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Abstract
Sarcopenia is the loss of muscle mass and strength produced by aging or secondary to chronic diseases such as chronic
liver disease (CLD). Although not all types of sarcopenia involve the same features, the most common are decreased
fiber diameter and myosin heavy chain (MHC) levels, increased activity of ubiquitin–proteasome system (UPS) and
reactive oxygen species (ROS). In this study, we aim to characterize the development of sarcopenia secondary to CLD
induced by the hepatotoxin 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). For this purpose, four-months-old male
C57BL6 mice were fed with normal diet or DDC supplemented diet for 6 weeks. Functional tests to evaluate muscle
strength, mobility, and motor skills were performed in alive mice. The muscle strength in isolated gastrocnemius was
also assayed via electrophysiological measurements. Morphometric measures of fibers’ diameter, total and ubiquitinated
protein levels of myosin heavy chain (MHC), E3 ubiquitin ligases, ROS, and oxidation-dependent modified proteins in
gastrocnemius tissue were also determined. Our results demonstrated that mice fed the DDC diet developed muscle
wasting as evidenced by a loss of muscle mass and decreased muscle strength. The muscles of mice fed with DDC diet
have a decreased diameter of fibers and MHC levels, also as increased MuRF-1 and atrogin-1 protein levels, ROS levels,
and oxidation-modified protein levels. Additionally, control and DDC mice have the same food and water intake as well
as mobility. Our results demonstrate mice with CLD develop sarcopenia involving decreased levels of myofibrillar
proteins, increased UPS, and oxidative stress, but not for impaired caloric intake or immobility.
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Introduction

Skeletal muscle is one of the most abundant tissues in the
body and makes the generation of force, movement, and
breathing possible. Since skeletal muscle is exposed to many
different internal and external stimuli, it has high plasticity,
evidenced by changes in muscle mass. Skeletal muscle atro-
phy can be defined as the loss of muscle mass with a concom-
itant decrease in function and force generation [12]. Among
the main factors altering muscle mass are aging, disuse, and
several chronic diseases such as cancer, cardiac, renal, and
liver pathologies. Sarcopenia is defined as a complex syn-
drome characterized by loss of body weight, muscle mass,
and strength which is not only developed during aging but
also by chronic illness or inflammatory conditions [29].
During sarcopenia, the major degraded skeletal muscle pro-
teins are myofibrillar proteins such as myosin heavy chain
(MHC) which is a key component in the process of muscle
contraction [14, 37]. One of the main mechanisms involved in
this catabolic process is the ubiquitin–proteasome system
(UPS) [10, 67]. Overactivation of the UPS during muscle
wasting is characterized by a muscle-specific increase of type
E3 ubiquitin ligases, atrogin-1 (Muscle Atrophy F-box,
MAFbx), and MuRF-1 (Muscle-specific RING-finger protein
1) [67]. Oxidative stress is also present in skeletal muscle
wasting [63, 69]. The main oxidant types are reactive oxygen
species (ROS). Oxidative stress has been functionally linked
to muscle wasting through UPS activation, where increased
ROS activates proteasome-dependent protein degradation
through the expression of atrogin-1 and MuRF-1 [1, 63, 66].
Another consequence of oxidative stress is oxidative injury
generated in the cell, as evidenced by protein and lipid oxida-
tion [5, 62, 68].

Among the causes of muscle wasting are chronic liver dis-
eases (CLD) [16, 40]. CLDs are a group of liver dysfunctions
resulting in severe injury characterized by hepatocellular al-
terations and fibrosis, which progress to cirrhosis [8]. Several
types of liver damage are classified as CLDs, including
fibrosing cholangiopathies, a group of cholestatic liver dis-
eases affecting biliary ducts responsible for transporting and
modifying bile [44]. Xenobiotic-induced cholangiopathies
produce biliary disease that may progress to vanishing bile
duct syndrome, biliary fibrosis, and cirrhosis [46]. CLD re-
sults in cirrhosis and, usually, in end-stage liver disease requir-
ing a liver transplant to extend survival [78]. None of these
consequences is reversible [8]. There are few effective thera-
peutic options for treating CLD etiology, the consequence of
which is an increased incidence of cirrhosis [22, 36]. Themost
recognized clinical complications of CLD include ascites, en-
cephalopathy, portal hypertension, renal dysfunction, hepato-
cellular carcinoma, and malnutrition [6, 8, 28]. However, and
despite being less studied, sarcopenia is the most common
complication and adversely affects survival, quality of life,

and outcomes after liver transplantation, as well as being re-
sponsible for the development of additional health complica-
tions [22, 34, 52, 71]. The few, but highly relevant, studies
relating CLD and sarcopenia confirm the negative impacts of
sarcopenia. One of these studies found sarcopenia is an inde-
pendent predictor of mortality in cirrhosis patients [52].
Moreover, a retrospective analysis in CLD patients found
the loss of muscle mass to be an independent predictor of
mortality for patients awaiting liver transplantation [22, 74].
Thus, sarcopenia associated with CLD is gaining relevance in
hepatology, with clinicians trying to incorporate this condition
as a new parameter for consideration in liver transplants [21,
22]. However, the mechanisms underlying sarcopenia in CLD
are not yet fully understood. In this study, we evaluated the
mechanism involved in muscle weakness in CLD, using a
previously characterized murine model of xenobiotic-
induced cholangiopathy that produces hepatobiliary injury
and biliary fibrosis by intake of the hepatotoxin 3,5-
diethoxycarbonyl-1,4-dihydrocollidine (DDC) [32].

Our results indicate mice fed a DDC supplemented diet for
6 weeks developed muscle wasting, evidenced by loss of mus-
cle mass and decreased muscle strength. Muscles of these
sarcopenic mice have a decreased diameter of muscle fibers,
reduced MHC, and increased UPS components and ROS
levels. Furthermore, mice fed either normal or DDC diet have
the same food and water intake as well as motor skills and
mobility.

Our data showed mice with CLD induced by a hepatotoxin
develop sarcopenia which involves decreased levels of myo-
fibrillar proteins, increased UPS activity, and oxidative stress.
Notably, we also demonstrated muscle weakness is not pro-
duced by differential caloric intake or immobility.

