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Abstract
Neutrophil granulocytes are exposed to widely varying microenvironmental conditions when pursuing their physiological or
pathophysiological functions such as fighting invading bacteria or infiltrating cancer tissue. Examples for harsh environmental
challenges include among others mechanical shear stress during the recruitment from the vasculature or the hypoxic and acidotic
conditions within the tumor microenvironment. Chemokine gradients, reactive oxygen species, pressure, matrix elasticity, and
temperature can be added to the list of potential challenges. Transient receptor potential (TRP) channels serve as cellular sensors
since they respond to many of the abovementioned environmental stimuli. The present review investigates the role of TRP
channels in neutrophil granulocytes and their role in regulating and adapting neutrophil function to microenvironmental cues.
Following a brief description of neutrophil functions, we provide an overview of the electrophysiological characterization of
neutrophilic ion channels.We then summarize the function of individual TRP channels in neutrophil granulocytes with a focus on
TRPC6 and TRPM2 channels. We close the review by discussing the impact of the tumor microenvironment of pancreatic ductal
adenocarcinoma (PDAC) on neutrophil granulocytes. Since neutrophil infiltration into PDAC tissue contributes to disease
progression, we propose neutrophilic TRP channel blockade as a potential therapeutic option.
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Introduction

Neutrophil granulocytes are major constituents of the cellular
immune system and serve as the first-line defense to invading
pathogens. On the other hand, they also contribute to patho-
logical conditions such as chronic inflammatory diseases and
cancer. They are exposed to widely varying microenviron-
mental conditions. The environmental signals acting on neu-
trophil granulocytes include, but are not limited to, (i) shear
forces during the recruitment from the vasculature, (ii)
chemoattractants guiding them to sites of infection or inflam-
mation, (iii) mechanical properties (e.g., elasticity, pressure) of
the surrounding tissue encountered during chemotaxis, (iv) an

acidic and hypoxic environment that may also have an in-
creased concentration of reactive oxygen species (ROS), and
(v), finally, the temperature may diverge from the normal body
temperature of 37 °C. Hence, neutrophil granulocytes must
have developed mechanisms to adapt and respond to these
environmental cues in order to function properly despite the
potentially harsh environmental challenges. This requires the
presence of sensors in the plasma membrane of neutrophil
granulocytes. Accordingly, they express many different recep-
tors in their plasma membrane ranging from G protein-
coupled chemoattractant receptors to innate immune recep-
tors. Their role in adapting the function of neutrophil
granulocytes to external stimuli is well described, and we refer
to recent reviews on this topic (e.g., [27, 38]).

Many of the receptor-dependent signaling cascades such as
those triggered by G protein-coupled chemoattractant receptors
utilize intracellular Ca2+ ions as a second messenger.
Consequently, ion channels mediating the influx of Ca2+ ions
into neutrophil granulocytes are involved in transducing the ex-
ternal signals. The molecular nature of the channels regulating
the influx of Ca2+ into neutrophil granulocytes and their physio-
logical significance are not yet well described. They include TRP
and ORAI channels. TRP channels are a large family of cation
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channels. Most of them are Ca2+ permeable. Their function can
be described in very general terms as that of Bcellular sensors^
[99]. Some TRP channels are also known to be activated by the
environmental cues listed above. TRPC1 and TRPM7 channels
are involved in mechanosensation [33, 35, 137], TRPM2 chan-
nels serve as ROS sensors [135] and are pH sensitive [138],
TRPC6 channels are activated in a hypoxic environment [97,
98], and TRPV1 and TRPM8 are temperature sensitive.

It is our aim to review the current knowledge on TRP
channels in neutrophil granulocytes. We refer to a recent re-
view for more information on the function of ORAI channels
in neutrophil granulocytes [12].We will discuss the concept of
neutrophilic TRP channels being sensors, transducers, and
possibly modifiers of the microenvironment. This discussion
will be preceded by a brief overview of some of the main
physiological functions of neutrophil granulocytes. We will
then provide a critical overview on the available electrophys-
iological evidence for TRP (and other ion) channels in neu-
trophil granulocytes and examine the roles of TRP channels in
neutrophil functions. The review will be closed with a more
visionary discussion of the role of TRP channels in tumor-
associated neutrophil granulocytes in pancreatic ductal adeno-
carcinoma (PDAC).

Physiological functions of neutrophil
granulocytes

Neutrophil granulocytes are derived from the hematopoietic
system in the bone marrow in a steady process of self-renewal
and differentiation. However, during inflammation, the capac-
ity of steady-state granulopoiesis is often exceeded, which
induces a distinct program of accelerated production known
as Bemergency^ granulopoiesis [77]. After granulopoiesis,
mature granulocytes are released from the bone marrow to
the blood stream from where they are recruited to sites of
infection or inflammation.

Pathogens or inflammatory foci lead tissue macrophages
and mast cells to produce cytokines like TNF-α or interleu-
kins that induce the activation of endothelial cells and the
expression of adhesion molecules on their cell surface. This
triggers a well-defined cascade of events to recruit
(neutrophil) granulocytes from the blood stream. A number
or recent reviews outline this process in great detail (e.g., [64,
78]). The recruitment cascade includes the capturing, rolling,
adhesion, intravascular migration, and diapedesis through the
endothelial layer of postcapillary venules. Selectins and inter-
cellular adhesion molecule 1 (ICAM-1) in endothelial cells as
well as P-selectin glycoprotein ligand 1 (PSGL1) and β2-
integrins (LFA1 = αLβ2 integrin; MAC1 = αMβ2 integrin)
in granulocytes are crucial adhesion receptors for these pro-
cesses. Neutrophil granulocytes are activated by
chemoattractants that are presented on the endothelial surface.

This triggers conformational changes of integrins leading to a
strengthening of the adhesion of neutrophil granulocytes to
endothelial cells that is crucial for the ensuing extravasation
[47]. After leaving the blood vessels, the cells have to follow
chemoattractant gradients to reach the site of inflammation.

The ability to migrate is one of the key characteristics of
neutrophil granulocytes. Migration comes into play during
intravascular crawling which enables neutrophil granulocytes
to reach a proper site to cross the endothelial barrier. An im-
pairment of intravascular crawling, e.g., by the deficiency of
αMβ2 integrin (MAC1), leads to markedly delayed transmi-
gration because neutrophil granulocytes have to emigrate
through nonoptimal sites [112]. After leaving the blood ves-
sels, the cells migrate through the tissue to reach the site of
inflammation and fight pathogens. Recent evidence indicates
that the so-called reverse migration contributes to the resolu-
tion of an inflammation, i.e., the migration of neutrophil
granulocytes away from an inflammatory focus [13, 114].

