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Abstract
In diseased hearts, impaired muscle within the hearts is passively stretched by contractions of the more viable neighboring muscle
during the contraction phase. We investigated whether in the myocardium with nonuniform contraction such passive stretch
regionally generates ROS within the stretched region and exacerbates arrhythmias. In trabeculae from rat hearts, force, intracellular
Ca2+, and membrane potential were measured. To assess regional ROS generation, the slope of the change in the 2′,7′-
dichlorofluorescein fluorescence (DCFslope) was calculated at the each pixel position along the long axis of trabeculae using DCF
fluorescence images. Ca2+ waves and arrhythmias were induced by electrical stimulation. A H2O2 (1 mmol/L) jet regionally
increased the DCFslope within the jet-exposed region. A blebbistatin (10 μmol/L) jet caused passive stretch of the muscle within
the jet-exposed region during the contraction phase and increased the DCFslope within the stretched region, the velocity of Ca2+

waves, and the number of beats after electrical stimulation (0.2μmol/L isoproterenol), while 3 μmol/L diphenyleneiodonium (DPI),
NADPH oxidase inhibitor, decreased them. A jet of a solution containing 0.2 mmol/L H2O2 in addition to 10 µmol/L blebbistatin
also increased them. A H2O2 jet within the region where Ca

2+ waves propagated increased their velocity. In the myocardium with
nonuniform contraction, passive stretch of the muscle by contractions of the neighboring muscle regionally increases ROS within
the stretched region, and the regional ROS exacerbates arrhythmias by activating the propagation of Ca2+ waves.
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Introduction

In patients with heart failure and myocardial infarction, reac-
tive oxygen species (ROS) is increased [16, 17], probably due
to an increase in NADPH oxidase activity [13, 22] or a de-
crease in hydrogen peroxide scavenging enzyme catalase ac-
tivity [2]. This increase in ROS is involved in the exacerbation
of heart failure [37] as well as in the occurrence of arrhythmias
[7, 19, 46] by increasing Ca2+ release from the sarcoplasmic
reticulum (SR) [43, 47]. Actually, in patients with diseased
hearts, the occurrence of lethal arrhythmias is an important
determinant of their prognosis [29, 30].

In a diseased heart, impaired muscle is widely distributed
throughout the heart, causing nonuniform muscle contraction
[34, 45]. In such myocardium with nonuniform contraction,
impaired muscle with weaker contractile strength is stretched
by contractions of the more viable neighboring muscle during
the contraction phase. Conversely, during the relaxation
phase, the impaired muscle is passively shortened and disso-
ciates Ca2+ from the myofilaments within the region due to a
decrease in myofilament Ca2+ sensitivity [20], thereby induc-
ing Ca2+ waves [27, 40] and arrhythmias [25]. Additionally, it
has been reported that stretch of cardiac muscle increases ROS
generation in isolated single myocytes [32, 33] and trabeculae
[27, 28] and further increases the frequency of Ca2+ sparks
[18, 31, 33] and the velocity of Ca2+ waves [28]. It has not yet
been established, however, whether in the myocardium with
nonuniform contraction stretch of the impaired muscle by
contractions of the neighboring muscle also increases ROS
generation within the stretched region. Furthermore, it has
not yet been established whether such an increase in regional
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ROS affects the propagation velocity of Ca2+ waves and the
occurrence of arrhythmia.

Therefore, in the present study, we focused on regional
changes in ROS generation in the myocardium with nonuni-
form contraction, investigating whether ROS is regionally in-
creased within its stretched region and affects the propagation
velocity of Ca2+ waves and the occurrence of arrhythmias.
Our results indicate that in the myocardium with nonuniform
contraction, passive stretch of the muscle by contractions of
the neighboring muscle regionally increases ROS generation
within the stretched region and exacerbates arrhythmias by
increasing the velocity of Ca2+ waves.