Methods

Animals Male C57BL/6J (16 weeks old) strain of mice was
used. The animals were randomized and separated into exper-
imental groups, and three independent experiments were per-
formed. Two experimental groups (five to seven animals/
group) were designed: normal diet (Control) and diet supple-
mented with 0.1% (1 mg/kg) of 5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC) [32]. The mice were fed with
Control or DDC diet for 6 weeks. At the end of the experi-
ment, the animals were euthanized under anesthesia and the
gastrocnemius (GA) muscles were dissected, removed, sepa-
rated from plantaris, weighed and rapidly frozen, and stored at
− 80 °C until processing. All applicable international, nation-
al, and/or institutional guidelines for the care and use of ani-
mals were followed. All procedures performed in studies in-
volving animals were in accordance with the ethical standards
and with the formal approval of the Animal Ethics Committee
at the Universidad Andrés Bello institution.
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Liver histopathology Liver sections from the right lobe of all
mouse livers were routinely fixed in 10% formalin and em-
bedded in paraffin. Hematoxylin and eosin was then carried
out according to the standard procedures [15].

Biochemical determinations Serum alanine aminotransferase
(ALT) was quantified using the Kovalent kit (Río de Janeiro,
Brazil) following manufacturer instructions, as described pre-
viously [15].

Contractile properties After treatment, the mice were anes-
thetized, the GA muscles were removed, and the muscle
contractile properties were measured as previously de-
scribed [47]. The maximum isometric tetanic force was
determined. The muscle mass and the optimum muscle
length (Lo) were used to calculate the specific net force
[force normalized per total muscle fiber cross-sectional ar-
ea (CSA), mN/mm2] [13, 53, 54].

Weightlifting test At the end of the treatment, the mice were
subjected to a measurement of muscle strength by a
weightlifting test as previously described [25]. Briefly, the
apparatus consisted of a series of chain links of increasing
length attached to a ball of tangled fine wire. The number of
links ranged from one to seven with total weights between
15.5 and 54.1 g. Before performing the test and prior to treat-
ments, the mice were subjected to training (once per day for
2 weeks). To perform the test, the mouse grasps (with its
forepaws) the different weights and a score was assigned.
The final score was calculated as the summation of the product
between the link weight and the time held. The average of
three measures from each mouse was normalized by the body
weight [47].

Running test Mice were subjected to perform exercises on a
treadmill for 15 min at 20 cm/s on a treadmill, divided in three
sessions of 5 min with a rest of 5 min. The test was recorded
and the video analyzed to calculate the mice’s permanence
time in three zones of the treadmill, accordingly to scheme
of Fig. 2a.

Rotarod test Before starting the experiment, the mice were
accustomed to the rotarod for 1 week, at different rotation
speeds in 5-min-long sessions. The rotarod test was performed
before starting the treatment with normal or DDC diet, and
also during weeks 1, 3, 4, 5, and 6 of the treatments. To
perform the test, mice were placed in the rotarod, with an
initial rotation speed of 5 rpm. The speed was gradually in-
creased from 5 to 35 rpm over a time of 5 min. The time (in
seconds) that mice spend on the rotarod was recorded.

Footprint test The footprint test was used to measure the gait
of mice. To obtain footprints, the hind- and forefeet of the

mice were coated with non-toxic blue paint. The animals were
then allowed to walk along a 38-cm-long, 5.2-cm-wide run-
way (with 5-cm-high walls) into an enclosed box. All mice
had three training runs and were then given one run per week.
A fresh sheet of white paper was placed on the floor of the
runway for each run. The footprint patterns were analyzed for
three step parameters (all measured in centimeters): (1) stride
lengthwasmeasured as the average distance of forwardmove-
ment between each stride. (2) Stance length was measured as
the average distance between left and right hind footprints, (3)
sway length of the posterior base was measured as the average
distance between the left and right hind footprints and left, and
these values were determined by measuring the perpendicular
distance of a given step to a line connecting its opposite pre-
ceding and proceeding steps. For each step parameter, three
values were measured from each run, excluding footprints
made at the beginning and end of the run where the animal
was initiating and finishing movement, respectively. The
mean value of each set of three values was used in subsequent
analysis.

Locomotor activity test Spontaneous locomotor activity was
measured in open-field chambers measuring 50 cm long,
30 cm wide, and 20 cm high, in a room with lighting and
noise-free and was used to compare the mobility of mice fed
with a normal (Control) or DDC diet for 6 weeks. The mice
were placed in the arena and allowed to freely move for 5 min
while recording with a camera above. The images are ana-
lyzed by a made-home automated tracking system. Traveled
distance was calculated from the locomotor activity data.
After each test session, the equipment was cleaned with 70%
ethanol to remove animal odors.

Water and food intakes The animals were separated in indi-
vidual cages 2 weeks previous to the start of the experi-
ment and kept during the complete period of treatment
using like a bed paper pelletized that allow major absorp-
tion of fluids. Food and water were weekly administered in
fixed amounts (200 ml of water and 200 g of ground food),
and the intakes were measured at 0, 3, and 6 weeks by
difference between the remainder and the initial food and
water for each mouse [4].