Cell migration is described as a repeated cycle of protrusion
of the cell front, attachment of this lamellipodium to the ma-
trix or another cell, and retraction of the rear end (uropod) in
association with release of adhesion structures. It is accompa-
nied by temporally and spatially coordinated fluxes of ions
and water across the plasma membrane [48, 88, 129].
Directional migration and chemotaxis require a cellular asym-
metry. One of the signals underlying cell polarization of mi-
grating cells including immune cells is a front-to-rear gradient
with an increasing intracellular Ca2+ concentration towards
the rear end [6, 75]. The increased Ca2+ concentration at the
rear end is related to myosin II contraction [11], calpain-
mediated cleavage of focal adhesions [10], and local ion chan-
nel activity [128]. In addition to the global front-to-rear gradi-
ent, there are local Ca2+ and signaling microdomains at the
cell front promoting directed migration [148, 149]. To obtain a
more quantitative insight into the mechanisms underlying che-
motaxis, a number of mathematical models such as the polar-
ized local excitation and global inhibition (LEGI-BEN) model
have been developed [54].

Phagocytosis and ROS production

Neutrophil granulocytes, similarly to macrophages and den-
dritic cells, are specialized phagocytes. They internalize po-
tentially dangerous particles or cellular debris in a receptor-
mediated manner. Being the most abundant phagocytes in the
bloodstream, they are indispensable in preventing pathogen
dissemination. Particles are opsonized with antibodies or
complement molecules which bind to Fc and complement
receptors expressed on phagocytes. Phagocytes like neutro-
phil granulocytes engulf and entrap these particles into
phagosomes. During Bphagosomal maturation,^ they fuse
with other vesicular compartments providing enzymes and
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an acidic (in macrophages) or initially alkaline (in neutrophil
granulocytes) environment for particle digestion [73, 154].

Phagocytosis and activation of PAMP (pathogen-
associated molecular pattern molecules) receptors and also
phorbol esters induce the production of reactive oxygen spe-
cies (ROS) [100]. Neutrophil granulocytes produce ROS pre-
dominately inside the phagosomes, while eosinophil
granulocytes release ROS extracellularly to fight comparably
large parasites [69]. Oxygen consumption of activated neutro-
phil granulocytes rises during the Boxidative burst^ which is
driven by NADPH oxidase 2 (NOX2). NOX2 consists of
membrane-bound and cytosolic components. Gp91phox and
p22phox (flavocytochrome b558) reside mainly (85%) in mem-
branes of specific granules. The remaining 15% are expressed
in secretory vesicles and the plasma membrane [157]. The
membrane-bound NOX2 complex mediates electron release
from NADPH and their translocation into the phagosome or
outside the cell. Due to its electrogenicity, NOX activity is
regulated by the membrane potential and requires the flux of
charge-balancing counterions [154]. Electrons derived from
NADPH oxidation reduce molecular oxygen to superoxide
anion (O2

−) which in turn is converted to H2O2 by superoxide
dismutase (SOD). Myeloperoxidase (MPO) then mediates the
reaction of H2O2 and Cl

− to form the strong bactericidal mol-
ecule hypochlorous acid (HOCl). The oxidative burst is ac-
companied by an intracellular acidification which is compen-
sated by the Na+/H+ exchanger (NHE1) and voltage-
dependent proton channels (HV1; see below) [89].

Electrophysiology of neutrophil granulocytes,
do TRP channels contribute?

Neutrophil granulocytes are notoriously complicated cells to
patch-clamp. Their lifespan after isolation is very limited
without special treatment. They activate easily and some-
times even spontaneously. The complications connected to
the experimental work have left the literature about patch-
clamp measurements of neutrophil granulocytes manageable:
~70 publications have been found (as of February 2018) in
PubMed using Bneutrophil patch-clamp^ as search input.
However, the search parameter Bneutrophil conductance^
has yielded already more than 300 hits. This section focuses
exclusively on patch-clamp measurements of neutrophil
granulocytes with some additions from the related eosinophil
granulocytes. We will begin by briefly reviewing the main
conductances in patch-clamped neutrophil granulocytes.

Potassium conductance Like in heart muscle, skeletal muscle,
and other cells, there is an inwardly rectifying K+ conductance
measurable in newt neutrophil granulocytes [60]. The inward-
ly rectifying K+ conductance was detected in newt eosinophil
and basophil granulocytes, too. Two more reports identified it

as being mediated by Kir2.1 in human eosinophil and mouse
neutrophil granulocytes [80, 145]. It has a decreased conduc-
tance at low internal pH, no conductance at 0 K+, and shows a
voltage-dependent block by cesium and barium. Interestingly,
Krause and Welsh [67] could not find an inwardly rectifying
K+ conductance in their initial patch-clamp study of human
neutrophil granulocytes which would contradict the previous-
ly mentioned publications. Instead, Krause andWelsh found a
Ca2+-activated K+ conductance that was activated by the Ca2+

ionophore ionomycin in 2 mM CaCl2 bath solution, and
blocked by barium, but not by charybdotoxin, apamin, qui-
nine, or 4-aminopyridine. A Ca2+-activated K+ conductance
was also detected in eosinophil granulocytes [121, 122]. Two
types of channels were reported with single-channel conduc-
tances of ~ 10 and 22 pS, respectively. Krause and Welsh [67]
measured a depolarization-activated inwardly rectifying po-
tassium conductance, which has not been reported by other
scientists. It would be intriguing to have a second look at this
conductance. The once proposed expression of large conduc-
tance Ca2+-activated K+ channels (KCa1.1), however, could
not be confirmed neither in human neutrophil [31] nor in
eosinophil granulocytes [36] so the respective publication
had to be withdrawn. In non-excitable cells, Ca2+-activated
K+ channels are often seen as a means to maintain the electri-
cal driving force for influx of Ca2+ across the plasma mem-
brane: the depolarizing effect of Ca2+ influx is circumvented
by the simultaneous activation of Ca2+-sensitive K+ channels
which keep the cell membrane potential at hyperpolarized
values [39]. Furthermore, it has been reported that eosinophil
granulocytes contain a limited number (~25 channels per cell)
of ATP-dependent K+ channels (KATP) [2, 131].

