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Abstract
Ruminants have a unique utilization of phosphate (Pi) based on the so-called endogenous Pi recycling to guarantee adequate Pi
supply for ruminal microbial growth and for buffering short-chain fatty acids. Large amounts of Pi enter the gastrointestinal tract
by salivary secretion. The high saliva Pi concentrations are generated by active secretion of Pi from blood into primary saliva via
basolateral sodium (Na+)-dependent Pi transporter type II. The following subsequent intestinal absorption of Pi is mainly carried
out in the jejunum by the apical located secondary active Na+-dependent Pi transporters NaPi IIb (SLC34A2) and PiT1
(SLC20A1). A reduction in dietary Pi intake stimulates the intestinal Pi absorption by increasing the expression of NaPi IIb
despite unchanged plasma 1,25-dihydroxyvitamin D3 concentrations, which modulate Pi homeostasis in monogastric species.
Reabsorption of glomerular filtrated plasma Pi is mainly mediated by the Pi transporters NaPi IIa (SLC34A1) and NaPi IIc
(SLC34A3) in proximal tubule apical cells. The expression of NaPi IIa and the corresponding renal Na+-dependent Pi capacity
were modulated by high dietary phosphorus (P) intake in a parathyroid-dependent manner. In response to reduced dietary Pi
intake, the expression of NaPi IIa was not adapted indicating that renal Pi reabsorption in ruminants runs at a high level allowing
no further increase when P intake is diminished. In bones and in the mammary glands, Na+-dependent Pi transporters are able to
contribute to maintaining Pi homeostasis. Overall, the regulation of Pi transporter activity and expression by hormonal modula-
tors confirms substantial differences between ruminant and non-ruminant species.
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Phosphate recycling in ruminants

In contrast to all other mammals, an endogenous phosphate
(Pi) circulation has developed in ruminants. This species’ spe-
cific trait has to be discussed concerning two major physio-
logical functions of Pi in the forestomach region. Firstly, Pi is
an essential component of microbial cell mass and is therefore
needed for microbial protein synthesis as a dominating com-
ponent of microbial growth since Pi is needed for the synthesis
of new bacterial nucleic acids and other cell components.
Secondly, besides bicarbonate Pi serves as a buffering system

for short-chain fatty acids which are produced at high rates as
end products of ruminal microbial fermentation. Thus, the
endogenous Pi circulation maintains the chemical homeostasis
in the rumen and Pi supply to ruminal microorganisms espe-
cially in situations of limited dietary phosphorus (P) supply.

In small and large ruminants, the salivary glands are the
major site for endogenous Pi secretion into the gastrointestinal
tract. This substantially exceeds dietary P intake under normal
feeding conditions. The high Pi secretion rates are mediated by
both high volume flow rates of saliva in ruminants and the
ability of the salivary glands to enrich Pi compared with plas-
ma Pi. The ability to enrich Pi in saliva has also been demon-
strated for free-ranging ruminants such as roe deer [14]. Thus,
daily secretion rates between 5 and 10 g Pi in sheep and goats
and between 30 and 60 g Pi in cows [6] can be achieved. In
order to inhibit substantial losses of the overall P pool, Pi has
to be effectively absorbed. In studies in sheep which were
equipped with duodenal and ileal cannula, it could be demon-
strated that this mainly takes place in the small intestines.
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Phosphate transport in the ruminant intestine

Although the small intestines had been identified as the major
site for Pi absorption in various studies carried out about
50 years ago [19, 41], the first data on the epithelial mecha-
nisms in ruminants were published approximately 30 years
ago. In Pi uptake, studies on brush border membrane vesicles
(BBMV) which had been prepared from the upper small in-
testine of young sheep, a Pi uptake was described which
depended on the pH gradient between the buffer solutions
outside and inside the vesicles [53]. By replacing of mannitol
or gluconate in the incubation medium by more permeable
anions such as SCN− or Cl−, no effects on the Pi transport rate
were determined which was interpreted as evidence for an
electroneutral Pi transport [54]. Therefore, it was concluded
that in contrast to monogastric animals, Pi uptake across the
enterocyte apical membrane is mediated by a proton (H+)-
driven electroneutral mechanism. The transport capacity of
this system increased in response to P depletion [54]. The
molecular basis of a potential duodenal H+-dependent Pi trans-
port system has not yet been identified.