Muscle fiber’s diameter determination and quantification
Cryosections (7 μm) of the GA were stained with Alexa-
Fluor® 594 tagged WGA (Life Technologies™, USA) ac-
cording to standard procedures. Fiber sizes were determined
by WGA staining and the Image J software (NIH, USA), as
previously described [19, 50]. In brief, fibers were manually
selected, and the minimal Feret diameter of each fiber was
computed by the software. Myofiber cross-sectional area
(CSA) was determined and measured regarding to the fiber
types, as previously reported [49].
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Determination of fiber types For determining of fiber types in
the GA muscles, immunofluorescence analysis of MHC ex-
pression was performed with primary antibodies against the
specific types of myosin [11]. For this, cryosections of GA
were rinsed once with PBS, then incubated 30 min with
mouse-to-mouse blocking reagent (1:100 in PBS), then incu-
bated with a blocking solution (PBS, 10% goat serum, 1:100
mouse-to-mouse blocking reagent) for 1 h. After of this incu-
bation, a mix of antibodies were used: MHC-I (BA-D5, 1:10),
MHC-IIA (SC-71, 1:300), and MHC-IIB (BF-F3, 1:50), in
blocking solution for 2 h. All the primary antibodies were
purchased from the Developmental Studies Hybridoma
Bank (University of Iowa). Then, the sections were rinsed
three times for 5 min with PBS. Amix of secondary antibodies
(Invitrogen, USA) were incubated for 1 h (1:250; Alexa
IgG2b, A21140; Alexa IgM, A21426; Alexa IgG1,
A21121). The slides were washed in PBS three times and
were mounted with a fluorescent mounting medium (Dako
Corporation, USA). Finally, the slides were visualized with a
Motic BA310 fluorescence microscopy. Fiber types were de-
termined within the entire muscle/cross-section (red, IIB;
green, IIA; blue, I; black or no stained, IIX and mixed) and
then counted. The quantification of fiber type was expressed
as the percentages that were individually calculated in each
image and further plotted.

Measurement of the ROS Fresh-frozen GA muscles were
cryosectioned to 7 μm and placed on glass slides. The sections
were washed twice with ice-cold HBSS (Hank’s Balanced Salt
Solution) and incubated with the cell permeate dye
dichlorodihydrofluorescein (H2-DCF-DA) (5 μM,
Invitrogen, USA) for 15–30 min in the dark at room temper-
ature. Then, the sections were rinsed twice with HBSS and
once PBS, and then were fixed with 4% paraformaldehyde for
10 min and rinsed with PBS. Further, cryosections were incu-
bated with 1 μg/ml Hoechst 33258 in PBS for 10 min for
nuclear staining. After rinsing, the sections were mounted
with fluorescent mounting medium (Dako Corporation, CA),
viewed and photographed using the Motic BA310
epifluorescence microscope (Motic, Hong Kong) to 488 nm.
Muscle sections were immediately analyzed and the ROS
production was measured by the increases in DCF fluores-
cence, as an indicator of ROS production. The ROS levels
were quantified by the analysis of DCF fluorescence intensity
in the pictures using the software Image J [2].

Immunoblot analysisGAmuscles were homogenized in Tris–
EDTA buffer with a cocktail of protease inhibitors and 1 mM
PMSF. Proteins were subjected to SDS-PAGE, transferred
onto PDVF membranes (Millipore, USA), and probed with
mouse anti-MHC (1:3000; MF-20, Developmental Studies,
Hybridoma Bank, University of Iowa, USA), goat anti-4-
hydroxynonenal (4HNE) (1:1000; Merck, USA), mouse

anti-atrogin-1 (1:500; Santa Cruz Biotechnology, USA), rab-
bit anti-MuRF-1 (1:500; Santa Cruz Biotechnology, USA),
mouse anti-tubulin (1:5000; Santa Cruz Biotechnology,
USA), and mouse anti-β-actin (Abcam, USA; 1:2000). All
immunoreactions were visualized by enhanced chemilumi-
nescence (Thermo Scientific, USA).

Determination of ubiquitinated MHC protein levels Total pro-
tein extracts were immuno-precipitated with mouse anti-MHC
(1:100; MF-20, Developmental Studies, Hybridoma Bank,
University of Iowa, USA). The antibody/antigen complex
was then pulled out of the sample using protein G-coupled
agarose beads to isolate MHC. The immuno-precipitated ex-
tract was separated in SDS-PAGE and transferred to PVDF
membranes that were incubated with the antibodies for ubiq-
uitin (1:1000; Santa Cruz Biotechnology, USA), MHC
(1:3000; MF-20, Developmental Studies, Hybridoma Bank,
University of Iowa, USA), and β-actin (1:5000; Merck,
USA). All immunoreactions were visualized by enhanced
chemiluminescence (Thermo Scientific, USA) that were ac-
quired using the Fotodyne FOTO/Analyst Luminary
Workstation Systems (Fotodyne, Inc., USA). Densitometry
analysis was determined by scanning immunoreactive bands,
and intensity values were obtained for further normalization
against the control group.

Determination of carbonylated protein levels Carbonylation
modification in GA muscle was assessed by immunoblot de-
tection of protein carbonyl groups, using the OxyBlot assay
following the indications of the supplier (OxyBlot Protein
Oxidation Detection Kit, Millipore, S7150). Briefly, 30 μg
of total proteins was subjected to SDS-PAGE and transferred
to PVDFmembranes, which were incubated with the antibod-
ies provided in the kit. All immunoreactions were visualized
by enhanced chemiluminescence (Thermo Scientific, USA),
which were acquired using the Fotodyne FOTO/Analyst
Luminary Workstation Systems (Fotodyne, Inc., USA).
Densitometry analysis was determined by scanning immuno-
reactive bands, and intensity values were obtained for further
normalization against the control group.

Quantitative real-time PCR analysis RNA was isolated from
liver samples using the SV Total RNA Isolation System
(Promega, Madison, WI) and then quantified spectrophoto-
metr ica l ly in a NanoDrop ND-1000 (NanoDrop
Technologies, Wilmington, DE). cDNA synthesis was per-
formed starting with 1 μg of total RNA (Improm II system;
Promega, Madison, WI) according to the manufacturer’s
guidelines. We measured the hepatic expression of Col1A1.

All probes were obtained fromApplied Biosystems (Foster
City, CA). The relative amounts of all mRNAs were calculat-
ed using the comparative threshold cycles (dCT) method and
normalized to 18S RNA as a housekeeping gene.
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Magnetic resonance imaging (MRI) protocol In vivo MR im-
aging was performed using a 1 T Bruker ICON MR scanner
(Bruker, MA, USA). Briefly, anesthetized mice were imaged
in the prone position. Following a 3D gradient echo scout
scan, an ECG gated, T1-Flash cine images for cardiac function
analysis were acquired (imaging parameters—FOV, 25 ×
25 mm; matrix acquisition, 116 × 116 × 6; in-plane resolution,
0.21 × 0.21 mm). Muscle quantification was performed from
T1w abdominal MR (imaging parameters—FOV, 30 ×
30 mm; matrix acquisition, 256 × 256 × 12; in-plane resolu-
tion, 0.12 × 0.12 mm) [51].