Chloride conductance Phagocytes appear to have a very high
intracellular Cl− concentration (~ 100 mmol/l) [56] so that
opening of Cl− channels will lead to Cl− efflux and volume
changes. This is relevant for neutrophil granulocytes that un-
dergomarked shape changes duringmigration. Shape changes
are usually accompanied by changes of the cell volume [51].
However, a more recent study using a fluorescent Cl− indica-
tor reported a considerably lower intracellular Cl− concentra-
tion in neutrophil granulocytes (~ 30 mmol/l; [52]). Krause
and Welsh [67] are the first to report Ca2+-activated Cl− cur-
rents in human neutrophil granulocytes. A few years later, a
mechanosensitive but Ca2+-insensitive Cl− conductance, with
a single-channel conductance of ~ 1.5 pS estimated from noise
analysis, was described [141]. This conductance has much in
common with the typical volume-sensitive Cl− current
expressed in many different cell types. A small Cl− current
was detected in neutrophil granulocytes activated by TNF-α
or fMLF [111]. Its pharmacological characterization revealed
that it is only blocked by ethacrynic acid. It is distinct from the
volume-sensitive Cl− conductance. Neutrophil granulocytes
from LRCC8A knock-out mice have almost no detectable
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swelling-activated chloride current anymore [4]. This corrob-
orates the idea that LRCC8A may be a part of the swelling-
activated Cl− conductance. Finally, eosinophil granulocytes
may contain a Cl− conductance that was ascribed to ClC-3
[130]. To the best of our knowledge, we found no electrophys-
iological evidence for CFTR expression. Neutrophil
granulocytes also express glycin receptors (GlyRα2), ligand-
gated Cl− channels. They are translocated to the plasma mem-
brane upon lysophosphatidylcholine (LPC) stimulation and
modulate TRPM2 channels by setting the intracellular Cl−

concentration [52].

Proton conductance The presence of a proton conductance is
well established in neutrophil granulocytes, and it has been
measured by various scientific groups multiple times [21].
Using noise analysis, a single-channel conductance of ~
10 fS was initially estimated for neutrophilic proton channels
[17]. The channel is pH and voltage-dependent and also
expressed in other immune cells such as eosinophil and baso-
phil granulocytes or lymphocytes [8, 40, 93, 124, 126]. Two
scientific groups report proton currents to be augmented in the
presence of an elevated cytosolic Ca2+ concentration [40,
126]. The prime function of proton currents is the pH and
charge compensation during the respiratory burst in phago-
cytes [92]. In addition, it maintains Ca2+ influx during migra-
tion of neutrophil granulocytes by stabilizing the cell mem-
brane potential [30]. The measurement of proton currents was
also used to quantify the activity of the Na+/H+ antiporter in
neutrophil granulocytes via patch-clamp [18].

Electron conductance Electron currents were initially mea-
sured in eosinophil [127] and shortly thereafter in neutrophil
granulocytes [19]. The electron conductance is small and car-
ried by the translocation of electrons across the plasma mem-
brane via the NADPH oxidase NOX2 which translocates
~300 electrons per second [15, 66]. At − 40 mV, the average
electron current amounts to − 2.3 pA in human neutrophil
granulocytes. In Table 1, we estimated a conductance for the
oxidase of approximately 0.5 fS. However, this has to be taken
with a grain of salt because of the non-linear voltage depen-
dence of the oxidase [20].

Non-selective cation conductance Patch-clamp electrophysi-
ology of neutrophil granulocytes started in 1986 with a pub-
lication describing two non-selective and Ca2+-activated cat-
ion channels with conductances of 18–24 and 4–6 pS, respec-
tively [152]. Their molecular nature, however, remained un-
known. Heiner et al. detected TRPM2-mediated currents in
neutrophils and HL-60 cells [43]. TRPM2 channels were ex-
clusively activated when ADP-ribose (ADPR) or NAD were
added to the pipette solution. Single-channel measurements
showed a conductance of 55–63 pS. The single-channel
events were exclusively detected in inward direction [43]. A

follow-up paper by the same group determined the concentra-
tion of ADP-ribose to be 5 μM in unstimulated and 3.9 μM in
stimulated neutrophil granulocytes. Addition of Ca2+ ampli-
fied the effect of ADP-ribose on the channel. Cyclic ADP-
ribose (cADPR) did not trigger any TRPM2 currents [45].
An earlier description focused on TRPM2 single-channel
events and detected events in inward and outward direction
with conductances of 58 and 76 pS, respectively [123], exclu-
sively triggered by ADP-ribose and NAD. The same publica-
tion detected TRPM2 currents in the eosinophil cell line
EOL1 that were triggered by 0.5 mM ADP-ribose. A detailed
investigation of TRPM2 agonists in neutrophil granulocytes
and overexpression systems revealed that activation by
cADPR can be potentiated by NAADP and that 100 μM of
H2O2 lowers the concentration of ADPR needed to activate
TRPM2 in neutrophil granulocytes [70]. ADPR-induced
TRPM2 channel activity is further modulated by simulta-
neously changing the intracellular and extracellular Cl− con-
centration ([Cl−]i/[Cl

−]e). Half-maximal activation occurs at a
[Cl−]i/[Cl

−]e of ~ 18 mmol/l [52].
In addition, there are experiments showing a Mg2+-

inhibited current in neutrophil granulocytes which is a typical
property of TRPM7 channels [43]. TRPM7 currents are up-
regulated in TRPM2−/− macrophages [3]. It is not known
whether this is the case in neutrophil granulocytes as well.
The mRNA screen of neutrophil granulocytes reported the
expression of several TRP channels such as TRPV1,
TRPV2, TRPC6, TRPM2, TRPM4, and TRPV4 [16, 43] but
interestingly not TRPM7.

The functional expression of P2X1 channels was revealed
in neutrophil granulocytes by using the activator αβ-
methylene ATP [72]. However, this paper contained no de-
tailed analysis of the αβ-methylene ATP-induced current.
Thus, more measurements are clearly needed. To the best of
our knowledge, P2X7 channels have not yet been demonstrat-
ed with patch-clamp experiments [79] which is in contrast to
functional assays revealing their impact on IL-1β secretion of
neutrophil granulocytes [59].

Store-operated channels There are only few publications pro-
viding direct electrophysiological evidence for store-operated
Ca2+ channels in neutrophil granulocytes [22, 125]. Heiner
et al. demonstrated store-operated cation current in HL-60
cells, however, failed to detect them in human neutrophil
granulocytes [44].