Materials and methods (see expanded
materials and methods in the Online Data
Supplement)

Measurements of force, sarcomere length, membrane
potential, [Ca2+]i, and ROS

All animal procedures were performed according to the Guide
for the Care and Use of Laboratory Animals published by the
US National Institutes of Health (NIH Publication No. 85-23,
revised 1996). All experimental protocols were approved by the
Ethics Review Board of Tohoku University (approval reference
number 2014-004, 2015-023). After rats had been adequately
anesthetized, trabeculae were obtained from their right ventri-
cles. Force, sarcomere length, membrane potential, and [Ca2+]i
were measured as previously described [23–28, 40]. To estimate
regional changes in ROS, trabeculae were loaded with 2′,7′-
dichlorofluorescein (DCF) as previously described [27, 28].
As shown in Fig. 1a, regional change in the DCF fluorescence
(DCFslope) was calculated at each pixel along the long axis of
trabeculae using the DCF fluorescence images before and after
exposure to a H2O2 jet or a blebbistatin jet, and the profile of
DCFslope along the trabeculae was then obtained. To create a
nonuniform contraction model, trabeculae were regionally ex-
posed to a jet of a solution containing 10 μmol/L blebbistatin, as
previously described [25, 27, 40]. When a blebbistatin jet was
used, measurements were performed a few minutes after the
stoppage of the blebbistatin jet because blebbistatin has fluores-
cent properties [10, 11].

Experimental protocol with trabeculae

Ca2+ waves were induced by electrical stimulation (400-ms
stimulus intervals for 7.5 s), and arrhythmias were induced by
electrical stimulation (250-ms stimulus intervals for 15 s) in
the presence of 0.2 μmol/L isoproterenol. All measurements
were performed at 24 °C.

Statistics

All measurements were expressed as mean ± SEM. Statistical
analysis was performed with a paired t test for two-group
comparisons and one-way repeated-measures ANOVA with
Tukey-Kramer for multiple comparisons when the data were
normally distributed. Otherwise, the Wilcoxon signed-ranks
test was used for two-group comparisons, unless otherwise
mentioned. These analyses were performed using software
for statistical analysis (Ekuseru-Toukei 2012, Social Survey
Research Information Co., Ltd., Tokyo, Japan). Values of
p < 0.05 were considered to be significant.

Results

Effect of a H2O2 jet on ROS generation

To confirm whether the DCFslope calculated in the present
study actually reflects regional changes in ROS generation,
trabeculae were regionally exposed to a 1 mmol/L H2O2 jet.
As shown in Fig. 1b, regional exposure to a H2O2 jet for 30 s
increased the DCFslope within the jet-exposed region (X) com-
pared with that within the region 0.5 mm apart from the jet-
exposed region (Y), whereas the DCFslope showed no regional
changes within trabeculae without exposure to a H2O2 jet.
These results suggest that the DCFslope within trabeculae re-
flects regional changes in ROS.

Effect of a blebbistatin jet on ROS generation

Regional exposure of trabeculae to a jet of a solution that
reduces muscle contraction causes regional stretch within the
jet-exposed region by contractions of the neighboring muscle
during the contraction phase, as previously reported [27, 40].
As shown in Fig. 2a, the sarcomere was stretched within the
region exposed to a 10 μmol/L blebbistatin jet (stretched re-
gion: X), whereas it was shortened within the region apart
from the jet-exposed region (contracting region: Y) during
the contraction phase, representing nonuniform contraction.
Regional changes in the DCF fluorescence along the long axis
of trabeculae were then recorded when trabeculae contracted
nonuniformly in response to regional exposure to the
10 μmol/L blebbistatin jet. As shown in Fig. 2b, c (a), electri-
cal stimulation for 30 s increased the DCFslope within the
region exposed to the blebbistatin jet (X) compared with that
within the region 0.5 mm apart from the jet-exposed region
(Y). This regional increase in the DCFslope was not detected
without electrical stimulation, as shown in Fig. 2c (b).
Besides, this regional increase was not detected after
superfusion with 3 μmol/L diphenyleneiodonium (DPI),
NADPH oxidase inhibitor, for 1 h (Fig. 2c (b)). These
results suggest that when cardiac muscle contracts
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nonuniformly, ROS is regionally increased within the
stretched region, at least in part, due to the activation of
NADPH oxidase.