MRI analysisCardiac function was studied calculating the end-
systolic and end-diastolic left ventricle volume and the ejec-
tion fraction using OsiriX (OsiriX Foundation, Geneva,
Switzerland). Psoas muscle volume was calculated by manu-
ally segmentation in the T1w images using OsiriX.

Cell cultures The skeletal muscle cell line C2C12 obtained
from the American Type Culture Collection was grown in
DMEM 10% fetal bovine serum and differentiated into
myotubes until day 5 with DMEM 2% horse serum [3].

Cell viability (MTT assays) Cytotoxicity was determined by the
MTT assay. C2C12 myotubes were incubated with or without
several concentrations of DDC (between 0 and 400 μg/ml) in
DMEM 2% horse serum for 24 h. At the end of experiment,
10 μl of MTTsolution (5mg/ml, pH 7.5) was added. After 1 h,
blue formazan crystals were resolved with 100 μl of DMSO.
Absorbance was measured at 595 nm. Cell viability (percent of
control) was calculated relative to untreated control.

Atrophic effect in vitro C2C12 myotubes were incubated with
DDC (10 or 25 μg/ml) or serum frommice fed with control or
DDC-supplemented diets (10% final) for 72 h. The MHC
protein levels were determined by Western blot as previously
described [19].

Statistics For statistical analysis, we used a t test to compare
two groups. To compare three or more groups, we used one or
two-way analysis of variance (ANOVA) with a post hoc
Bonferroni multiple-comparison test (Prisma). A difference
was considered statistically significant at P < 0.05.

Results

DDC-fed mice exhibit liver damage, muscle weakness
and loss of muscle functionality

We evaluated the effects of chronic liver damage on
strength and muscle function. For this purpose, hepatic
injury was induced in mice by a diet supplemented with

DDC hepatotoxin for 6 weeks, a model in which there is
considerable hepatic dysfunction evidenced by histological
alterations in the third week (ESM-1A): increased liver
weight (ESM-1B), ALT activity (ESM-1C), and Col1A1
expression (ESM-1D) [32].

Several functional tests with live mice were performed on
chow and DDC-supplemented diet fed mice along 6 weeks.
Figure 1a indicates mice with chronic liver damage caused by
consuming the DDC diet experienced a decrease in their mus-
cle’s ability to support weight beginning in the second week
after receiving the DDC diet when a weightlifting test was
performed. At the end of the experiment (week 6), muscle
strength fell until it reached 40% of the value obtained from
the normal diet control group. Another functional test con-
ducted was on exercise performance using the rotarod test.
Figure 1b demonstrates that the riding time for the control
mice fed with the normal diet remained unchanged during
the 6 weeks of treatment. However, mice fed with the DDC
diet showed a decline in the riding time beginning in the third
week of treatment and reaching the minimal value at the end
of the sixth week (25% of the control group).

Fig. 1 Mice with chronic liver damage induced by a DDC-supplemented
diet develop muscular weakness. C57BL/6J male mice were fed a
standard chow (Control) or DDC-supplemented diet (DDC) for
6 weeks. Each week, mice were subjected to the following: a A
weightlifting test to determine limb muscle strength. Values represent
the score normalized per body weight reached by the mice with each
weight and correspond to the mean ± SEM (five animals per group,
three independent experiments; *P < 0.05 vs. Control, two-way
ANOVA). b A rotarod test. The values correspond to the time (s). The
values correspond to the mean ± SEM (five animals per group, three
independent experiments; *P < 0.05 vs. Control, two-way ANOVA)
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Then we evaluated exercise performance on a treadmill by
measuring how much time mice spent running over the front,
middle, or bottom of treadmill’s sections. These measures
were categorized as follows: front section was categorized as
high performance (HP), the middle section was referred to as
medium performance (MP), and the last portion was catego-
rized as low performance (LP), as displayed in Fig. 2a. The
results indicate at the beginning of the experiment (week 0),
both groups of mice (Control or DDC) have a similar perma-
nence time in treadmill’s distinct zones, with a higher propor-
tion in the HP (Fig. 2b). However, after 3 weeks of treatment,
mice fed the DDC diet spent a shorter length of time in the HP
zone (3.86 vs. 84.6% of control mice) and more time in the LP
zone (87.2 vs. 2.3% of control mice), indicating an impair-
ment in physical performance (Fig. 2c). This situation was
accentuated in the sixth week after treatment where mice fed
the DDC diet only reached 1.5% of permanence time in the
HP zone (control mice 92.3%), while they spent 94.1% of
permanence time in LP zone (control mice 1.8%) (Fig. 2d).

Thus, these results reveal CLD that caused by the DDC diet
impaired exercise performance in mice.

To determine whether the changes observed in the func-
tional tests for living mice can be extrapolated to a specific
deficiency in skeletal muscle, we evaluated the muscle
strength in isolated gastrocnemius tissue through electro-
physiological assays of tetanic force. Figure 3a reflects
muscles from mice fed the DDC diet had a lower muscle
force in most of the assessed frequency ranges. Figure 3b
shows gastrocnemius from mice fed the DDC diet present-
ed a decrease in maximal tetanic force (381 mN/mm2)
compared to the control group (548 mN/mm2). Similar
results were obtained by evaluating the maximal tetanic
force in the tibialis anterior muscle (ESM-2).