This concept, however, could not be confirmed by direct Pi
flux measurements across intact epithelial tissues from differ-
ent intestinal segments in sheep and young goats [47]. In these
studies, unidirectional Pi flux rates were measured in Ussing
chambers in the absence of an electrochemical gradient, and in
both species, high Pi net flux rates could be determined in the
mid-jejunum. This clearly indicated the existence of active
transport mechanism. In young goats, the highest Pi absorp-
tion along the intestinal axis was measured in the ileum [12];
this was also demonstrated in adult sheep [47]. An explanation
for this could be a pH of 8.0 in the ileum which could cause a
shift in the equilibrium of constant Pi to a more divalent Pi
(HPO2−

4), which is favorably transported by the electrogenic
Na+-dependent Pi transporter NaPi IIb (SLC34A2). For fur-
ther characterization of active Pi transport, it could be demon-
strated that around 60% of active Pi transport in the mid-
jejunum could be inhibited when either the mucosal sodium
(Na+) concentration was reduced from 148.2 to 1.8 mmol/l,
ouabain was adjusted to a concentration in the serosal com-
partment of 0.1 mmol/l for complete inhibition of basolateral
Na+/K+-ATPase [5] or arsenate was added to the mucosal
buffer solution at a concentration of 5 mmol/l. Arsenate has
been established as a competitive inhibitor of renal and intes-
tinal Na+-coupled Pi cotransport into BBMV vesicles of
monogastric species [1, 10, 21, 42, 52].

Despite the fact that Na+-dependency of a substantial pro-
portion of active Pi transport could clearly be demonstrated in
these experiments, it could not be concluded that this transport
was identical to the secondary active Na+/Pi cotransport as
suggested for the sheep ileum [43, 44]. The manipulations
on mucosal or serosal Na+ might have also affected the apical
Na+/H+ antiporter. Thus, Na+-driven H+ extrusion could have

been limited by these manipulations, therefore inhibiting Pi
uptake by an H+/Pi cotransporter.

In order to further clarify how Na+ and H+ are involved in Pi
transport Pi uptake, studies into BBMV from goat jejunum were
carried out under different conditions with regard to the
extravesicular Na+ and H+ concentrations [45]. The Na+-depen-
dent Pi uptake as a function of extravesicular Pi concentration
was saturable, following a simple Michaelis-Menten kinetic
and resulted in a Vmax of 0.423 ± 0.080 nmol mg−1protein·
15 s−1 and a Km of 0.029 ± 0.007 mmol/l. These kinetic data
are in accordancewith respective data obtained frommonogastric
species. At an extravesicular Na+ concentration of 100 mmol/l, a
decrease in extravesicular pH from 7.4 to 5.4 led to a significant
increase in Pi uptake by about 60%. This effect could not be
observed when extravesicular Na+ was completely replaced by
K+. The results do not agree with flux data obtained for ileal
tissues. This could be due to the fact that by using intact epithelial
tissues for flux measurements still include the microclimate
which cannot be assumed for BBMV. These data suggested that
a major proportion of jejunal Pi uptake in goat jejunum is Na+-
dependent and can be stimulated by H+.