Roles of ROS within the stretched region in Ca2+

waves and arrhythmias

In trabeculae with nonuniform contraction, Ca2+ waves are
initiated from the border zone between a contracting region
and a stretched region due to Ca2+ dissociation from the myo-
filaments and propagate along trabeculae by Ca2+-induced
Ca2+ release (CICR) from the SR, as previously reported
[25, 27, 40]. To investigate whether ROS generation within
the stretched region affects Ca2+ wave propagation and ar-
rhythmias, we examined the effect of DPI on the propagation
features of Ca2+ waves and the occurrence of arrhythmias in
trabeculae exposed to a 10 μmol/L blebbistatin jet. As shown
in Fig. 3a, electrical stimulation induced Ca2+ waves arising

around the region exposed to a blebbistatin jet. Within the jet-
exposed region, the peak [Ca2+]i of the Ca2+ waves
([Ca2+]CW) was higher than that within the region 0.4 mm
apart from the jet-exposed region (Fig. 3b (a)). Besides,
superfusion with DPI decreased the [Ca2+]CW within the jet-
exposed region and the velocity of Ca2+ waves (Fig. 3a, b (b)),
suggesting that ROS generation within the stretched region
enhances Ca2+ release from the SR induced by the Ca2+ dis-
sociated from the myofilaments and increases the velocity of
Ca2+ waves even outside the jet-exposed region. Concerning
the occurrence of arrhythmias, we have previously reported
that in the presence of isoproterenol, electrical stimulation
induces arrhythmias due to acceleration of Ca2+ waves in the
myocardium with nonuniform contraction [25, 26, 36]. Also
in the present study, electrical stimulation induced arrhythmias
in the presence of 0.2 μmol/L isoproterenol, as shown in Fig.
3c. Superfusion with DPI decreased the number of beats in-
duced by electrical stimulation (Fig. 3c, d), suggesting that
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Fig. 1 a Analysis of 2′,7′-dichlorofluorescein (DCF) fluorescence im-
ages. DCF fluorescence images were recorded before (DCFpre) and after
(DCFpost) exposure to a H2O2 jet without stimulation or a blebbistatin jet
with/without electrical stimulation (4 Hz for 30 s) (a). A region of interest
(ROI; 50 × 720 pixels) was set along the long axis of a trabecula (T), and
the profile of DCF fluorescence along the trabecula was calculated by
vertically averaging the values of pixels within the ROI across the trabec-
ula (b). To obtain the slope of the changes in the DCF fluorescence
(DCFslope) along the trabecula, the difference in the profile of DCF fluo-
rescence between the DCFpre and DCFpost was calculated pixel by pixel at

the identical position along the trabecula and was divided by ΔTime. b
Effect of a H2O2 jet on DCF fluorescence within trabeculae.
Representative recordings of the profile of the DCFslope along a trabecula
with (light blue) and without (black) exposure to a 1 mmol/L H2O2 jet (a).
The trabecula was exposed to the jet in the region of X. Y indicates the
region 0.5 mm apart from X (Exp. 170529). Summary data concerning
the effect of a H2O2 jet on the DCFslope (n = 6) (b). Exposure to a H2O2 jet
increased the DCFslope within X compared to that within Y (right panel).
#p < 0.01 vs Y
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ROS generation within the stretched region is involved with
the occurrence of arrhythmias.

In order to further examine whether ROS within the
stretched region increased the velocity of Ca2+ waves outside
the jet-exposed region and induced arrhythmias, we added
H2O2 to a solution used for a blebbistatin jet. Electrical stim-
ulation induced a Ca2+ wave arising around the region ex-
posed to a 10 μmol/L blebbistatin jet (Fig. 4a). Addition of
0.2 mmol/L H2O2 to the blebbistatin jet increased the
[Ca2+]CW within the jet-exposed region and the velocity of
the Ca2+ wave (Fig. 4a, b). Furthermore, addition of H2O2

increased the number of beats induced by electrical stimula-
tion (Fig. 4c, d). Taken together, these results suggest that a
regional increase in ROS within the stretched region enhances
Ca2+ release from the SR within the region and that this en-
hanced Ca2+ release works as an enhanced initiator of CICR
for propagation of Ca2+ waves and induces arrhythmias.