To rule out the possibility that mice fed the DDC diet had a
problem with the motricity of their paws, we conducted a
footprint test. ESM-3A displays the scheme of this test and
the distances measured. Results presented in ESM-3B, C, and
D suggest there were no differences between mice fed the

Fig. 2 Chronic liver damage
induced by DDC-supplemented
diet impairs the ability to perform
physical exercise. a Treadmill
scheme in which is illustrated the
treadmill and the three zones used
to calculate exercise performance:
high (HP), medium (MP), and
low (LP) performance stones of
the treadmill. Each experiment
was recorded by video and further
analyzed for the permanence time
in each zone. Briefly, C57BL/6J
male mice were trained to run on a
treadmill before the beginning of
the experiment with a standard
chow (Control) or DDC-
supplemented diet (DDC) for
6 weeks. In weeks 0 (b), 3 (c), and
6 (d) after the mice were fed the
differential diet, mice were
subjected to the running test to
measure exercise performance.
The permanence time (s) was
calculated from observing video
footage and expressed as the
percentage of time spent in each
of the three zones. The values
correspond to the mean ± SEM
(five animals per group, three
independent experiments; *P <
0.05 vs. Control, two-way
ANOVA)
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control or DDC diet in the stride, stance, and sway length of
their hind paws, respectively, suggesting motor skills were not
altered in mice fed the DDC diet. Additionally, we evaluated
the locomotor activity of mice using an open field test.
Tracings of the distance walked by mice fed either the normal
(ESM-4A) or DDC diet (ESM-4B). Quantification of this data
determines the mobility of both experimental groups is similar
(ESM-4C).

We also evaluated several other parameters such as body
weight, muscle mass, and food and water intake. Figure 4a
demonstrates mice fed the DDC diet experienced a decline in
body weight evidenced in the third and sixth weeks of treat-
ment, reaching 17.1 g compared to the control group’s 26.8 g
in the sixth week. Mice from the DDC group indicated the
ratio between the mass of gastrocnemius tissue and body
weight was lower (5.1) than the control group’s (5.9) at the

end of the experiment (Fig. 4b). Interestingly, mice from the
control and DDC groups did not have differences among them
or at the time of treatment regarding food and water intake
(ESM-5A and B, respectively).

Overall, these results suggest chronic liver damage induced
by the intake of a DDC-supplemented diet produced muscle
weakness evidenced by decreased exercise performance and
isometric tetanic force which would not be explained by
changes in motor skills, immobility, or food or water intake.

Mice fed the DDC diet have a decrease in themyofiber
diameter of gastrocnemius (GA) muscles

To evaluate the diameter of muscle fibers, a WGA stain was
performed on GA muscle. Figure 5a shows GA tissue from
mice fed the DDC diet showed a decrease in muscle fiber
diameter. Quantification of the Feret’s diameter revealed GA
tissue from the control group has a normal distribution curve

Fig. 3 Gastrocnemius (GA) tissue from mice with chronic liver disease
has decreased isometric force. C57BL/6J male mice were fed a standard
chow (Control) or DDC-supplemented diet (DDC) for 6 weeks. At the
end of the experiment, GA muscles were excised. a A curve of force
versus frequency was determined (*P < 0.05 vs. Control, two-way
ANOVA). b Maximal isometric strength (mN/mm2) was evaluated.
Values represent the mean ± SEM of three independent experiments. In
each experiment, five mice were used for each experimental condition
(*P < 0.05 vs. Control, t test)

Fig. 4 Mice with chronic liver disease have a decreased body and
gastrocnemius (GA) weight. a C57BL/6J male mice were fed a
standard chow (Control) or DDC-supplemented diet (DDC) for 6 weeks.
a At 0, 3, and 6 weeks, body weight was measured. The value is
expressed in grams. Values represent the mean ± SEM of three
independent experiments. In each experiment, five mice were used for
each experimental condition (*P < 0.05 vs. Control, two-way ANOVA).
b At the end of experiment (week 6), GA tissue weight was measured.
The values represent the ratio between GA tissue and body weight (mg/g)
and are the mean ± SEM of three independent experiments. In each
experiment, five mice were used for each experimental condition. (*P
< 0.05 vs. Control, t test)
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with a peak in the range of 41–45 μm, whereas the fibers’ size
distribution frommice fed the DDC diet was clearly displaced
to the left and experienced a peak in the range of 31–35 μm,
indicating a smaller diameter than the control group (Fig. 5b).
These data suggest GA tissue frommice fed the DDC diet has
a decrease in myofiber diameter. To evaluate muscle atrophy
in another muscle, we measured the volume of psoas by MRI
analysis. Our data showed that mice fedwithDDC for 3 weeks
present a decrease in the volume of psoas compared to control
mice (EMS-6A). Interestingly, the cardiac function evaluated
by MRI analysis was unchanged between mice fed with con-
trol and DDC diet (EMS-6B).

Gastrocnemius (GA) from mice with chronic liver
damage presents transition in the fiber type

The most abundant fiber type in GA tissue is IIB [1]. When
atrophied, there is a transition from IIB fibers to IIA and I
fibers as well as hybrid fibers IIB/IIX, IIX, IIX/IIA (Fig. 6a)
[38, 57]. In mice fed the DDC-supplemented diet, GA tissue
exhibits a clear decrease in IIB fibers (from 63% in control
mice to 27% in DDC mice) also as an increase in IIX (from
9% in control mice to 14% in DDCmice) and IIA fibers (from

13% in control mice to 29% in DDC mice) (Fig. 6b). The
same also reflects there is an increase in the number of type
I fibers (from 0% in control mice to 10% in DDC mice). In
addition, we evaluated the CSA of the different fibers’ types.
GA from mice fed with DDC diet show a decrease of CSA in
IIB and IIX fibers, and an increase in IIA fibers compared to
mice fed with control diet (Fig. 6c). Normally, in GA, the CSA
of IIB is bigger than IIA, so this transition in the fiber types
(IIB to IIA) could explain the displacement of fiber diameter
toward minor size (Fig. 5b). Our results suggest that in this
case it is not the reason because CSA of IIA is increased in
mice fed with DDC diet. However, since GA in normal con-
ditions is a muscle that is mainly composed for IIB fibers, the
decrease in its proportion and CSA can explain the displace-
ment of fiber diameter toward minor size (Fig. 5b).