This assumption could be confirmed after the murine type
II Na+/Pi cotransporter had been identified [20]. In a first ap-
proach, it could be demonstrated by applying Northern blot
analysis of mRNA of mouse and goat jejunum that the hybrid-
ization signal of goat intestinal mRNAwas located in the same
range as the mouse-specific NaPiIIb band. At protein level, a
strong Na+/Pi cotransporter type IIb specific immunoreaction
was shown when antibodies raised against N terminal-specific
oligopeptide of mouse Na+/Pi cotransporter type IIb were used
[23]. This could be confirmed by further comparative studies
in goat duodenum and jejunum. Northern blot analysis of
duodenal and jejunal poly(A) + RNAwas performed, and hy-
bridization with a goat-specific NaPi IIb probe revealed strong
bands in the jejunum but not in the duodenum. The lack of
NaPi IIb expression in goat duodenum was confirmed by
Western blot analysis when NaPi IIb protein could only be
detected in the jejunum with a mouse-specific NaPi IIb anti-
body. Immunohistochemically, the NaPi IIb protein localiza-
tion could be shown in goat jejunum but not in goat duode-
num. In addition, the relative amounts of NaPi IIb protein in
BBMVof goat jejunum as a function of Vmax of jejunal Na

+-
dependent Pi transport could be described by a positive corre-
lation indicating that a higher capacity of NaPi IIb transport
was correlated with an increased abundance of NaPi IIb pro-
tein which also underlined that the major extent of Na+/Pi
transport was mediated by NaPi IIb [24]. The expression of
another electrogenic Na+-dependent Pi transporter named
PiT1 (SLC20A1) was shown in caprine intestinal epithelia
[12].

In order to clarify the role of the goat duodenum for Pi
transport, transepithelial Pi flux rates were measured in
Ussing chambers in the presence or absence of mucosal Na+
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at pH 7.4 or 5.4, respectively. At a mucosal pH of 7.4 and in
the presence of Na+, small net flux rates (17.1 ±
3.3 nmol cm−2 h−1) were measured which were in the same
range as previously determined by Schroder et al. [47].
Reducing the mucosal pH to 5.4 resulted in a significant in-
crease in net flux above 200 nmol cm−2 h−1 with Na+ and
around 50 nmol cm−2 h−1 without Na+ in the mucosal buffer.
The Km values were about tenfold higher (0.4 mmol/l) com-
pared with the Km values of the jejunal NaPi IIb transporter.
From these studies, it was concluded that at least two different
mechanisms are involved in goat intestinal Pi absorption. In
the duodenum, it is mediated by an H+-dependent and Na+-
sensitive system which is not upregulated in response to die-
tary Pi depletion. In the jejunum, Pi transport is mediated by a
Na+-dependent and H+-sensitive mechanism which is mainly
represented by NaPi IIb and regulated by P intake [24].

The lack of mRNA and protein expression of NaPi IIb in
the duodenum and their presence in the jejunum has also been
found in lactating and dried-off goats. Interestingly, both, the
jejunal mRNA and protein expression of NaPi IIb were sig-
nificantly downregulated in lactating goats in comparison
with dried-off goats [60]. The expression of NaPi IIb mRNA
was also studied in Holstein cows, and it could be shown that
expression of NaPi IIb was highest in the distal jejunum and in
the ileum and virtually absent in the duodenum and in the
proximal jejunum [17].

The morphological and functional ontogenesis of the
forestomach system during the first months of life has to be
regarded as the major developmental process in young rumi-
nants. With regard to the specific functions of Pi for microbial
processes in the rumen, it was therefore of interest to measure
the expression of intestinal NaPi IIb as a function of time
during early development. These experiments were carried
out in goats’ tissues obtained during the first week of life,
within week 4–5, 8–11 and up until the fifth month. The ki-
netic parameters were measured by uptake studies into
BBMV, and relative expression of NaPi IIb was recorded by
molecular methods [25]. From these studies, it could be con-
cluded from the different Km values that in the first week of
life, covalent modifications of NaPi IIb and/or PiT1 might
have been present in the jejunumwhich affected binding prop-
erties because the Km value in this group was significantly
higher than in all other groups.