Capacity measurements in neutrophil granulocytes
Neutrophil granulocytes as well as many other cells from the
immune system are able to degranulate. This process is com-
parable with membrane vesicle fusion in neurons which leads
to characteristic changes of membrane capacitance that can be
detected with patch-clamp technique [102–104]. Reported ca-
pacity values of unstimulated human neutrophil granulocytes
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Table 1 Channels and transporters measured via patch-clamp in neutrophil granulocytes

Channel or
transporter

Gating Single-channel
conductance

Blockers/inhibitors Reference Comment

K+ inward rectifier Hyperpolarization induced Not mentioned Ba2+ and Cs+

voltage-dependent block
[60] Could not be detected

by Krause and
Welsh

Kir 2.1 Hyperpolarization induced 24 pS Ba2+ and Cs+

voltage-dependent block,
low intracellular pH

[145] Eosinophils

Kir 2.1 Voltage-gated, K+ gated 22.3 pS Cs and Ba, ML133 [80] Also showed proton
conductance

K+ channel Voltage-dependent
depolarization activated,
inwardly rectifying,
threshold − 60 mV

Not mentioned 10–20 mM BaCl2 no block by
charybdotoxin, apamin,
quinine and
4-aminopyridine

[67]

Ca2+ activated K+

channel
Ca2+ dependent; insensitive to

voltage, outwardly rectifying
Not mentioned 10–20 mM BaCl2. No block

by charybdotoxin, apamin,
quinine, and
4-aminopyridine

[67]

Ca2+-activated
K+ channel

Ca2+ dependent
2 types

22 and 10 pS Quinidine; activators: 100 nM
PAF, 1 μMA-23187, 1 μM
ionomycin, 10 μM
thapsigargin

[121,
122]

Eosinophils

KATP cGMP-dependent mechanism
SNAP andGSNO (NO donor)

50 pS (not directly
measured)

Glibenclamid (did not block),
diazoxide and 1-EBIO

[131] Eosinophils

Cl− channel Ca2+-dependent, outwardly
rectifying, no voltage
dependence

Not mentioned Na+ isethionate [67]

Cl− channel Mechanosensitive/
volume regulated

1.5 pS Compound MK-447,
3,5-diiodosalicylate,
acetamido-4′-
iodothiocyanostilbene-2,
2-disulfonic acid and
UK-5099

[141]

Cl− channel
or transporter
different from
mechanosensitive
Cl− channel

Activated through
transduction chains?

Not mentioned Ethacrynic acid, NPPB,
WW781

[111]

Swelling-activated
Cl- channel (VRAC)
component LRRC8A

Mechanosensitive,
cell swelling

Not mentioned NPPB, FFA, and DCPIB,
tamoxifen, phloretin,
and WW781

[4]

CLC-3 Not mentioned Not mentioned DIDS [130] Eosinophils; no CFTR
could be found

GlyRα2 Glycin-induced
Cl− current

Not mentioned [52] GlyR-mediated
increase of [Cl−]i
activates TRPM2

H+ channel Voltage-gated,
proton dependent

First description
10 fS is
dependent on pH

Zn2+, Cd2+

Activator: arachidonate
[17]

H+ channel,
Ca2+ augmented

Voltage-gated,
proton dependent

Not mentioned Zn2+, Ni2+

Activator: Ca2+,
arachidonate

[40, 126] Eosinophils

Na+/H+ antiporter Na+ and pH dependent Not mentioned Amiloride, dimethyl
amiloride (DMA)

[18] Na+/H+ is
electroneutral, thus
indirect
measurement

NADPH oxidase
electron current

Voltage-dependent 0.5 fS (estimated) Diphenyleneiodonium (DPI) [19]

Not mentioned Diphenyleneiodonium (DPI) [127] Electron current is
absent in CGD
eosinophils

non-selective cation
channel

4–6 pS Not mentioned [152]
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range between 2 and 5 pF (e.g., [17, 43, 67, 141]). Vesicle
fusion involves the formation of a conductive pore. During
patch-clamp experiments, this can be mistaken for an ion
channel with a unitary conductance of 35–380 pS. Thus, it
cannot be dismissed that sightings of high conductance
single-channel events rather reflect neutrophil degranulation
than ion channel activity. There are publications demonstrat-
ing this special case of conductance during patch-clamp mea-
surements [5, 76].

Taken together, patch-clamp studies of human neutrophil
granulocytes revealed the presence of several conductances
(Table 1). K+, Cl−, and proton conductances have been report-
ed by several groups and with high consistency. Many of these
experiments were done before TRP channels were discovered
in human tissue [161]. Prior to the discovery of human TRP
channels, there was only a single report of nonspecific cation
channels in neutrophil granulocytes [152]. Unfortunately,
these recordings were not reproduced later. Until now,
TRPM2 is by far the best electrophysiologically characterized
TRP channel in neutrophil granulocytes. It is intriguing, how-
ever, that there is not a single publicationmentioning TRPM2-
mediated single-channel events during the respiratory burst.
The high unitary conductance of TRPM2 (50–70 pS) would
generate single-channel currents of 3.6 pA at a holding poten-
tial of − 60 mV. In neutrophil granulocytes, single-channel
events of this size would be readily recorded even in the
whole-cell configuration [43, 70]. Therefore, it is possible that
these channels are silent during the respiratory burst. This
could be due to their pH sensitivity. TRPM2 channels are
closed by a drop of the intracellular or extracellular pH [28,
138]. During the respiratory burst, a massive amount of

protons is produced by oxidizing NADPH causing an intra-
cellular acidification [89]. Moreover, the membrane potential
of neutrophil granulocytes depolarizes to + 10 mV during the
respiratory burst when stimulated with fMLP or even + 60mV
in the presence of PMA [119]. Accordingly, the electrical
driving force for TRPM2-mediated cation fluxes (e.g., Ca2+

and Na+) are largely diminished during an oxidative burst.
From the reviewed data, it becomes obvious that there is a

great lack of knowledge concerning the electrophysiological
fingerprinting of molecularly identified ion channels in neu-
trophil granulocytes in general and of TRP channels in partic-
ular. This strongly contrasts with an increasing number of
publications showing the involvement of different TRP chan-
nels in regulating the function of neutrophil granulocytes.
Thus, there is a strong need for a systematic electrophysiolog-
ical investigation of the ion channels functionally expressed in
neutrophil granulocytes. Such measurements should be per-
formed in a highly standardized way and meticulously ac-
count for the state of activation of neutrophil granulocytes
and the environmental conditions. A detailed description of
the patch-clamp technique using human neutrophil
granulocytes has been published recently [90].