Gastrocnemius (GA) tissue from mice with chronic
liver damage has decreased myosin heavy chain
protein levels but higher levels of ubiquitination than
control mice

One of the main targets altered in skeletal muscle atrophy is
the sarcomeric proteins, specifically MHC. Therefore, we

Fig. 5 Gastrocnemius (GA)
tissue from mice with chronic
liver disease have decreased fiber
diameters. C57BL/6J male mice
were fed a standard chow
(Control) or DDC-supplemented
diet (DDC) for 6 weeks. At the
end of the experiment, GA
muscles were excised. a Muscle
cross-sections were stained with
WGA to delimit muscle fiber
sarcolemma. b Minimal Feret
diameters were determined in TA
cross-sections from experiments
depicted in (a). Fiber diameters
were grouped from 0 to 80 μm
and values expressed as the
percentage of the total fibers
quantified. Counted images are
representative of three
independent experiments, using
five mice for each experimental
condition. Values correspond to
the mean ± SEM. (*P < 0.05 vs.
Control, two-way ANOVA)
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evaluated MHC levels using a Western blot analysis.
Figure 7a demonstrates the decrease in MHC protein levels
in GA tissue from mice fed the DDC diet compared to the
control group. This decline is 0.58-fold compared to control
group (Fig. 7b).

The main pathway involved in altered MHC protein levels
is the UPS, which ubiquitinates MHC before its degradation.
To evaluate this, MHCwas immunoprecipitated with anMHC
antibody and then immunodetected with ubiquitin antibody
using the Western blot method. Figure 7c shows GA tissue’s
total MHC protein levels decreased in mice from the DDC
group as presented in Fig. 7a, but MHC ubiquitination levels
are 2.4-fold higher in GA tissue from mice fed the DDC diet
compared to the control diet (Fig. 7c, d).

Skeletal muscle from mice with chronic liver disease
exhibits an increase of MuRF-1 and atrogin-1
expression

To assess the UPS’s involvement, we evaluated the protein
levels of atrogin-1 and MuRF-1, two key enzymes involved
in the process of skeletal muscle atrophy. Figure 8a and c
illustrates GA muscles from mice fed the DDC diet had in-
creases in both atrogin-1 and MuRF-1. These increases are
2.0-fold for atrogin-1 and 4.4-fold for MuRF-1, compared to
the control group’s GA tissue (Fig. 8b and d, respectively).

These results suggest GA tissue from mice with CLD
has a UPS more active to degrade muscle proteins than
control mice.

Fig. 6 Mice with chronic liver damage induced by DDC-supplemented
diet have fiber type transitions in the gastrocnemius (GA) muscle.
C57BL/6J male mice were fed a standard chow (Control) or DDC-
supplemented diet (DDC) for 6 weeks. a At the end of the experiment,
mice were sacrificed, and the GA muscles were analyzed to determine
fiber type through the immunoflourescence detection of myosin heavy
chain isoforms (IIA, IIB, I). Images obtained at ×40 magnification reveal
fiber types were determined within the entire muscle/cross-section (red,
IIB; green, IIA; blue, I; black or not stained, IIX; and mixed, IIB/X, X/
IIA, IIA/I). b Quantitative analysis of the fiber type. Graph representing

the percentage of specific fiber types relative to the total fibers counted
per field. Values represent the mean ± SEM of three independent
experiments. In each experiment, five mice were used for each
experimental condition (*P < 0.05 vs. Control, two-way ANOVA). c
Analysis of CSA for each type of fiber. Images from GA obtained in
the experiments for (a) were used for the quantitative analysis. Values
represent the mean ± SEM (μm2) of three independent experiments. In
each experiment, five mice were used for each experimental condition
(*P < 0.05 vs. Control, t test)
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Gastrocnemius (GA) tissue from mice with chronic
liver damage presents oxidative stress

To assess the involvement of oxidative stress, we evaluated
the ROS levels in a slice of GA muscle. A DCF probe was
used to detect and quantify ROS (Fig. 9a). The GA tissue of
mice fed the DDC diet presented a higher ROS reactivity (an
8.3-fold increase compared to mice fed the control diet)
(Fig. 9b). We subsequently evaluated consequences of

oxidative stress by protein modifications such as carbonyla-
tion and 4-HNE. Figure 9c and d show GA tissue from mice
fed the DDC diet has higher levels of carbonylated proteins
than mice fed the normal diet (2.2-fold vs. control mice).
Moreover, Fig. 9e and f reflects that GA tissue from the
DDC group has greater 4-HNE reactivity compared to the
control group (2.0-fold vs. control mice).

All these results suggest GA tissue from mice with CLD
developed oxidative stress.

Fig. 7 Mice with chronic liver damage induced by DDC-supplemented
diet have decreased myosin heavy chain (MHC) protein levels in the
gastrocnemius (GA) muscle. C57BL/6J male mice were fed a standard
chow (Control) or DDC-supplemented diet (DDC) for 6 weeks. At the
end of the experiment, mice were sacrificed, and the GA muscles were
excised and homogenized to evaluate a MHC protein levels through
Western blot analysis. Tubulin levels were used as the loading control.
Molecular weight markers are depicted in kilodaltons. b Quantitative
analysis of the experiments from (a). Values represent the mean ± SEM
of three independent experiments. In each experiment, five mice were
used for each experimental condition (*P < 0.05 vs. Control, t test). c

Ubiquitinated-MHC protein levels through immunoprecipitation with
anti-MHC and further Western blot with anti-ubiquitin. The upper panel
illustrates the immunodetection of MHC and tubulin in the input. The
lower panel shows the detection of ubiquitinated-MHC levels in the
immunoprecipitated. Tubulin is depicted as a negative control.
Molecular weight markers are shown in kilodaltons. d Quantitative
analysis of the experiments from (c). The levels of ubiquitinated MHC
were normalized to total MHC and expressed relative to control. Values
represent the mean ± SEM of three independent experiments. In each
experiment, five mice were used for each experimental condition (*P <
0.05 vs. Control, t test)
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Hepatotoxin DDC did not directly induce an atrophic
effect in skeletal muscle cells

A possible explanation for the atrophic effect observed in
GA is that DDC directly affect skeletal muscle. To eval-
uate this, we incubated C2C12 myotubes with different
concentrations of DDC. First, we determined that
myotubes maintained the viability between 1 and 50 μg/
ml of DDC and decreased in 100, 200, and 400 μg/ml of
DDC (EMS-7A). In the same figure, it can be observed
that serum from mice fed with DDC diet, but not with
control diet, decreased the MHC levels. Interestingly,
DDC increased the HO-1 expression in C2C12 myotubes
(EMS-7B), an effect that has been reported in other cell
types [56]. The same figure shows that serum from mice
fed with control or DDC diet did not change the HO-1
expression from basal levels.