From many studies on monogastric species, it has been
shown that the active intestinal Pi absorption is upregulated
in response to either dietary P or calcium (Ca) depletion and
that this effect is mediated by 1,25-dihydroxyvitamin D3

(1,25-(OH)2D3) [18, 28, 40]. However, data frommonogastric
species is not consistent because in mice deficient for the
vitamin D receptor (VDR) or the 1alpha hydroxylase and
fed a low Pi diet, the expressions of intestinal NaPi IIb and
renal NaPi IIa were regulated like in wild type animals al-
though 1,25-(OH)2D3-VDR axis was not involved [8]. A P

depletion in sheep and goats neither affected plasma
1,25-(OH)2D3 concentrations [7, 45] nor the metabolic clear-
ance rate or the production rate of 1,25-(OH)2D3 [30]. In order
to detect whether in ruminants the regulation of the vitamin D
hormone systems is mediated by the VDR level of enterocytes
rather than by the hormone production rate, studies on the
kinetic parameters of the VDR were performed in lactating
and in young male goats. For lactating goats, increased bind-
ing affinities of the VDR could be demonstrated [46] which,
however, could not be confirmed for young goats [48].
Despite the lack of response from the vitamin D hormone
system, jejunal Pi net flux rates in young goats were signifi-
cantly increased in response to P depletion. Minor increases
were also shown for duodenal Pi net flux rates [47]; this,
however, could not be confirmed by Huber et al. [24]. In
contrast to data from chicks and rabbits [11, 42] and from rats
[9], no effects of P depletion on Vmax of the Na

+/Pi cotransport
system could be detected for young goats by measuring Pi
uptake into BBMV [45].

Based on efficient rumino-hepatic circulation of urea, ru-
minants cope easily with a reduction in dietary protein to
lower the excretion of nitrogen (N) into the environment.
However, changes in mineral homeostasis like reduced blood
Ca concentrations and decreased serum 1,25-(OH)2D3 levels
were detected in young goats kept on a reduced protein diet
[12, 35, 38]. The decrease in 1,25-(OH)2D3 did not modulate
the expression of NaPi IIb in the small intestine of goats [12]
whereas in monogastric species, the expression of intestinal
NaPi IIb is regulated in a 1,25-(OH)2D3-dependent manner
[34].

Phosphate transport in the ruminant parotid
gland

The parotid glands of ruminants are able to secrete large
amounts of Pi from blood into saliva. The acinar cells of sheep
parotid glands secrete 5 to 10 l per day of iso-osmotic saliva
which contains 10 to 40 mmol/l Pi. These high concentrations
of Pi in the saliva require a high flux through the acinar cells.
In ovine acinar cells, it was shown that this flux was mediated
by an Na+-dependent uptake of Pi and that it was inhibited by
phosphonoformate in parotid basolateral membrane vesicles
[62]. Therefore, it was concluded that this Na+-dependent Pi
transport was mediated by an Na+-dependent Pi transporter
type IIb located on the basolateral membrane of acinar cells
[25, 27]. The activity of this transport system was not regulat-
ed by a dietary P or Ca depletion in parotid glands [27, 62]
whereas the intestinal absorption of Pi was stimulated by such
a dietary intervention [54]. The mechanism of apical Pi extru-
sion into the primary saliva is unknown to date.
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Phosphate transport in the ruminant kidney

In the kidneys, most of the filtered Pi is reabsorbed across the
proximal tubule cells. This process is mediated predominantly
by the apically located Na+-dependent Pi transport proteins
named NaPi IIa (SLC34A1) and NaPi IIc (SLC34A3) in both
ruminant and non-ruminant species [2, 25, 55, 59]. About
90% of amino acid sequence, homology exists between rumi-
nant (goat, sheep, or bovine) and rat renal NaPi IIa [23, 49,
64]. However, the bovine NaPi IIa and NaPi IIc sequences
from native ruminant renal tissue has only a 59 and 56%
sequence identity, respectively, with the cloned Na+-depen-
dent Pi transporter of bovine renal epithelial cell line NBL-1
while the homology with NaPi IIb was 97% [64].

