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Abstract
The sustained inward Na+ current (Ist) identified in the sinoatrial node (SAN) cell has been suggested to play a pivotal role in
cardiac pacemaking. However, the composition of cells in the SAN is heterogeneous and cell-to-cell variability in the magnitude
of Ist remains to be fully characterized. The present study investigated the current density of Ist in morphologically different types
of pacemaker cells dissociated from guinea pig SAN. Ist was preferentially detected in spontaneously active spindle or spider-
shaped cells, but was less well expressed in larger-sized elongated spindle-type cells and practically absent in clearly striated
atrial-like cells, despite clear expression of the funny current (If). The current density of Ist in spindle and spider cells varied from
0.7 to 1.6 pA pF−1 and was significantly reduced in non-beating cells with similar morphologies. By linear regression analysis,
we identified a positive correlation between the current densities of Ist and the L-type Ca

2+ current (ICa,L), which was specifically
observed in spindle and spider cells. These cells exhibited a more negative voltage for half maximal ICa,L activation than atrial-
like cells, suggesting a variable ratio between CaV1.2- and CaV1.3-mediated ICa,L in SAN cells. Consistent single-cell transcript
measurements confirmed a higher relative expression of CaV1.3, which activates at more negative potentials, in spindle cells than
in atrial-like cells. Taken together, these results can be interpreted as indicating that Ist plays a specific role in primary pacemaker
cells and that its presence is closely correlated with functional levels of CaV1.3-mediated ICa,L.
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Abbreviations
ICa,L L-type Ca2+ current
If Hyperpolarization-activated cation current
Ist Sustained inward current
SAN Sinoatrial node

Introduction

Understanding the pacemaker mechanism in cardiac sinoatrial
node (SAN) cells is a long-standing problem [18]. Many ion
channels and electrogenic transporters as well as intracellular
Ca2+ have so far been identified as potential contributors, but
their relative importance for pacemaking is still a matter of

debate. This issue is complicated by the functional and mor-
phological heterogeneity of SAN cells. In disaggregated SAN
tissue preparations, different types of pacemaker cells are vi-
sually distinguishable by their unique sizes and shapes [6, 19,
30, 31]. Since these different cell types have distinct distribu-
tion patterns within the SAN [3, 30], it has been suggested that
functional differences between SAN cells are important for the
generation of electrical gradients and normal propagation of
excitation from the central to peripheral SAN region. Indeed,
Boyett and colleagues [12, 13, 16, 22] have reported cell size-
dependent heterogeneity in action potential characteristics,
density of various currents, gap junctions, and Ca2+-handling
proteins. In addition, cell shape-dependent characterization
has revealed differences in the density and kinetics of the
funny current (If) between spindle- and spider-shaped SAN
cells [31]. Thus, cellular heterogeneity has been implicated
in various mechanisms underlying the SAN pacemaker
activity.

The sustained inward Na+ current (Ist) has been identi-
fied in the SAN cells of rabbits, guinea pigs, rats, and mice
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[5, 7–9, 25, 28]. Because Ist is activated at low membrane
potentials and provides a persistent inward current over the
entire range of the slow diastolic depolarization, a contri-
bution of Ist to the pacemaker activity has been suggested
[21]. However, despite its physiological importance, the
recording of Ist is rather infrequent and its heterogeneity
among the various cells in the SAN has not been system-
atically investigated. Furthermore, molecular approaches
have been hampered by the lack of identifiable molecular
determinants for Ist. Recently, we have found that genetic
ablation of the CaV1.3 L-type Ca2+ channel isoform results
in abolition of Ist in mouse SAN cells [29], indicating that
CaV1.3 is required for the generation of Ist in addition to L-
type Ca2+ current (ICa,L). The mechanism as to how CaV1.3
could mediate two distinct currents remains to be elucidat-
ed. However, findings suggest that CaV1.3 can serve as a
molecular marker to characterize distribution patterns of Ist
in SAN cells. Here, we investigated the current density of
Ist in morphologically different types of guinea pig SAN
cells. Our extensive analysis shows a unique Ist distribution
pattern that is associated with the cell shape and size, as
well as the functional and transcriptional expression of
CaV1.3-mediated ICa,L.

Methods

Ethical approval

All animal experiments were conducted in compliance with
the protocol that was reviewed by the Institutional Animal
Care and Use Committee, and approved by the President of
Shiga University of Medical Science (Permit No. 2009-5-11).

