TRPA1 C666–C622, C666–C463, C666–C193, and C622–
C609, suggesting that channel activation may involve different
N-terminal conformations [220].

Our later studies show that some TRPA1 electrophilic ago-
nists such as AITC and cinnamaldehyde activate the channel at
low concentrations but also have an inhibitory effect at high, but
pharmacologically relevant, concentrations [5, 61]. In addition,
although TRPA1 is a main target of ITCs, it has been demon-
strated that trpa1 knockout mice display residual aversive be-
havior against AITC [113]. More detailed investigations re-
vealed that AITC also activates TRPV1 and that this channel
contributes to the nociceptive effects of AITC [61, 73, 164].

In insects, AITC exposure induces mortality, adult and im-
mature malformation, repellency, and altered development
[66, 85, 189]. The mechanisms of AITC action in insects are
still unresolved. However, it may involve disrupting the

activity of the mitochondrial complex IVand complex I, lead-
ing to tissue dysfunction [136, 233]. Insect feeding is also
inhibited by ITC and related chemicals via a mechanism in-
volving TRPA1 expressed in GRNs in the insects mouthparts
[4, 97]. This further points to evolutionarily conserved molec-
ular pathways involving sensory TRP channels that are impli-
cated in chemical nociception between different organisms.
Detection of harmful, electrophilic chemicals by TRPA1
emerged over 500 million years ago in a common vertebrate/
invertebrate ancestor [97]. Interestingly, sensing noxious
chemicals was a Bsecondary^ function as different TRPA
clades express highly temperature-sensitive channels, indicat-
ing thermosensitivity to be ancestral. In addition, the channel
N-terminal region, which is highly variable in the sequence
between different animals, even within same class as insects,
indicates specialization of the channel properties [74, 97]. For
instance, different mosquito species, express two TRPA1 iso-
forms (TRPA1(A) and TRPA1(B)) that not only vary in ther-
mal sensitivity but also differently respond to electrophilic
agonists [97]. This conserved, functional diversity of TRPA1
between different host-feeding species provides a clue for how
this insects sense and select their host.

Furthermore, extracts from Brassica plants induce
genotoxicity in bacteria, in fungi, as well as in mammalian
cells. Different chemical substitutions of ITC have variations
in their DNA-damaging capacities, as for instance, benzyl-
ITC has much more effect than AITC or phenethyl-ITC [99].

Garlic (Allium sativum) has also adapted to deter foragers
by inducing burning, irritating sensation in the mouth when
cloves are consumed. Sensations elicited by garlic are attrib-
uted to activation of TRPA1 and TRPV1 channels [132, 187].
It has been shown that approximately 30% of rodent TG neu-
rons responds to garlic extract [20]. Diallyl sulfide (DAS),
diallyl disulfide (DADS), and diallyl trisulfide (DATS) acti-
vate both channels (Fig. 9b), but display higher affinity for
TRPA1 [20, 109, 132]. Although garlic consumption has been
shown to be highly beneficial for health [10, 18, 26, 168] and
garlic is used as natural remedy for many illnesses, overcon-
sumption is greatly toxic. Garlic extracts are mutagenic, in-
duce anemia by lysing red blood cells, and even induce death
in rats (above 5 ml of garlic juice per kg) [18, 110]. Garlic
components, mainly DADS, allyl propyl disulfide, and allicin,
can also induce vomiting, heartburn, diarrhea, allergic contact
dermatitis, asthma, hypoglycemia, flatulence, tachycardia,
and insomnia [18, 32, 71, 172]. One of the pests of garlic
and other Allium plants is Ditylenchus dipsaci. This bloat
nematode lives between the cells of bulbs, stems, and leaves
feeding on the sap. A question is then, how can this animal
live and feed on garlic juices containing so many harmful
chemicals. Part of the answer may lay in the TRP channel
expression patterns, as most nematode parasites possess fewer
genes, often lacking TRPA, TRPM, or TRPP sequences [224].
This may lead to a reduction of noxious sensory inputs
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recognition, which is consistent with these animals residing in
environments that others would perceive as harmful.

Other plants of the Allium genus such as onions, shallots,
chives, and leeks also produce pungent thiosulfinates and
disulfides. Onion (Allium cepa), similarly to garlic, generates
many toxic compounds causing hemolytic anemia in dogs, cats,
cattle, and horses [188]. These plants contain S-alk(en)yl-cyste-
ine sulfoxides (ACSO), whose content in different crops is reg-
ulated by genetic and environmental factors. There are six

different ASCOs produced, including S-methylcysteine sulfox-
ide (methiin), S-propylcysteine sulfoxide (propiin), trans-S-(1-
propenyl)cysteine sulfoxide (isoalliin), S-butylcysteine sulfox-
ide (butiin), S-ethylcysteine sulfoxide (ethiin), and the above-
mentioned S-(2-propenyl)cysteine sulfoxide (alliin) [128]. Upon
cell integrity disruption by foragers, short-livedASCOs degrade,
resulting in a pungent, irritating aroma. Onion producesmethiin,
propiin, and isoalliin [128], resulting in the onion lachrymatory
factor attributed to formation of propanthial S-oxide, 1-propenyl