Under normophosphatemic conditions in ruminants, the
excretion of Pi is very low based on efficient tubular Pi reab-
sorption rates to prevent this urinary Pi loss [63]. However, the
functional and modulatory background for this event has not
been identified so far because the kinetic and stoichiometric
parameters of renal cortex Na+-dependent Pi transport are
comparable to the type IIa Na+/Pi cotransport in monogastric
species [49].

In monogastric species, NaPi IIa is mainly regulated by
fluctuating P levels in the extracellular fluid [3]. A low Pi diet
increased the expression of NaPi IIa in the kidney of rats [33]
whereas in goats and sheep neither a P nor a Ca depletion
caused significant effects on renal Pi transport capacities [49]
or on NaPi IIa expression [27], thus assuming that the P sup-
ply was still adequate in ruminants. On feeding a high P diet to
young ruminants, a decrease in renal Pi reabsorption capacity
based on internalized NaPi IIa protein occurred [27, 36].
Strong correlations between NaPi IIa mRNA and plasma Pi
as well as plasma parathyroid hormone (PTH) levels indicated
that elevated Pi and PTH concentrations were able tomodulate
the renal Pi excretion by reducing Pi reabsorption [36]. This
phenomenon is different to monogastric animals where the
NaPi IIa expression was decreased only at protein level [32].

In young goats, a modulation of mineral homeostasis
caused by a reduction in dietary protein under isoenergetic
conditions was shown [38]. During a dietary protein reduc-
tion, a significant increase in NaPi IIa protein expression and a
concomitant decrease in PTH receptor protein expression
were observed in young goats, whereas serum 1,25-(OH)2D3

concentrations were diminished and PTH levels were unaf-
fected [15, 58, 59]. Reason for this stimulated NaPi IIa expres-
sion could be a decrease in Pi concentrations in the ultrafiltrate
caused by a drop in the glomerular filtration rate (GFR) to
conserve urea. A reduction in the GFR by 60% was detected
in goats fed a low-protein diet [13, 61]. Such a chronic tubular
Pi depletion could cause an increase in NaPi IIa protein ex-
pression by unknown Pi sensing mechanism(s) in the proxi-
mal tubules, whereas the corresponding RNAwas not affected
like in monogastric species [4, 29]. Interestingly, a stimulation

of NaPi IIa expression could be achieved by a dietary protein
reduction and thereby presumably a reduction in Pi in the
ultrafiltrate. A direct dietary Pi depletion without manipulation
of GFR did not show the same effects in the ruminant kidney
[49].

Overall, the role of the kidneys in the modulation of P
homeostasis in ruminants is not clarified completely because
in preruminant animals, the kidneys are the main excretory
pathway for an excess of Pi like in monogastric species.
However, during the development of the ruminant, a transition
occurred, and an excess of Pi is not excreted by the kidneys
anymore but is secreted in the saliva and transferred to the
rumen where it is taken care of by microorganisms.
Therefore, the PTH-mediated regulation of renal Pi excretion
is less important in adult ruminants than in young ruminants
and monogastric species.