SAN cell preparations

Single SAN cells from guinea pigs were isolated using an
enzymatic dissociation method described previously [11, 20,
28, 32]. Adult Hartley guinea pigs (250 to 400 g body weight,
N = 16) were deeply anesthetized by intraperitoneal adminis-
tration of sodium pentobarbitone (80 mg kg−1) and the chest
cavity was opened under artificial ventilation. The ascending
aorta was cannulated in situ and the heart was then excised and
mounted on a Langendorff system. The heart was retrogradely
perfused at 37 °C, initially for 4 min with normal Tyrode
solution and then for 4 min with a nominally Ca2+-free
Tyrode solution. This was followed by 8–12 min perfusion
with nominally Ca2+-free Tyrode solution containing
0.4 mg ml−1 collagenase (Wako Pure Chemical Industries,
Osaka, Japan). The SAN region, bordered by the crista
terminalis, the intra-atrial septum, and cranial and caudal vena
cava, was then dissected out and cut into small strips 0.5–
1 mm wide. The strips of the SAN were subjected to another

20 min of digestion in nominally Ca2+-free Tyrode solution
containing 1.0 mg ml−1 collagenase (Wako) and 0.1 mg ml−1

elastase (Wako) in a shaking water bath at 37 °C. Finally, the
SAN strips were transferred to ~ 5 ml of a high-K+, low-Cl−

Kraftbrühe (KB) solution in a 35-mm culture dish, and single
nodal cells were dispersed by mechanically agitating tissue
strips with a fire-polished glass pipette. Cells were stored at
4 °C for later experiments on the day of dissociation.

Solutions and drugs

Normal Tyrode solution contained (mM) 140 NaCl, 5.4 KCl,
1.8 CaCl2, 0.5 MgCl2, 0.33 NaH2PO4, 5.5 glucose, and 5.0
HEPES (pH adjusted to 7.4 with NaOH). The nominally Ca2+-
free Tyrode solution used for the cell isolation procedure was
prepared by simply omitting CaCl2 from the normal Tyrode
solution. The Cs+-substituted, K+-free Tyrode solution
contained (mM) 140 NaCl, 5.4 CsCl, 1.8 CaCl2, 0.5 MgCl2,
0.33 NaH2PO4, 5.5 glucose, and 5.0 HEPES (pH adjusted to
7.4 with NaOH). The low-Ca2+, Cs+-substituted, K+-free
Tyrode solution contained (mM) 140 NaCl, 5.4 CsCl, 0.1
CaCl2, 0.5 MgCl2, 0.33 NaH2PO4, 5.5 glucose, and 5.0
HEPES (pH adjusted to 7.4 with NaOH). In some experi-
ments, external Na+ was totally replaced with N-methyl-D-
glucamine-Cl (NMDG+). Nicardipine and nifedipine (Sigma
Chemical Co., St. Louis, MO, USA) were prepared as a 1 mM
stock solution in DMSO and then diluted to a final concentra-
tion of 1 μM in the external solution. The Cs+-rich pipette
solution contained (mM) 125 CsOH, 20 tetraethylammonium
chloride (TEA-Cl), 1.2 CaCl2, 5 Mg-ATP (Sigma), 0.1 Li2-
GTP (Roche), 5 EGTA, and 10 HEPES (pH adjusted to 7.2
with aspartate). The concentration of free Ca2+ in the pipette
solutions was calculated to be 33.2 nM. The KB solution for
cell preservation contained (mM) 70 potassium glutamate, 30
KCl, 10 KH2PO4, 1MgCl2, 20 taurine, 0.3 EGTA, 10 glucose,
and 10 HEPES (pH adjusted to 7.2 with KOH).