Function of neutrophil granulocytes depends
on TRP channels

TRPC channels TRPC6 is one of the best studied TRP channels
in neutrophil granulocytes, despite the fact that electrophysio-
logical proof for TRPC6 channel activity in these cells is still
lacking. At least in human neutrophil granulocytes, oleoyl-

Table 1 (continued)

Channel or
transporter

Gating Single-channel
conductance

Blockers/inhibitors Reference Comment

Slightly voltage-dependent at
positive potentials. Ca2+

dependent starting at 100 nM

Only found in 1 of 30
measurements by
Krause and Welsh

non-selective
cation channel

Slightly voltage-dependent at
positive potentials. Ca2+

dependent starting at 100 nM

18–24 pS Not mentioned [152]

TRPM2 Not shown in the publication 55.1 ± 13.5 pS by
ADP ribose

62.0 ± 4.2 pS by
NAD

NMDG in bivalent ion-free
solution (BVF)

Activated by ADP ribose
and NAD

[43]

Activated by an increase of the
[Cl−]i

Flufenamic acid (100 μM),
clotrimazole (25 μM) and
econazole (25 μM)

[52]

TRPM7 Current that is inhibited by
Mg2+ and activated in the
absence of divalent cations

Not mentioned Mg2+, divalent cations [43]

P2X1 ATP as agonist opens
the channel

Not mentioned Activator: αβ-methylene ATP [72] No detailed
characterization
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acetyl-glycerol (OAG)-activated and TRPC6-mediated cation
currents could not be detected [43]. So far, only Ca2+ imaging
and Mn2+ quenching experiments were performed to assess the
ion conductive properties of TRPC6 channel activity in neutro-
phil granulocytes and to complement behavioral assays. These
studies provide firm evidence for an important role of TRPC6
channels in neutrophil recruitment. TRPC6 affects MIP-2
(CXCL2)-induced migration of neutrophil granulocytes and
actin arrangement [16]. Furthermore, chemotaxis, recruitment
to the peritoneal cavity, and chemoattractant-induced Ca2+ mo-
bilization ofmurine neutrophil granulocytes strongly depend on
TRPC6 channels [74]. Surprisingly, there appears to be a strik-
ing degree of selectivity of TRPC6 channels for some of the
chemoattractants. Neutrophil granulocytes from TRPC6−/−

mice fail almost completely to chemotax towards CXCR2 li-
gands, while their response to fMLP is absolutely normal [74].
TRPC6 channels are required for CXCL1-stimulated receptor-
operated Ca2+ influx which leads to Akt phosphorylation and
actin polymerization during the initial phase of stimulation. A
similar apparent specificity has also been found for ORAI1
channels and C5a receptors [136]. Chemotaxis of neutrophil
granulocytes towards fMLP is TRPC1 dependent [75].
Importantly, the absence of TRPC1 and TRPC6 channels af-
fects almost exclusively the steering mechanism during chemo-
taxis since the speed of migration is practically identical with
that of cells from the wild-type littermates [74, 75].

The exact mechanisms that cause the selective perturbation
of chemotaxis as opposed to a general defect in cell migration
upon deletion of TRPC1 and TRPC6 channels have not yet been
elucidated. However, this observation is consistent with the no-
tion that both channels reinforce the biased formation of pseu-
dopods into the direction of the chemotactic gradient [95] or the
biased activity of an excitable network underlying the polarized
local excitation and global inhibition (LEGI-BEN) model [54].
Along these lines, TRPC6 channels could be involved setting
the sensitivity for gradient detection by locally amplifying intra-
cellular signaling cascades at the cell front. Such a positive feed-
back loop requiring Ca2+ influx was shown in migrating mac-
rophages. In these cells, inhibition of extracellular Ca2+ influx
leads to a decay of chemoattractant signals [32].

TRPC6 channels have also been proposed to underlie the
Ca2+ influx into neutrophil granulocytes that is induced by
PAF and augmented by E-selectin [83]. This is relevant for
the early steps of the recruitment cascade when neutrophil
granulocytes are captured by selectins on endothelial cells.
Unpublished observations from our laboratory showed that
TRPC6-mediated Ca2+ influx strengthens the β2 integrin-
and ICAM1-dependent adhesion of neutrophil granulocytes
to endothelial cells. A crucial role of TRPC6 channels in en-
dothelial cells for the recruitment of neutrophil granulocytes
has been revealed by the use of the targeted knock-out of
TRPC6 channels in endothelial cells [156]. In endothelial
cells, TRPC6 channels interact with PTEN [61]. This finding

may have important implications for neutrophil granulocytes
in which PTEN is crucial for the integration of signals from
different chemoattractants. If such interaction also occurred in
neutrophil granulocytes, TRPC6 channels could indirectly
play a role in the prioritization of different chemoattractant
signals [46].

It has been known for many years that chemokinetic stim-
ulation of neutrophil granulocytes triggers intracellular Ca2+

transients [57]. Interestingly, Ca2+ signaling is affected in op-
posite ways by the deletion of TRPC6 or TRPC1 channels.
Expectedly, CXCL1-stimulated TRPC6−/− neutrophils exhibit
attenuated Ca2+ transients [74]. In contrast, fMLP induces an
elevated Ca2+ influx into TRPC1−/− neutrophil granulocytes
[75]. A likely explanation for this apparent paradox is given
by the observation that TRPC1 decreases the Ca2+ selectivity
of heteromeric TRPC channels. Accordingly, the deletion of
TRPC1 increases their Ca2+ permeability [142].

TRPM2 channels The role of TRPM2 channels was studied by
using three different knock-out mouse models. The first
TRPM2−/− mice were generated by deleting the transmem-
brane segments 5 and 6 including the pore-forming TRPM2
domain (129S4/SvJae* C57BL/6J genetic background;
[158]). In 2011, GlaxoSmithKline generated another
TRPM2−/− mouse model by deletion of the third and fourth
transmembrane domains of the channel protein (129P2/
OlaHsd* C57BL/6J genetic background; [62]). A third
TRPM2−/− mouse was generated in 2013, with the same do-
mains of the channel deleted as in the first KO mouse and an
additionally introduced stop codon. Mice were also of
C57BL/6 background [85]. The deletion of CD38 can at least
partially mimic the effects of a TRPM2 knockout (reviewed in
[63]. CD38 is an ectoenzyme that produces a number of the
physiological TRPM2 agonists. TRPM2 channels affect re-
cruitment and function of neutrophil granulocytes in two dif-
ferent ways, either indirectly or directly.