It is possible, however, that addition of H2O2 to the
blebbistatin jet may have affected the regional contractile
strength [12], thereby increasing the velocity of Ca2+ waves
and the number of beats after electrical stimulation. We thus

examined the effect of H2O2 on the developed force. The bath
superfusate containing both 0.2 mmol/L H2O2 and 10 μM
blebbistatin decreased the developed force to the level similar
to that in the superfusate containing only 10 μmol/L
blebbistatin (data not shown), meaning that the addition of
H2O2 to a blebbistatin jet does not affect the contractile fea-
tures within the stretched region.

Roles of ROS in Ca2+ wave propagation

Finally, to examine whether ROS affected the CICR mecha-
nism, trabeculae were exposed to a 0.2 mmol/L H2O2 jet dur-
ing propagation of Ca2+ waves. To minimize the effect of
H2O2 on the contractile strength, the bath was superfused with
a solution containing 10 μmol/L blebbistatin. This bath
superfusion with blebbistatin decreased the force developed
by electrical stimulation to 8.7 ± 1.4% of its initial value. To
induce Ca2+ waves due to Ca2+ leak from the SR, trabeculae
were exposed to a 10 mmol/L Ca2+ jet. As shown in Fig. 5a,
electrical stimulation induced spontaneous increases in [Ca2+]i
(white arrowheads) within the jet-exposed region just before
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Fig. 2 Regional effect of a blebbistatin jet on the DCFslope. a The upper
panel shows force, and the lower panel shows changes in sarcomere
length (SL). The trabecula was exposed to a 10 μmol/L blebbistatin jet
in the region of X. Y indicates the region apart from X. The sarcomere
within X (red line) was stretched, while the sarcomere within Y (purple
line) was shortened by electrical stimulation (ST; 2-s stimulus intervals,
0.7 mmol/L [Ca2+]o; Exp. 151214). b Representative recordings of the
profile of DCFslope along a trabecula exposed to a 10 μmol/L blebbistatin
jet in the absence (black line) and presence (red line) of 3 μmol/L DPI. X

indicates the region exposed to a blebbistatin jet, and Y indicates the
region 0.5 mm apart from X (Exp. 150521). c Summary data concerning
the effect of a blebbistatin jet on the DCFslope with 4 Hz electrical stim-
ulation (n = 5) (a). Exposure to a blebbistatin jet increased the DCFslope
within X compared to that within Y with electrical stimulation. *p < 0.01
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electrical stimulation and induced Ca2+ waves arising from the
jet-exposed region after electrical stimulation. When a H2O2

jet was directed to the region where Ca2+ waves propagated, it
increased the velocity of Ca2+ waves (Fig. 5a). Figure 5b
shows the summary data. A H2O2 jet increased the velocity
of Ca2+ waves, suggesting that ROS accelerates Ca2+ waves
probably activating the CICR mechanism.

Discussion

The present study characterized the effect of regional muscle
stretch on ROS generation, Ca2+ waves, and arrhythmias

using the cardiac muscle model representing nonuniform con-
traction. To the best of our knowledge, it shows for the first
time that in the myocardium with nonuniform contraction,
passive stretch of the muscle by contractions of the neighbor-
ing muscle regionally generates ROS within the stretched re-
gion and that such regional ROS generation exacerbates ar-
rhythmias by activating the propagation of Ca2+ waves, as
discussed below.

Regional ROS generation within the stretched region

It has been reported that in cardiac muscle, stretch of the
muscle increases ROS [27, 28, 32, 33], the frequency of
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Ca2+ sparks [18, 31, 33], and the velocity of Ca2+ waves
[28]. In the present study, the DCFslope was increased
within the region stretched by contractions of the neigh-
boring muscle during the contraction phase in trabeculae
exposed to a blebbistatin jet (Fig. 2c (a)). We assume that
this regional increase in the DCFslope reflects a regional
increase in ROS generation for the following reasons.
First, the blebbistatin jet regionally increased the
DCFslope in the manner similar to the H2O2 jet (Fig. 1b).
Second, the DCFslope was not increased within the
blebbistatin jet-exposed region after superfusion with
DPI (Fig. 2c (b)), suggesting that the DCFslope was in-
creased due to the activation of NADPH oxidase although