Further, we evaluated the effect of DDC and serum
from mice fed with DDC on the MHC protein levels.
Thus, myotubes incubated with 1 and 50 μg/ml of DDC
did not present changes in the MHC protein levels
(Fig. 10a, b).

These results suggest that DDC did not directly induce
an atrophic effect in skeletal muscle cells, and that there is
a soluble factor in the serum from mice fed with DDC that
induces skeletal muscle atrophy.

Discussion

In this paper, we demonstrated that a murine model of CLD
induced by the DDC hepatotoxin showed an evident muscular
weakness with decreased fiber diameter and MHC total pro-
tein levels. Among the mechanisms involved in this atrophic
effect, we demonstrated that UPS is overactivated by detecting
increased levels of ubiquitinated MHC, atrogin-1, and MuRF-
1, and we demonstrated important evidence of oxidative stress
by the increased ROS as well as carbonylated- and 4-HNE-
modified protein levels.

This model of CLD [32, 46] has not been previously char-
acterized for muscular weakness. To address this gap in the
research literature, several approaches with live mice were
performed in which the DDC group always exhibited lower
muscular strength or performance than control mice, which is
consistent with clinical observations in patients with CLD [21,
40, 52, 59]. Furthermore, these results agree with data regard-
ing isometric and tetanic force measured in isolated gastroc-
nemius tissue, in which the DDC group exhibited decreased
muscle strength.

Among the factors associated with mortality in patients
with CLD are poor physical fitness and endurance [27].
Regarding these factors, we observed that basal mobility
was unchanged by the DDC diet, while mice in the DDC
group demonstrated lesser ability to perform an involuntary

Fig. 8 Gastrocnemius (GA) tissue from mice with chronic liver disease
develop increased atrogin-1 and MuRF-1 protein levels. C57BL/6J male
mice were treated with standard chow (Control) or DDC-supplemented
diet (DDC) for 6 weeks. At the end of the treatment, mice were sacrificed,
and the GA muscles were excised and homogenized to evaluate of
atrogin-1 (a) and MuRF-1 (c) protein levels by Western blot. Tubulin

levels were used as the loading control. Molecular weight markers are
shown in kilodaltons. Quantitative analysis of the atrogin-1 (b) and
MuRF-1 (d). Values represent the mean ± SEM of three independent
experiments. In each experiment, five mice were used for each
experimental condition (*P < 0.05 vs. Control, t test)
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exercise test on a treadmill. Similar results were obtained with
the rotarod test. Interestingly, our data suggest that in the DDC
model of CLD, immobilization does not contribute to muscle
weakness. Thus, our data reveal there were no significant dif-
ferences in mobility or motor skills test scores between the
experimental and control groups, allowing us to assert immo-
bility or motor problems did not cause the observed muscle
weakness. The measures of water and food intake were not
significantly different between the control and DDC mice,

suggesting caloric and liquid intake did not cause the DDC
mice’s decreased body and muscle weight. Despite these data,
we must acknowledge nutrient absorption problems could im-
pact body and muscle weight.

In addition, our results suggest that the muscle wasting can
be observed in mice at early stages after DDC treatment (from
2 to 3 weeks in different muscles, e.g., gastrocnemius, tibialis
anterior, and psoas). In our hands, DDC treatment did not
show change in the cardiac function at early stages, despite

Fig. 9 Gastrocnemius (GA) tissue from mice with chronic liver disease
has an increase of ROS and protein oxidation levels. C57BL/6J male
mice were treated with standard chow (Control) or DDC-supplemented
diet (DDC) for 6 weeks. At the end of the treatment, mice were sacrificed,
and the GA muscles were excised. a Cryosections obtained from the GA
tissue were incubated with a DCF probe for ROS detection through
fluorescence microscopy. b Quantification of ROS levels from
experiments demonstrated in (a). The values are expressed as the fold
of induction of the DCF probe intensity (*P < 0.05 vs. Control, t test). c
Levels of oxidation-dependent carbonylated protein levels were detected
by Western blot using Oxyblot kit. β-Actin levels were used as the

loading control. Molecular weight markers are shown in kilodaltons. d
Quantitative analysis based in the densitometry of the bands. Values
represent the mean ± SEM of three independent experiments. In each
experiment, five mice were used for each experimental condition (*P <
0.05 vs. Control, t test). e Levels of oxidation-dependent 4HNE protein
adducts were detected by Western blot using anti-4HNE antibody. β-
Actin levels were used as the loading control. Molecular weight
markers are shown in kilodaltons. f Quantitative analysis based in the
densitometry of the bands. Values represent the mean ± SEM of three
independent experiments. In each experiment, five mice were used for
each experimental condition (*P < 0.05 vs. Control, t test)
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it has been previously reported [26] which can be explained by
the different experimental approaches to measure the cardiac
parameters. Moreover, we cannot discard that alterations of
cardiac function induced by DDC later stages could contribute
to muscle function in alive mice. In this line, the diminution in
isometric muscle strength in isolated muscle is a parameter
which is independent of cardiac function.

Our data indicate that DDC-treated mice have lesser mus-
cle strength than control, which was evident when mice were
subjected to an exercise challenge. Patients with cirrhosis also
exhibit decreased physical activity [77]. However, most of
these patients also present other comorbidities that affect the
physical activity like obesity [70] which is absent in our mod-
el. Thus, other experiments must be done in order to evaluate
the contribution of those factors in the physical activity of
cirrhotic patients or experimental models of CLD.