Neutrophil granulocytes are indirectly affected by the de-
letion of TRPM2 channels in other immune cells (e.g., mac-
rophages) because the cytokine production in these cells is
regulated by TRPM2 channels. Depending on the disease
model, TRPM2 deletion leads to increased cytokine produc-
tion [23] or to decreased cytokine production [41, 81, 84,
158]. Accordingly, the clinical outcome may be deteriorated
or improved upon TRPM2 channel deletion. In a dextran sul-
fate sodium-induced colitis inflammation model, the outcome
of TRPM2−/− mice is better than that of wild-type littermates.
There is a lower CXCL2 and IFN-γ production so that neu-
trophil infiltration into the inflamed colon is reduced and pro-
duces less damage [158]. Similar protective effects of TRPM2
knock-out are seen in studies on neuroinflammation
(carrageenan-induced inflammation and sciatic nerve injury)
and in a model of postoperative ileus. TRPM2−/− macro-
phages and microglia produce less CXCL2 resulting in
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decreased neutrophil infiltration [41, 81]. Likewise, the IL-2,
IFN-γ, and IL-17 production is lower in TRPM2−/− T cells
when probed in an experimental autoimmune encephalomy-
elitis (EAE) model [84]. Contrary to these results, endotoxin-
induced lung inflammation in TRPM2−/− mice is associated
with increased recruitment of neutrophil granulocytes, cyto-
kine production, and diminished survival [23]. In the case of a
Listeria monocytogenes infection, the reduced production of
inflammatory cytokines in TRPM2−/− mice is detrimental be-
cause cells of the innate immune system are not stimulated
adequately [62].

Furthermore, recruitment of neutrophil granulocytes to a
site of inflammation is indirectly affected by the deletion of
TRPM2 channels in endothelial cells. When endothelial
TRPM2 channels are activated by oxidants generated by neu-
trophil granulocytes, this will lead to an opening of the endo-
thelial cell junctions so that neutrophil granulocytes can trans-
migrate [87].

Several direct effects of TRPM2 channels on the function
of neutrophil granulocytes have been reported. TRPM2 chan-
nels mediate a sensitization of neutrophil granulocytes to-
wards the simultaneous stimulation with LTB4 and H2O2.
The resulting increase of the [Ca2+]i was proposed to enhance
their adhesion to endothelial cells, e.g., via activation of Pyk2.
In the setting of a myocardial ischemia/reperfusion injury
model, recruitment of neutrophil granulocytes is promoted
by TRPM2 channels so that wild-type mice have a worse
outcome than TRPM2−/− mice [49]. Other studies, however,
question the contribution of neutrophil granulocytes to cardiac
ischemia/reperfusion injury [50, 86]. These studies rather
showed that TRPM2 channels expressed in cardiac myocytes
are more important. They protect the heart from ischemia/
reperfusion injury by preserving mitochondrial function in
cardiomyocytes.

The role of TRPM2 channels in regulating migration and
chemotaxis of neutrophil granulocytes is discussed quite contro-
versially. Based on a pharmacological approach, it was proposed
that TRPM2 channels are required for chemotaxis of neutrophil
granulocytes towards fMLP [108]. This was confirmed with
neutrophils from TRPM2−/− mice. Using a Boyden chamber
assay, Yamamoto et al. found that chemotaxis of TRPM2−/−

neutrophil granulocytes towards fMLP is impaired while che-
motaxis towards CXCL2 is not affected. Moreover, less
TRPM2−/− neutrophil granulocytes migrate into the abdominal
cavity upon intraperitoneal fMLP injection [158].

In contrast, TRPM2−/− neutrophil granulocytes from the
GlaxoSmithKline mouse strain [62] have a slightly improved
migratory and chemotactic behavior when assessed on a
fibronectin- or fibrinogen-coated glass surface [155].
Migration speed and chemotaxis indices in response to different
end target and intermediary chemoattractants are increased by
15–30%, and more neutrophil granulocytes are recruited into
the lungs of TRPM2−/− mice upon intratracheal injection of

fMLF.Mechanistically, the migration phenotype was explained
by the following sequence of events: ROS produced by the
neutrophil granulocytes themselves leads to the oxidation of a
cysteine residue of the TRPM2 channel. Upon oxidation, the
TRPM2 channel protein binds to the formyl peptide receptor 1
(FPR1) and thereby triggers the internalization of both proteins
so that FPR1 signaling at the level of the cell membrane is
terminated. It was concluded that this mechanism does not rely
on conductive properties of the channel and it was interpreted as
a negative feedback control mechanism or Bstop signal^ for
neutrophil granulocytes migrating towards a site of bacterial
infection [155]. However, given the relatively small effect on
migration, it is likely that other (indirect) effects such as in-
creased vascular permeability amplify the contribution of
TRPM2 channels to neutrophil recruitment.

It has also been reported that migration of neutrophil
granulocytes chemokinetically stimulated with H2O2 and
LTB4 is not affected by the deletion of TRPM2 channels
[49]. This coincides with our observations. We evaluated a
potential contribution of TRPM2 channels to the migratory
and chemotactic behavior of murine neutrophil granulocytes
[158] that have been embedded in a three-dimensional colla-
gen matrix [74]. As depicted in Fig. 1, the absence of TRPM2
channels has no impact on chemotaxis in gradients of fMLP,
C5a, KC, and LTB4. The speed of migration is not different in
the two genotypes either.

It is evident that the published results on the role of TRPM2
channels in neutrophil granulocytes are quite discrepant. It has
been speculated that this could be due to the use of different
mouse models. However, in our view, the type of disease
models and experimental procedures are more likely causes
for the apparently contradictory results.

Several studies in other cell types showed that TRPM2
channels are expressed intracellularly. In dendritic cells,
they are found in late endosomal and lysosomal compart-
ments and mediate intracellular Ca2+ release. This appears
not to be the case in neutrophil granulocytes. TRPM2−/−

dendritic cells chemotax less efficiently in transwell as-
says towards CXCL12 and CCL19 gradients, and have
altered Ca2+ fluxes [144]. In macrophages, intracellularly
expressed TRPM2 channels promote phagosomal matura-
tion and acidification and thereby contribute to increased
bacterial clearance in different models of bacterial infec-
tion [24, 117, 160]. So far, a role of TRPM2 channels for
phagosome maturation in neutrophil granulocytes has not
been shown [37]. Given the differences between macro-
phage and neutrophil phagosomes [154], findings from
the former cannot be automatically extrapolated to the
latter. Accordingly, there are only few reports indicating
a role of TRPM2 channels related to ROS production and
bacterial killing in neutrophil granulocytes. Bacterial kill-
ing induced by LPC depends on a glycine receptor α2
(GlyRα2)-mediated increase of the intracellular Cl−
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concentration in neutrophil granulocytes which in turn
causes an activation of TRPM2 channels. Bacterial killing
is reduced upon TRPM2 channel silencing caused by low-
er Ca2+ influx resulting in decreased p38 phosphorylation
[52]. Elastase release is also mediated by p38/MAPK sig-
naling [109]. p38 phosphorylation is reduced in
TRPM2−/− neutrophil granulocytes when they are stimu-
lated with fMLP. Accordingly, TRPM2−/− neutrophil
granulocytes release less elastase which in turn leads to
reduced bacterial clearance [118].