DPI inhibits the synthesis of both oxygen- and nitrogen-
derived reactive species and many other flavoproteins de-
pending on the concentration [1]. Third, the DCFslope was
measured a few minutes after the stoppage of a
blebbistatin jet because blebbistatin has fluorescent prop-
erties by itself. Fourth, the DCFslope was not increased
within the blebbistatin jet-exposed region without electri-
cal stimulation (Fig. 2c (b)). Thus, the results in the pres-
ent study suggest that in the myocardium with nonuni-
form contraction, passive muscle stretch during the con-
traction phase regionally increases ROS within the
stretched region, at least in part, due to the activation of
NADPH oxidase.
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Fig. 4 Effect of a jet of a solution containing H2O2 in addition to
blebbistatin on Ca2+ waves and arrhythmias. a Representative
recordings of force (upper panels) and regional changes in [Ca2+]i
(lower panels) during the last three electrical stimuli (ST; 400-ms stimulus
intervals for 7.5 s) and a Ca2+ wave. The left panels show changes in a
trabecula exposed to a 10 μmol/L blebbistatin jet, and the right panels
show changes in the trabecula exposed to a jet of a solution containing
0.2 mmol/L H2O2 in addition to 10 μmol/L blebbistatin. White arrows
indicate the first Ca2+ waves. In the left panel, a Ca2+ wave appeared
around the jet-exposed region and propagated along the trabecula. In
the right panel, the velocity of the Ca2+ wave was increased to 4.7 mm/
s. Yellow dotted line a in both panels indicates the regions where the
[Ca2+]CW were calculated (2.0 mmol/L [Ca2+]o; Exp. 151015). b

Summary data concerning the effect of addition of H2O2 to the
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potential (upper panels) and force (lower panels) after the last three elec-
trical stimuli (ST; 250-ms stimulus intervals for 15 s) before (left panels)
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the number of beats induced by electrical stimulation (2.0 mmol/L
[Ca2+]o, 0.2 μmol/L isoproterenol; Exp. 151026). d Summary data
concerning the effect of addition of H2O2 to the blebbistatin jet on the
number of beats induced by electrical stimulation (n = 6; 1.9 ± 0.1 mmol/
L [Ca2+]o). *p < 0.05 vs bleb jet
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Roles of ROS in Ca2+ waves and arrhythmias

ROS increases Ca2+ release from the SR [39, 43, 47] by oxi-
dizing ryanodine receptors (RyRs) [6] or activating calcium/
calmodulin-dependent protein kinase II (CaMKII) [8, 9]. It
further increases the velocity of Ca2+ waves [18] and exacer-
bates arrhythmias [7, 19]. Likewise, H2O2 causes triggered
arrhythmias [42] by directly activating RyRs [39] or by
impairing Na+ current inactivation [35] through activation of
CaMKII [39] or protein kinase C [41]. In addition, H2O2

changes force and Ca2+ transients [12] through the modulation
of the Ca2+ current [15], HERG [3], and the sodium-calcium
exchange current [14, 21].

As for the initiation mechanism of Ca2+ waves, two mech-
anisms have been proposed [27]. One is Ca2+ leak from the SR
due to Ca2+ overload [23, 28], and the other is Ca2+ dissocia-
tion from the myofilaments in the myocardium with nonuni-
form contraction [25, 40]. In the latter mechanism, regional
differences in contractile strength causes stretching of muscle
by contractions of the more viable neighboring muscle.

During the relaxation phase, Ca2+ is dissociated from themyo-
filaments due to the passive shortening and initiates Ca2+

waves from the border zone between the contracting and
stretched region [40]. As for the propagation mechanism,
CICR has been believed to underlie both the Ca2+ waves. In
the present study, the blebbistatin jet caused nonuniform con-
traction (Fig. 2a) and induced Ca2+ waves from the jet-
exposed region (Figs. 3a and 4a), suggesting that Ca2+ waves
in Figs. 3a and 4a were initiated by Ca2+ dissociation from the
myofilaments, while Ca2+ waves using a high Ca2+ jet in
Fig. 5 were initiated by SR Ca2+ leak.