Whole-cell patch-clamp technique and data analysis

Isolated SAN cells were either current- or voltage-clamped
using the whole-cell configuration of the patch-clamp tech-
nique [10] with an EPC-8 patch-clamp amplifier (HEKA
Elektronik, Lambrecht, Germany). Patch electrodes were fab-
ricated from glass capillaries (1.5 mm outer diameter, 0.9 mm
inner diameter; Narishige Scientific Instrument Laboratory,
Tokyo, Japan) using a Sutter P-97 microelectrode puller
(Novato, CA, USA), and the tips were then fire-polished using
a microforge. Patch electrodes had a resistance of 2.0–3.0 MΩ
when filled with either the K+-rich or Cs+-rich pipette solu-
tion. A volume of dissociated cells was allowed to settle onto
the glass bottom of a recording chamber (0.5 ml in volume)
mounted on the stage of a Nikon TMD-300 inverted micro-
scope equippedwith a CCD digital camera (DS-Fi1, Nikon) to
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capture images. The chamber was then continuously perfused
at a constant rate of ~ 2 ml min−1 with normal Tyrode solution
kept at 34–36 °C. Currents and voltages were digitized and
voltage commands were generated through an LIH-1600 AD/
DA interface (HEKA) controlled by PatchMaster software
(Version 2.02, HEKA). All data were corrected for a liquid
junction potential of − 10 mV between the aspartate-rich pi-
pette solution and Tyrode solution. Cell membrane capaci-
tance (Cm) was calculated for each cell by fitting the single
exponential function to the decay of the capacitive transient
resulting from 5 mV hyperpolarizing steps applied from a
holding potential of − 50 mV [2].

One cell quantitative RT-PCR

cDNA generation from a single SAN cell was performed
using a Takara CellAmp™ Whole Transcriptome
Amplification Kit (Real Time) Ver. 2 (Takara Bio Inc.,
Japan) according to the manufacturer’s instructions. Briefly,
isolated single cells were harvested under a microscope and a
glass pipette with a tip diameter of 10–30 μm, and immedi-
ately transferred into a 0.2 ml PCR tube containing 4.5-μl cell
lysis buffer on ice. After cell lysis at 70 °C for 1.5 min, reverse
transcription was performed at 42 °C for 5 min to synthesize
cDNA. Poly(A) tails were then added to the 3′ end of cDNAs
with terminal deoxynucleotidyl transferase, allowing non-
selective pre-amplification of cDNA. The pre-amplified
cDNA samples were diluted 20× and then used as a template
for quantitative PCR assay. Real-time PCR was carried out in
the LightCycler (Roche, Germany) and mRNA expression
levels of speci f ic genes were measured using a
THUNDERBIRD SYBR qPCR mix (Toyobo, Japan).
Primer sets used were as follows: CaV1.2 (NM_001172923)
forward 5′- CCT CCAGAGAAGCCATTCCCC-3′; reverse
5′- TGA GTT TCT CGC AGG ACT CGG-3′, CaV1.3
(XM_005008263) forward 5′- AAT GTG TGC ACC TGT
ACC CTG G-3′; reverse 5′- CGA TGA TGT GTG AAA
GGC CAC AG-3′, and beta-actin (NM_001172909) forward
5′- TGG ATC AGC AAG CAG GAG TAC G -3′; reverse 5′-
TCG TTT TCT GCG CGC AAG TTA G-3′. Amplified prod-
ucts were confirmed by gel electrophoresis as well as by DNA
sequencing.

Statistics

All averaged values presented are the mean ± S.E.M., and
N and n indicate the number of animals and cells studied,
respectively. Statistical comparisons were made using
analysis of variance (ANOVA) followed by a post hoc
Tukey HSD test, and the differences were considered sig-
nificant at P < 0.05.