TRPM7 channels Using Boyden chamber assays, chemotaxis
of neutrophil-like HL60 cells towards the pro-inflammatory
cyclophilin A and their invasion into Matrigel® was shown to
involve TRPM7 channels. However, the underlying TRPM7-
regulated mechanisms were not elucidated in detail [153]. In
this context, it is interesting to note that at least in bone
marrow-derived macrophages, the lack of TRPM2 channels
leads to an upregulation of TRPM7 channels [3]. To the best

of our knowledge, it has not yet been determined whether this
is the case in neutrophil granulocytes, too.

TRPV4 channels Neutrophil granulocytes also express TRPV4
channels [16]. Their role in neutrophil function was investi-
gated in an acid-induced lung injury model that mimics the
aspiration of acidic gastric juice [159]. TRPV4 channels me-
diate sustained Ca2+ influx and ROS production when neutro-
phil granulocytes are activated with PAF. Comparing the de-
gree of lung injury in chimeric mice with TRPV4 knock-out in
stromal and/or myeloid cells pointed to a more prominent role
for stromal TRPV4 channels. However, infiltration of lung
tissue with TRPV4−/− neutrophil granulocytes is lower when
compared to that of wild-type cells. This is consistent with
in vitro results showing reduced adhesion to and chemotaxis
of TRPV4−/− neutrophil granulocytes to PAF across a layer of
endothelial cells. The common link of TRPV4-regulated be-
havioral traits of neutrophil granulocytes was seen in the Ca2+-
dependent activation of Rac.
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Fig. 1 TRPM2 channels are not involved in neutrophil chemotaxis
within a three-dimensional collagen matrix in gradients of
chemoattractants. The experimental procedures for isolating murine neu-
trophils, preparing collagen gels, setting up, and analyzing chemotaxis
experiments were described previously [74, 75]. Chemotaxis was mon-
itored by means of time-lapse videomicroscopy in 10-s intervals for
30 min. a Trajectories of WT and TRPM2−/− neutrophils [158] in KC/
CXCL1 and fMLP gradients that have been normalized to common
starting points. The mean trajectories are superimposed as bold gray
lines. n = 80 cells from N = 4 independent experiments for each

genotype. b The net movement of neutrophils into the direction of the
chemotactic gradient as a function of time. The direction of the chemo-
tactic gradient is represented by the Y coordinate. The position along the
Y coordinate is given as mean ± SEM. c Summary of the chemotaxis
experiments. The chemotaxis indices are calculated as the ratios of the
net distances traveled into the direction of the chemotactic gradient di-
vided by the total distances covered during the course of the experiments.
LTB4: N = 3, n = 60 cells; C5a: N = 3, n = 60 cells. Values are given as
mean ± SEM. There are no significant differences between the two
genotypes
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Neutrophil granulocytes in pancreatic ductal
adenocarcinoma—a potential role for TRP
channels?

The preceding sections have shown that TRP channels regulate
a number of different neutrophil functions.Wewill now discuss
whether the microenvironment, to which neutrophil
granulocytes are exposed to, can impact on their behavior in a
TRP channel-dependent manner. We will do this exemplarily
for pancreatic ductal adenocarcinoma (PDAC) which is the
fourth leading cause of cancer-associated deaths in Europe with
a 5-year survival rate of only 5% [9]. PDAC is characterized by
a microenvironment with special physico-chemical properties.
It contains abundant amounts of extracellular matrix (ECM)
proteins within the tumor (desmoplasia), primarily secreted by
activated pancreatic stellate cells. The hypovascular and
desmoplastic tumor microenvironment accounts for 90% and
tumor cells only for 10% of the tumor mass [94]. In addition to
ECM, it contains different non-malignant cell types like pan-
creatic stellate cells, cancer-associated fibroblasts (CAFs), en-
dothelial cells, and immune cells including neutrophil
granulocytes [94, 96]. The high metabolic demand of tumor
and immune cells together with limited supply of metabolic
substrates due to the compression of the few blood vessels by
high intratumoral pressure [116, 143] causes severe hypoxia in
PDAC [29, 65]. There is intense mutual activation of cancer
and stromal cells through paracrine signaling via growth fac-
tors, hypoxia, ROS, and altered pH.

A neutrophil infiltrate is an important constituent of the
microenvironment of many tumors including PDAC [82,
115, 133]. A high density of intratumoral neutrophil
granulocytes is associated with poor patient survival
[105, 133]. Neutrophil granulocytes are recruited CXCR2
dependently to the PDAC stroma by cytokines such as
CXCL5 that are secreted by the tumor cells [105]. In
PDAC, they elicit immunosuppressive activity leading to
immune evasion of the tumor cells [105, 113] and drive
metastasis [139]. Other mechanisms by which neutrophil
granulocytes can contribute to an unfavorable patient prog-
nosis include promoting metastasis by trapping circulating
tumor cells in neutrophil extracellular nets [14] or by
reprogramming pancreatic stellate cells [82].

The observation that CXCR2 signaling is crucial for
recruiting neutrophil granulocytes to the PDAC stroma is im-
portant for the context of this review. We have already men-
tioned that chemotaxis of neutrophil granulocytes towards
CXCR2 ligands relies on TRPC6 channels [74]. In addition,
endothelial [156] and neutrophilic (unpublished observations
from our laboratory) TRPC6 channels also regulate
transendothelial migration through and CXCL1-induced adhe-
sion of neutrophil granulocytes to a layer of endothelial cells,
respectively. TRPC6 channels are also expressed in pancreatic
stellate cells. They are stimulated under hypoxic conditions,

thereby promoting pancreatic stellate cell activation as evi-
denced by increased migration and cytokine secretion [98].
Whether neutrophilic TRPC6 channels are also activated in
the hypoxic PDAC stroma is currently unknown. Thus,
inhibiting TRPC6 channels which are potent modulators of
cytokine-dependent activation of neutrophil granulocytes and
pancreatic stellate cells would target several mechanisms relat-
ed to functions of these cells that promote disease progression.
This overlaps with the impact of CXCR2 inhibition which is
also expressed in neutrophil granulocytes and stromal cells
[55]. This could also be relevant for other tumors such as breast
cancer [132] or non-small cell lung cancer [146] that exhibit
neutrophil infiltration as well and whose progression and me-
tastasis are also driven by CXCR2 signaling.