Regarding mechanisms involved in muscle atrophy, we
evaluated the involvement of UPS and oxidative stress. Our
data confirm muscle-specific E3 ligases MuRF-1 and atrogin-
1 are increased in DDC mice. Moreover, these data are con-
sistent with the decreased levels of total MHC and increased
levels of ubiquitinated MHC, a step prior to degrading MHC
by proteasome. Thus, we can suggest the decrease in MHC
levels caused by CLD can be explained, at least, for an in-
crease in its ubiquitination by MuRF-1 which is increased in
muscle tissue from mice fed the DDC diet. Moreover, we
detected an increase in ROS levels which could be responsible
for the increase in MuRF-1 levels. Thus, we can speculate that
in CLD, skeletal muscle increments ROS production concom-
itantly with theMuRF-1 expression and the ubiquitination and
degradation of MHC. However, it is not possible to disregard
the involvement of a synthesis mechanism which could be
decreased in CLD. Previously, we have demonstrated that
ROS can induce the increase of the E3 ubiquitin-ligases
MuRF-1 and atrogin-1, which can be avoided by N-
acetylcysteine (NAC) treatment [2]. NAC is an antioxidant
agent widely used to reduce ROS content and oxidative stress.

Thus, in further studies, NAC treatment could be a useful tool
to elucidate if oxidative stress is responsible for MuRF-1 and
atrogin-1 expression induction.

Interestingly, our evidence suggests there is oxidative stress
in the skeletal muscle DDC-fed mice. In addition to the ROS
increase, we detected an increment of the protein modifica-
tions dependent on oxidative stress such as 4-HNE and car-
bonylation [5, 42]. These findings are relevant because they
not only detected an early event such as ROS increases but
also determined the oxidative stress-induced cellular damage
by the modification of proteins, which could not be the only
result of cell damage because it has been DNA and cell mem-
branes can be also be altered [62, 68]. Regarding the carbon-
ylation of protein, there is evidence that in several models of
muscle atrophy such as disuse, aging, or sarcopenia in cancer,
sepsis, or COPD, there is an increase of carbonylated proteins
dependent on oxidative stress [5, 61]. Several studies have
demonstrated carbonylation and most posttranslational oxida-
tive modifications may result in loss of protein function as
well as accelerated protein degradation by the proteasome
[17, 20, 31, 48, 58].

Myofibrillar proteins such as actin and myosin are among
the main targets [30]. Thus, further experiments must be per-
formed to study possibleMHC carbonylation and the effect on
its degradation by proteasome in muscles from mice with
CLD. In other models of muscle wasting such as disuse mus-
cle atrophy, oxidative stress may contribute to the muscle
dysfunction by the increment of protein catabolism through
activation of calpains, caspase-3, and UPS [60]. Oxidative
stress can trigger the activation of calpains responsible for
myofilament disassembly as well as caspase-3, which can
degrade actin and MHC [60, 61].

Another underlying mechanism have to be involved re-
garding skeletal muscle atrophy induction since food intake
andmobility were not affected in DDC-fedmice. In this line, it
is plausible to think that unknown molecules can be released
from the liver into the blood, reaching the muscles and acting

Fig. 10 Serum from mice fed with DDC-supplemented diet contain a
factor, different to DDC itself, produces muscle atrophy in vitro. C2C12

myoblasts were differentiated into myotubes for 5 days. aMyotubes were
incubated with DDC (1 and 50 μg/ml) or serum derived from mice fed
with control (Serum Ctrl) or DDC diet (Serum DDC) at the final
concentration of 10% v/v. After of 72 h of incubation, MHC levels were

determined by Western blot analysis. Tubulin levels were used as a
loading control. Molecular weights are indicated in kilodaltons. b
Quantitative analysis for MHC levels was conducted, with values
normalized to tubulin levels and plotted as fold of induction relative to
control (*P < 0.05 vs. Control, one-way ANOVA)
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endocrine. In this context, when the liver is damaged, there are
inflammatory processes that are activated and several soluble
molecules can be released into the blood [75, 76], events that
have been also shown in mice fed with DDC diet [32, 33].
These molecules can reach the muscle by the circulation.
Interestingly, some of these factors, such as tumor necrosis
factor alpha (TNF-α) [9, 72, 80] and interleukin-6 (IL-6) [7,
35, 55], have been described as muscle wasting inducers in
other types of chronic diseases. Indeed, CLD can develop a
condition denominated hyperammonemia, which is character-
ized by an increase in the ammonia concentration in the blood
due to a disruption in the urea cycle [24]. This ammonia in-
crement can damage other organs, mainly the brain [41].
Recent studies have also involved this condition with muscle
wasting in patients with cirrhosis [23]. The muscle expresses
ammonia transporters [73], and growing evidence have shown
that ammonia could induce the transcription of myostatin in
the skeletal muscle [64], a protein widely described as an
atrophic factor in the skeletal muscle [39, 65].

Another CLD feature that could be involved in the skeletal
muscle atrophy is the increment of bile acids in the blood
circulation. Bile acids have been described as a signaling mol-
ecule and metabolism modulator in peripheral tissues [18, 45,
79]. In this line, recent studies in patients with non-alcoholic
fatty liver disease (NAFLD) have linked to this condition with
changes in the muscle volume [43].

Finally, another possible explanation for the atrophic effect
observed in skeletal muscle after DDC treatment is that DDC
itself can directly produce muscle wasting. The way that DDC
can reach the skeletal muscle is by the blood circulation.
However, there are no reports regarding DDC pharmacokinet-
ics after diet uptake. Our in vitro results indicated that serum
from mice fed with DDC did not contain an amount of DDC
able to increase HO-1 expression (or simply is absent of the
serum), an effect that has been previously described to be
directly induced by DDC [56]. Interestingly, we determined
that serum from DDC-treated mice induced muscle atrophy in
vitro whereas DDC per se did not, reinforcing the idea that the
serum contains an unknown soluble factor, different to DDC
itself, able to induce muscle wasting.

In this paper, we described some mechanisms involved in
muscle wasting produced in a murine model of chronic liver
disease. Our study could suggest the use of antioxidants or
proteasome inhibitors to decrease the causes of muscle atro-
phy and weakness such as oxidative stress or UPS activity.
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