Results

Figure 1A shows micrographs of single SAN cells isolated
from guinea pig hearts. According to morphological criteria
described previously [6, 19, 30, 31], we identified three dif-
ferent types of nodal cells with distinct morphologies (spin-
dle-, spider-, and elongated-shaped cells, Fig. 1a, i–iii), as well
as the Batrial-like^ cells (Fig. 1a, iv) that are widely distributed
within the SAN [19, 30, 31]. In our preparations, the spindle
and spider cells (assumed to be primary pacemaker cells [6,
31]) were smaller than the elongated and atrial-like cells (Fig.
1b), and constituted the predominant morphology among
spontaneously beating cells. The elongated and atrial-like
cells rarely displayed this spontaneous activity, but their beat-
ing rates were similar to those observed in spindle and spider
cells (Fig. 1c). Both spontaneously beating and quiescent cells
of each cell type were employed for the patch-clamp experi-
ments. The current densities of If, Ist, and ICa,L were examined
in four distinct types of SAN cell. If was activated by a hyper-
polarizing voltage-clamp pulse to − 120 mV from a holding
potential of − 40 mV in the normal Tyrode solution (Fig. 2a,
left), and then Ist and ICa,L were elicited in the same cells by
giving a two-step depolarizing command pulse from a holding
potential of − 80 mVafter blocking If by exposing the cell to
the Cs+-substituted, K+-free Tyrode solution (Fig. 2a, right).
Ist was determined as the dihydropyridine (nicardipine or ni-
fedipine)-sensitive sustained inward current induced by an
initial depolarizing step to − 50 mV. Even if ICa,L was activat-
ed at this membrane potential, Ist could be isolated from ICa,L
since this current component was not appreciably affected by
decreasing [Ca2+]o to 0.1 mM, whereas fully-activated ICa,L at
− 10 mV was abolished. Conversely, Ist was largely reduced
by removal of external Na+ (Fig. 2b), indicating that Na+ was
the major current carrying ion. Figure 2c shows cumulative
data plots for current densities in the four distinct types of
SAN cell. If and ICa,L were co-expressed in all SAN cell types
tested. We did not find statistically significant differences in If
and ICa,L current densities between cell types. In contrast, Ist
was barely detectable in atrial-like cells, but was evident in all
other SAN cell types. The averaged Ist densities in spontane-
ously active spindle and spider cells were 1.03 ± 0.07 and
1.20 ± 0.10 pA pF−1, respectively. These values were compa-
rable to previous observations (~ 1.2 pA pF−1 in guinea pig
SAN cells [7, 28]) but significantly larger than the values
obtained from elongated cell types in the same SAN cell prep-
arations (0.65 ± 0.07 pA pF−1, P < 0.05). In addition, signifi-
cantly smaller densities of Ist and ICa,L were observed in non-
beating cells, at least in spindle and spider cell types but not in
elongated and atrial-like cells.

We examined the possible correlation between cell size and
current densities for various ionic currents as previously de-
scribed in rabbit SAN cells [3]. A significant negative correla-
tion between the Ist density and cell size (membrane capacitance)
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was found (r = −0.703, P < 0.001, Fig. 3), whereas the densities
of ICa,L and If were independent of cell size. It should be noted
that the correlation between the Ist density and cell size was not
significant within a given cell type (spindle, r = − 0.033, P =
0.903; spider, r = 0.215, P = 0.610; elongated, r = − 0.155, P =
0.740; atrial-like, r = 0.797, P = 0.106), suggesting that the Ist
density is still associated with cell types rather than cell size.

Combined recordings of If, Ist and ICa,L from each cell
allowed us to investigate relationships between these currents.
In Fig. 4, scatter plots of current densities in each cell type are
drawn for different pairs of If, Ist, and ICa,L. In this analysis,
values obtained from non-beating cells were also included to
allow linear regressions to be applied through a wide range of
current densities. As shown in Fig. 4a and c, neither Ist nor
ICa,L exhibited a significant correlation with If in any cell type.
On the other hand, a significant positive correlation between
Ist and ICa,L was found in all cell types other than atrial-like
cells (spindle, r = 0.699, P < 0.001; spider, r = 0.694, P
< 0.001; and elongated, r = 0.532, P < 0.05, Fig. 4b).
Interestingly, the slope of the regression line was similar for

spindle and spider cells, while it was reduced in the elongated
cell type. No correlation was noted for atrial-like cells due to
the absence of Ist in this cell type.