Fig. 9 Chemical structures of produced by garlic defense chemicals is
associated with TRPA1 activation. a Two classes of organosulfur
chemicals are present in whole garlic cloves: L-cysteine sulfoxides
(alliin) and γ-glutamyl-L-cysteine peptides. Alliin, which accounts for
about 80% of cysteine sulfoxides in garlic, is transformed to allicin by
alliinase enzymes within a few seconds after clove integrity disruption
[26, 219]. This short-lived chemical is further transformed into more
stable sulfur compounds as DAS, DADS, and DATS [20, 26]. In fact,
garlic contains more than 33 different organosulfur chemicals, as well as

many other chemicals whose functions remain unknown [138, 168, 219].
b Intracellular Ca2+ responses of rat TG primary sensory neurons express-
ing TRPA1 channels exposed to raw garlic extracts (1:10.000 dilution,
top panel) and its derivatives 40 μM allicin (middle panel) and 200 μM
DADS (bottom panel). Subsequently, all AITC-responsive neurons were
also activated by garlic compounds, pointing to a role of TRPA1 in sens-
ing these chemicals. Reproducedwith permission fromBautista et al. [20]
BCopyright (2005) National Academy of Sciences, U.S.A.^
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methane thiosulfinate, and di-propyl disulfide [22, 58, 84]. In
domestic animals, consumption of 5–30 g/kg of onion can result
in red cell damage [188], while humans, sheep, goats, and ro-
dents aremore tolerant. All chemicals mentioned here are highly
potent electrophiles, activating both insect and vertebrate
TRPA1 via covalent modification. Channel opening by these
compound results in avoidance, as for instance, escape behavior,
due to induction of pain, coughing, and lachrymation.

Terpenoids—etheric frontiers

Terpenoids form a group of highly important plant secondary
metabolites having multiple functions in primary plant physiolo-
gy (photopigments, electron carriers, membrane function modi-
fiers, etc.), as well as in the protection against abiotic and biotic
stress [1, 212]. This group contains over 40,000 structurally dif-
ferent chemicals derived from isopentenyl diphosphate (IPP) and

Fig. 10 Structures of linalool and citral and their activity on TRP
channels. a Monoterpenoid alcohol, linalool, has chiral properties and is
present in two enantiomeric forms; (R) and (S)-linalool. (R)-linalool is
found in many other plants, such as camphor, rosewood trees, thyme,
basil, lavender, and bergamot. The (S) enantiomer is found in black locust
and plants from Coriandrum genus, palmarosa and sweet orange [24,
123, 183]. b Dose-response relationships for linalool, 6-shagol and 6-
paradol and TRPA1 activation. c Chemical structures of citral and its

enantiomers. d Currents through the TRP channels rTRPV1, rTRPV3,
rTRPM8, and rTRPA1 are increased upon application of citral. Inward
currents are increased for TRPV1 by 14-fold, TRPV3 by 38-fold, TRPM8
by 2-fold, and TRPA1 3-fold (top panel). Dose-response curves (bottom
panel) for citral activation of TRPV1, TRPV3, TRPM8, and TRPA1.
Reproduced with permission from b Riera et al. [185] and d Stotz et al.
[200]
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its allylic isomer dimethylallyl diphosphate (DMAPP) [212].
Plants produce terpenoid precursors via two independent, genet-
ically regulated pathways. One is the cytosolic mevalonic acid
(MVA) pathway, involved in the synthesis of sesquiterpenoids,
polyprenols, phytosterols, and brassinosteroids, and the second is
the plastidial methylerythritol phosphate (MEP) pathway, impli-
cated in the synthesis of hemiterpenoids, monoterpenoids,
diterpenoids, carotenoids, cytokinins, gibberellins, chlorophyll,
tocopherols, and plastoquinones [77, 78, 212]. Many terpenoids
are highly volatile chemicals associated with plant fragrance,
acting as insect attractants or repellants [190]. For instance, a
monoterpenoids mix containing d-limonene, β-myrcene, and
E-β-ocimene, released by flowering plants such as the
monkeyflowers (Mimulus), is crucial to attract specific pollina-
tors [28]. Plants from the orchid genus (Satyrium) emit fragrance
mixtures composed of at least 70 different compounds, of which
many are monoterpenoids, sesquiterpenoids, and benzenoids.
The specific scent of these plants is necessary for attracting only
pollinating Atrichelaphinus tigrina beetles and Hemipepsis
hilaris wasps [91]. The most abundant in the orchid fragrance
mixtures are linalool, eucalyptol, elemicin, α-pinene, myrcene,
and 2,6-dimethyl-1,5(Z),7-octatrien-3-ol [91]. Many of these
compounds, especially linalool, are able to directly induce elec-
trophysiological responses in antennae of the pollinating beetle
species, making them generalists visiting these plant species.
Linalool (3,7-dimethyl-1,6-octadien-3-ol) (Fig. 10a) has a sweet,
pleasant scent, occurring widely among diverse monocot and
dicot plant families [106]. Remarkably, it has been shown that
linalool chirality determines the specific interactions between
bees and orchids [91]. Similarly, bees could respond contrarily
to the linalool enantiomers, as this compound is dominant in
secretion of receptive females [25]. Another theory states that
the scent emitted by orchids repels other pollinating insects and
animals, as absence or reduced concentration of the compound
attracted bats and flies. Linalool was shown to activate members
of mammalian TRP channel superfamily, TRPA1 (EC50