Phosphate transport in the ruminant
mammary gland

Similarly as for Ca ruminant, milk also contains high concen-
trations of P which can be allocated to different chemical
fractions. According to studies, in normal goat milk, approx-
imately 30% of the total P concentration around 20 mmol/l
were present as inorganic soluble P, and the remainder were
either non-covalently bound to protein or covalently bound to
casein [39]. Thus, for Pi, a concentrating ability of plasma Pi
between 4 and 5 mmol/l can be assumed for the mammary
gland, suggesting similarity to the parotid gland. The expres-
sion of NaPi IIb in the apical membrane of mice mammary
gland has been demonstrated for the first time by Miyoshi et
al. [31]. In their study, however, NaPi IIb could only be de-
tected when the alveolar epithelium had developed its full
secretory function. It could not be shown in virgin or early
pregnancy mice. They have suggested the physiological func-
tion of NaPi IIb as a potential marker of secretory functions in
the mammary gland. In order to characterize the potential role
of NaPi IIb in the mammary gland of ruminants, experiments
were performed in lactating goats [26]. In these experiments,
NaPi IIb protein could be detected in fractions of the apical
membrane which could also be confirmed by immunohisto-
chemistry. For functional characterization, apical membrane
vesicles from alveolar epithelial cells were prepared from
fresh goat milk in accordance with the approach introduced
by Shennan [50]. These membranes were then subjected to
Na+-dependent Pi uptake as a function of time, Pi concentra-
tion in the extravesicular buffer, and in the absence or presence
of phosphonoformic acid (PFA). PFA competitively inhibited
Na+/Pi transport [22]. In NaPi IIb-transfected PS120 cells and
in Xenopus laevis oocytes, 5 mmol/l PFA inhibited nearly the
entire Pi uptake [65]. These approaches showed the overshoot
profile as a function of time, Vmax of 0.9 nmol mg−1protein·
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10s−1 and a Km of 0.2 mmol/l, indicating a system with higher
transport capacity and lower affinity in comparison with jeju-
nal NaPi IIb. PFA led to a significant decrease in Pi uptake.
Although these data clearly indicate the presence of NaPi IIb
in apical membranes of goat alveolar epithelial cells, with
regard to the transmembrane Na+ gradient in alveolar epithe-
lial cells, it is quite unlikely that the substantial secretion of
inorganic P is mediated by this mechanism. Thus, there might
be a further basolateral mechanism for Pi secretion. Therefore,
it can be assumed that the modulation of apical NaPi IIb in
mammary glands is necessary to guarantee adequate intracel-
lular Pi supply for the cells during different stages of lactation
[37] Reason for this is because mammary blood flow is di-
minished during involution [16], and the activity of the
basolateral-located Na+-dependent Pi transporter is reduced
by milk stasis [51]. However, this is not yet fully understood
and further studies are needed.

Phosphate transport in the ruminant bone

The majority of Pi is present in the skeleton primarily com-
plexed with Ca in the form of hydroxyapatite crystals. In bo-
vine articular chondrocytes, two Pi transport mechanisms, a
Na+-dependent and a Na+-independent one, were character-
ized [56, 57]. The Na+-dependent component had a Km value
for Pi of 0.17 mmol/l whereas the Na+-independent part was
not fully saturable, indicating both carrier-mediated Pi uptake
and diffusive pathway in chondrocytes [57]. Both, the Na+-
dependent Pi transport mechanism and the Na+-independent
one were blocked by phosphonoacetate and arsenate, even
though parts of the Na+-independent component were resis-
tant. On a molecular basis, the mRNA expression of PiT1 and
PiT2 (SLC20A2) could be shown in bovine articular
chondrocytes [57].

Conclusion and outlook

In ruminants, a number of specific features in Pi homeostasis
have been documented in recent years. Firstly, the endogenous
Pi cycle ensures a high availability of Pi in the forestomach
region for microbial and buffer features. Secondly, intestinal

Pi absorption is mediated by at least two different mecha-
nisms: an H+-dependent and Na+-sensitive Pi transport in the
duodenum which is not modulated by dietary P intake where-
as the NaPi IIb and PiT1 could only be detected in jejunal and
ileal tissues. This system is H+-sensitive and is significantly
upregulated in response to dietary P depletion without any
changes in the vitamin D hormone system. Thirdly, the role
of the kidneys for regulating Pi homeostasis is by far less
important as compared with monogastric species which is
due to the fact that under physiological Pi conditions, the
reabsorption of Pi already runs at a very high level in the
kidneys. Therefore, additional adaptation processes cannot
occur (Table 1).

Further experimental studies should focus on a more de-
tailed characterization of duodenal Pi transport and on those
mechanisms which are involved to mediate adaptational jeju-
nal Pi transport. In addition, the potential interaction between
Pi homeostasis and other nutrient systems need further
clarification.
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