It is now generally accepted that ICa,L in SAN cells is com-
posed of two separate current components mediated by two
different pore-forming alpha subunits, CaV1.2 and CaV1.3 [17,
34]. We thus hypothesized that the composition of CaV1.2 and
CaV1.3 subunits in mediating SAN ICa,L might affect the rela-
tionship between Ist and ICa,L. Since CaV1.3-mediated ICa,L ac-
tivates at more negative voltages than CaV1.2-mediated ICa,L
[15], the relative contribution of CaV1.2 and CaV1.3 subunits
could be approximated by the voltage-dependence of ICa,L. In
the experiment shown in Fig. 5a, ICa,L was recorded in distinct
types of guinea pig SAN cells under conditions where other
time- and voltage-dependent currents were minimized; i.e., Ist
and INa were eliminated by total replacement of extracellular
Na+ with equimolar amount of NMDG+, and ICa,T was
inactivated by a holding potential of − 60 mV [17]. There was
no obvious difference between cell types in the voltage thresh-
old for ICa,L activation (~ − 40 mV). However, the voltage
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Fig. 1 The density of If, Ist, and
ICa,L in different types of guinea
pig SAN cells. a. Representative
microscopic images of single
SAN cells isolated from guinea
pig hearts; the spindle-shaped cell
(i), the spider-shaped cell (ii), the
elongated spindle-shaped cell
(iii), and the atrial-like cell (iv). b.
Averaged Cm in the spindle (n =
23, N = 10), spider (n = 15, N =
11), elongated (n = 11,N = 5), and
atrial-like cells (n = 9,N = 3). §, †,
and ¶, P< 0.05 for versus the
spindle cell, the spider cell and the
elongated cell, respectively
(ANOVA and post hoc Tukey
HSD test). c. Spontaneous beating
rate (beats/min) of distinct cell
types as assessed by visual
observation
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giving maximum ICa,L varied between the cell types; for exam-
ple, − 17 mV in spindle cells vs. +1 mV in atrial-like cells, Fig.
5a and b). In Fig. 5c, the averaged conductance (G) densities
were calculated and plotted as a function of the pulse potentials
in each cell type, which were fitted with smooth curves derived
from theBoltzmann equation. Therewas no statistical difference
between cell types in the maximal conductance (Gmax) density
(Fig. 5c, upper). On the other hand, as indicated by normalized
conductance (G/Gmax)-voltage curves (Fig. 5c, lower), the half-
maximal activation voltages (V0.5) obviously varied across dif-
ferent cell types. The V0.5 in the spindle, spider, and elongated
cells were − 31.63 ± 1.15 mV (n = 4, N = 2), − 27.7 ± 2.19 mV
(n = 5,N = 2), and − 20.16 ± 2.86 mV (n = 4, N = 2), respective-
ly. These values were significantly more negative than − 12.36
± 4.47 mV in atrial-like cells (n = 4, N = 2, P < 0.05). It is thus

suggested that the relative contribution of CaV1.2 and CaV1.3
isoforms to ICaL differs in different cell types. As a lower V0.5 of
ICa,L indicates a larger contribution of CaV1.3, the results sug-
gest that CaV1.3-mediated ICa,L is more prominent in spindle
and spider cells compared to elongated or atrial-like cells.
Finally, to substantiate this view, single spindle and atrial-like
cells were individually harvested under microscopy using a
glass pipette and examined for their relative expression of
CaV1.2 and CaV1.3 by one cell quantitative RT-PCR analysis
(Fig. 5d). Although not statistically significant due to large var-
iability, there was a trend which suggested that the mRNA level
of CaV1.2 was higher in atrial-like cells, whereas CaV1.3
mRNAwasmore abundant in spindle cells. The expression ratio
of CaV1.3 to CaV1.2 was significantly higher in spindle cells
compared with atrial-like cells (P < 0.05).
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elicited from a spindle cell by a depolarizing pulse to − 50 mV. Ist is
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versus the spindle cell, the spider cell, and the elongated cell, respectively
(ANOVA and post hoc Tukey HSD test)
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Discussion

The present study has provided the first detailed characteriza-
tion of Ist heterogeneity in guinea pig SAN cells. Consistent
with observations from previous work by Noma’s group [7, 8,
25], our results show that the presence of Ist is closely associ-
ated with cell morphology. Indeed, Ist can be recorded in spon-
taneously active cells with typical pacemaker cell morphol-
ogies, namely spindle- and spider-shaped cells. By contrast,
this current is scarcely detectable in larger-sized atrial-like
cells even when they exhibit If, a conventional electrophysio-
logical hallmark of SAN cells. Notably, this study uncovered a
positive correlation between Ist and ICa,L current densities,
which was specifically observed in spindle and spider cells.
These cells display Cav1.3-mediated ICa,L which activates at
more negative voltages than recorded in atrial-like cells. It is
thus suggested that the functional expression of Ist is correlat-
ed with that of CaV1.3-mediated rather than CaV1.2-mediated
ICa,L. In this regard, we have recently demonstrated that
CaV1.3 gene ablation in mice results in the abolition of Ist in
SAN cells [29]. Thus, our findings support the emerging con-
cept that the CaV1.3 L-type channel is a molecular component
required for the generation of Ist in SAN cells.