There are two further properties of the PDAC microenvi-
ronment that are expected to lead to the activation of neutro-
philic TRP channels within the tumor stroma. PDAC is char-
acterized by increased ROS levels which are suggested to
elicit anti-apoptotic and pro-survival effects and increase the
chemo-resistance of the cancer cells [26, 151]. Since TRPM2
channels function as ROS sensors [34], the activation of neu-
trophilic TRPM2 channels [155] in the tumor stroma is to be
expected. The PDAC stroma is also characterized by a stiff
ECM [68] and a massively elevated tissue pressure [116]. We
have shown that the activation of pancreatic stellate cells by an
elevated ambient pressure occurs TRPC1 dependently [35]
and that TRPC1 channels contribute tomechanosignaling dur-
ing cell migration [33]. TRPC1 channels are also expressed in
neutrophil granulocytes where they have a role in chemotaxis
[75]. In pancreatic stellate cells, the expression of two other
mechanosensitive TRP channels is regulated by the ambient
pressure: TRPM7 and TRPV4 [35]. These channels are also
expressed in neutrophil granulocytes. Thus, one could specu-
late that neutrophilic TRPC1, TRPM7, and TRPV4 channels
are mechanically activated within the PDAC stroma. To the
best of our knowledge, however, mechanically induced Ca2+

signaling let alone the involved Ca2+ permeable ion channels
have not yet been investigated in much detail in neutrophil
granulocytes. However, a study showing that P-selectin-
induced Ca2+ signaling is force dependent in HL-60 cells
may be taken as proof-of-principle for mechanically induced
Ca2+ signaling in neutrophils [53]. It is also known that cyto-
kine (IL8, CXCL16) or hormone (atrial natriuretic factor,
ANF) stimulation of neutrophils impacts on their own me-
chanical properties [91, 140]. Whether this can be causally
linked to the activation of mechanosensitive TRP channels
remains to be determined. The inverse relation has been found
in cardiomyocytes. TRPC1 knockdown prevents the hypertro-
phic response of cardiomyocytes and inhibits the mRNA up-
regulation of ANF [106].

So far, our discussion suggests that TRP channels can have
a substantial share in regulating the function of neutrophil
granulocytes within the PDAC microenvironment. However,
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the relative importance of TRP channel activity for regulating
neutrophil function is complicated by the special pH land-
scape of the diseased pancreas [110]. Postprandially, the cells
of the pancreatic ducts secrete copious amounts of HCO3

−

with concentrations reaching up to 150 mmol/l [101]. The
equimolar amount of protons is extruded basolaterally so that
the pancreatic interstitium is acidified intermittently. In
PDAC, the physiological, intermittent acidification of the pan-
creatic interstitium is superimposed by the typical acidosis of
the tumor stroma. We proposed that the acid milieu acts as a
double-edged sword during PDAC development: it prevents
premalignant lesions to undergo rapid tumorigenesis, whereas
in later tumor stages, the acid pH promotes PDAC progression
[110]. The question is how the pH landscape in PDAC will
affect neutrophil granulocytes and how this is regulated by
TRP channels. Several of the neutrophilic TRP channels

(TRPM2, TRPM7, TRPV4) are pH sensitive [58, 134, 138]
so that, e.g., TRPM2 and TRPV4may not be active in the acid
tumor microenvironment. An acid extracellular environment
has seemingly contradictory effects on the behavior of neutro-
phil granulocytes. On the one hand, suspended neutrophil
granulocytes are activated and the response to fMLP is aug-
mented by an acidification (pH 6.5) of the extracellular solu-
tion [147]. On the other hand, migration and chemotaxis of
fMLP-stimulated neutrophils on a coated glass surface is
inhibited by an extracellular and more so by an intracellular
acidification [7, 42, 71]. The mechanisms by which extra- and
intracellular protons are detected are not yet fully clarified
[107]. In addition to proton-sensing G protein-coupled recep-
tors [150], the pH sensitivity of some important neutrophilic
TRP channels could be way by which the environmental acid-
base status is sensed and translated into neutrophil behavior.
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Fig. 2 Function of TRP channels in neutrophil granulocytes and
remaining open questions. The role of several TRP channels in
neutrophil recruitment and chemotaxis is well established. However, it

remains to be determined whether the relative importance of these
channels is modified by environmental stressors to which neutrophil
granulocytes are exposed
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Summary and outlook

Figure 2 provides a synopsis of the current knowledge and
open questions about TRP channel function in neutrophil
granulocytes. Our review shows that the role of TRP chan-
nels in function of neutrophil granulocytes is still far from
being fully understood. The use of knock-out mouse models
has greatly expanded our knowledge and led to the identifi-
cation of putative therapeutic strategies involving the
targeting of TRP channels. Thus, the available evidence in-
dicates that blocking TRPC6 channels could be an attractive
complementation of CXCR2 targeting in PDAC and other
cancer entities. Such findings add to the growing apprecia-
tion of the therapeutic potential of ion channels in cancer
(see [25] for a series of reviews on this topic). We would
like to emphasize that ion channels such as TRP channels in
cells of the tumor stroma including neutrophil granulocytes
need to be considered, too [97]. Being membrane proteins,
they are in a strategic position to sense and transmit signals
between cancer cells and components of the tumor microen-
vironment [1]. Importantly, these considerations also apply
to an Binflammatory microenvironment^ which shares many
similarities with the tumor microenvironment. Acidity, hyp-
oxia, cytokines, and ROS are also central elements of the
inflammatory microenvironment.

On the other hand, we have noted that the electrophys-
iological characterization of neutrophilic TRP channels
and other ion channels still remains rather rudimentary.
Moreover, it has become apparent that the impact of the
microenvironment is usually not well recapitulated in
many in vitro studies. This is particularly important for
assessing TRP channel function because they respond to a
great variety of physico-chemical properties of the micro-
environment. Finally, the function of TRP channels
expressed in intracellular membranes has to be studied
in more detail. Most of the publications on ion transport
across phagosomal membranes have been performed in
macrophages. It is for example not yet known whether
intracellular TRPM2 and TRPC6 channels elicit similar
functions in macrophages and neutrophil granulocytes
[24, 120]. Thus, there are still many exciting discoveries
to be made in the field of neutrophilic ion channels.
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