Concerning an increase in the propagation velocity of Ca2+

waves outside the jet-exposed region in Figs. 3 and 4, we
assume that an increase in [Ca2+]i due to ROS generation
within the stretched region works as an enhanced initiator of
CICR for propagation of Ca2+ waves for the following rea-
sons. First, the [Ca2+]CW within the stretched region was
higher than that outside the blebbistatin jet-exposed region
(Fig. 3b (a)). Second, superfusion with DPI decreased the
[Ca2+]CW within the jet-exposed region and the velocity of
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Fig. 5 Effect of a H2O2 jet on Ca
2+ waves induced by a 10 mmol/L Ca2+

jet. a Representative recordings of force (upper panels) and regional
changes in [Ca2+]i (lower panels) during the last three electrical stimuli
(ST; 400-ms stimulus intervals for 7.5 s) in the absence (left panels) and
presence (right panels) of a 0.2 mmol/L H2O2 jet. Muscle contractions
were minimized by the bath superfusion with 10 μmol/L blebbistatin, and
Ca2+ waves were induced by a 10mmol/L Ca2+ jet. White arrows indicate
the first Ca2+ waves, and white arrowheads indicate spontaneous

increases in [Ca2+]i just before electrical stimulation. In the left panel,
Ca2+ waves appeared within the region exposed to the 10 mmol/L Ca2+

jet and propagated along the trabecula. In the right panel, exposure to the
H2O2 jet increased the velocity of the first Ca2+ wave (2.0 mmol/L
[Ca2+]o; Exp. 140910). b Summary data concerning the effect of the
0.2 mmol/L H2O2 jet on the velocity of Ca2+ waves (n = 6). *p < 0.05
vs (–)
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Ca2+ waves (Fig. 3b (b)), while addition of H2O2 to a
blebbistatin jet increased them (Fig. 4b). Third, we have pre-
viously reported that the velocity of Ca2+ waves increases
depending on the [Ca2+]CW in trabeculae [23]. Fourth, we
have also reported that the velocity of Ca2+ waves increases
depending on the Ca2+ dissociated from the myofilaments
within the jet-exposed region when trabeculae are shortened
[24].

In the present study, superfusion with DPI decreased the
number of beats after electrical stimulation (Fig. 3), and addi-
tion of H2O2 to a blebbistatin jet increased it (Fig. 4). Besides,
as shown in Fig. 5, a H2O2 jet directed to the region where
Ca2+ waves propagated increased the velocity of Ca2+ waves.
Furthermore, we have previously reported that an increase in
the velocity of Ca2+ waves enhances the amplitude of delayed
after depolarizations and cause arrhythmias [36]. Taken to-
gether, these results suggest that in the myocardium with non-
uniform contraction, an increase in ROS within the stretched
region increases the velocity of Ca2+ waves by activating
CICR [5, 43, 47] and thereby induces arrhythmias.

Clinical implications

In patients with heart failure and myocardial infarction, lethal
arrhythmias frequently occur [29, 30]. Within such diseased
hearts, impaired muscle is widely distributed, and thus, the
hearts exhibit nonuniform contraction due to the regional dif-
ference in contractile strength. Results of the present study
suggest that in patients with diseased hearts, stretch of the
impaired muscle by contractions of the more viable neighbor-
ing muscle increases ROS, especially within the stretched re-
gion and that such an increase in ROS causes arrhythmias by
activating Ca2+ waves, which is induced by the Ca2+ dissoci-
ated from the myofilaments due to the difference in contractile
strength.

Study limitations

In diseased hearts, abnormal Ca2+ handling frequently occurs,
especially within the impaired muscle, causing ROS genera-
tion [44] and arrhythmias [4, 38]. In the present study, how-
ever, the region showing stretch by exposure to a blebbistatin
jet was not impaired but was just paralyzed.

Conclusion

In the myocardium with nonuniform contraction, passive
stretch of the muscle by contractions of the neighboring mus-
cle regionally increases ROS generation within the stretched
region, and the regional ROS exacerbates arrhythmias by ac-
tivating the propagation of Ca2+ waves.
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