117 μM) (Fig. 10b) [185] and TRPM8 (EC50 6.7 mM) [21].
Interestingly, in sensory trials, linalool failed to induce the burn-
ing, painful feeling associated with TRPA1 activation [185],
which may be explained by its analgesic properties via interac-
tion with other targets. Linalool enantiomers were shown to re-
duce peak amplitudes of fast-conducting compound action po-
tentials of frog sciatic nerve fibers [165], to inhibit action poten-
tials of rat dorsal root ganglion neurons [118], and to inhibit
voltage-gated Na+ channels expressed in newt olfactory receptor
cells [151].

Citronella essential oil is a pale to dark yellow liquid with
woody, grassy, or lemony scent, produced by the plants
Corymbia citriodora, Cymbopogon nardus, Java citronella,
and more than 50 other plants. This oil is well-known by its
insect repellent properties (especially mosquito) and antimi-
crobial functions, and it is often used in ancient Indian and
South-east Asian traditional medicines. Originally, citronella

oil was purified for use in perfumery and its repellent proper-
ties were exploited as early as the beginning of the twentieth
century [134]. Nowadays, the citronella essential oil is used in
cosmetic, pharmaceutic, flavor, and fragrance industry. It con-
tains more than 80 chemicals, including as main components
the monoterpenes citronellal (3,7-dimethyl-6-octenal), citro-
nellol (3,7-dimethyloct-6-en-1-ol), citral (3,7-dimethyl-2,6-
octadienal), and geraniol ((2E)-3,7-dimethyl-2,6-octadien-1-
ol). It has been shown that aversion to citronellal in
Drosophila melanogaster involves two distinct olfactory path-
ways. The first implicates insect-specific olfactory receptors
and the second involves the function of Drosophila
TRPA1(A) isoform downstream of a GPCR. Moreover, hu-
man and mosquito TRPA1 are activated by citronellal, with
higher sensitivity than for dTRPA1(A). Although citronella is
a well-known bug repellent, it should not be used at concen-
trations above 10% due to induction of severe skin reactions.

Citral (Fig. 10c), characterized by its bittersweet, lemony
flavor and odor, is an active ingredient of lemongrass oil,
lemon peel, citronella, and palmarosa grass and has been char-
acterized as insect repellant [76]. Citral, in nature found as two
more stable isomers, E-citral (neral) and Z-citral (geranial)
[178], acts via GPCRs in olfactory epithelia, but was also
shown to be an agonist of TRPV3 and partial agonist of
TRPM8, TRPV1, and TRPA1 (Fig. 10d) [200]. Citral is an
α,β-unsaturated aldehyde, so it may well activate TRP chan-
nels by electrophilic modification of cysteine and lysine resi-
dues. As mentioned above, detection of aversive electrophiles
is one of the ancestral defense mechanisms conserved in in-
vertebrates and vertebrates. Furthermore, citral was shown to
interact with the transmembrane segments TM2-TM4 of TRP
channels [200], which contain residues crucial for TRPV1
activation by capsaicin and TRPM8 activation by menthol
[16, 87, 217]. However, a capsaicin-insensitive TRPV1 point
mutant at residue Tyr 511 is activated by citral, suggesting that
the binding sites for these two compounds are different [200].

Conclusions

Plants produce many aversive compounds serving to protect
themselves from herbivores. This urges plant consumers to
evolve specific mechanisms of chemicals recognition by spe-
cialized receptors. The analysis of the feeding ecology of dif-
ferent organisms demonstrates that aversive behaviors play
crucial roles in the fitness of herbivores. TRP channels are
one group of receptors specialized in detecting harmful stimuli
and triggering protective responses in organisms. Whereas
much progress has been made in the last decade in the under-
standing of the structure and functions of TRP channels, the
evolutionary link between bypassing plant defense mecha-
nisms and TRP channel functional expression in the animal
kingdom is largely unexplored. Summarizing, in this review,
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we illustrate the involvement of TRP channels in detection of
harmful stimuli and the evolutionary adaptation of organisms
consuming plants that use TRP channel agonists as defense
mechanisms. Since the expression pattern and ligand sensitiv-
ity of TRP channels varies between species, this presents an
intriguing evolutionary adaptation to their specific habitat and
life cycles.
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