Cell morphology is an important criterion for identifying
SAN pacemaker cells. In general, the spindle- and spider-
shaped cells are assumed to be the primary pacemaker cell
types exhibiting regular rhythmic spontaneous activity after
enzymatic dissociation [3, 6]. In addition, these small cells
are densely distributed in the center (leading pacemaker site)
of SAN [30]. On the other hand, the large-sized elongated
cells are known to be abundant in the area adjacent to the crista
terminalis [30], suggesting that this cell type belongs to the
intermediate or transitional (peripheral) class of SAN cells.
Therefore, the higher current density of Ist in spindle and spi-
der cells compared to elongated cells suggests that Ist plays a

specific role in primary pacemaker cells. In disaggregated cell
preparations, rod-shaped atrial-like cells abound. These
myocytes are distributed over a wide area within the SAN
[19, 30]. The atrial-like cell appears to be different fromwork-
ing atrial myocytes because some of the cells display sponta-
neous activity. In addition, our patch-clamp recordings re-
vealed that most of the atrial-like cells exhibit If. However,
the complete absence of Ist in the atrial-like cells indicates that
Ist is not involved in the pacemaker mechanism in this cell
type. Considering the unique biophysical and pharmacologi-
cal properties of Ist, the cell type-dependent distribution of this
current may be at least partly responsible for regional differ-
ences in action potential characteristics as well as differential
sensitivities to dihydropyridines and autonomic transmitters in
the SAN [14, 33].

Our cell preparations contained a large number of non-
beating cells with typical spindle and spider cell morphol-
ogies. One possible explanation for the inability to generate
spontaneous action potentials may be a significantly lower
density of Ist and ICa,L in these cells. In support of this, our
preliminary experiments showed that many of these quiescent
cells initiate beating after exposure to a dihydropyridine ago-
nist Bay-K8644 that can potentiate both Ist and ICa,L [7].
CaV1-ICa,L channel proteins on the membrane experience a
high turnover with a half-life as short as 3 h [4], whereas a
much longer half-life of > 2 days is reported for the HCN-If
channel [24]. It is therefore possible that rapid downregulation
of Ist and ICa,L rather than mechanical damage during cell
dissociation procedures is involved in impaired spontaneous
activity in isolated SAN cells.

In contrast to the limited distribution of Ist and If in pace-
maker cells, ICa,L is commonly present in all cardiomyocytes
and plays a fundamental role in electrical and contractile ac-
tivities. However, the molecular background of ICa,L varies
between different cardiac regions. CaV1.2 is uniformly
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expressed across all regions of the heart, whereas CaV1.3 is
nearly absent in ventricles but is more specifically expressed
in the conduction system including the SAN [17, 26].
Furthermore, the present study has revealed that, even in the
SAN region, the composition of CaV1.2- and CaV1.3-mediat-
ed ICa,L is heterogeneous, suggesting that ICa,L differentially
contributes to the pacemaker activity in distinct SAN cell
types. In SAN cells, CaV1.2-mediated ICa,L is responsible for
the upstroke of action potential, while CaV1.3-mediated ICa,L
activates at more negative potentials, thereby contributing to
diastolic depolarization [17]. In fact, impaired CaV1.3 channel
function results in severe sinus bradycardia in mouse and hu-
man hearts [1, 17, 23, 34]. Thus, our findings that CaV1.3-
mediated ICa,L is more abundant in spindle- or spider-shaped

primary pacemaker cells than atrial-like cells are in good
agreement with the well-accepted concept that CaV1.3-medi-
ated ICa,L plays a pivotal role in the normal heart rhythm.

We have recently shown that CaV1.3 acts as an essential
molecular determinant for the induction of Ist in mouse SAN
cells [29], providing evidence for an additional role of CaV1.3
in heart automaticity. This view is further strengthened by the
present study which revealed the quantitative relationship be-
tween functional levels of Ist and CaV1.3-mediated ICa,L.
Although elucidating the molecular mechanism allowing
CaV1.3 to mediate both Ca2+ and Na+ currents is still challeng-
ing, the present study indicates that two distinct currents, ICa,L
and Ist, are synchronously regulated by the expression of
CaV1.3. Ist provides a persistent inward Na+ current over the
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Fig. 4 Correlation between the densities of If, Ist, and ICa,L in guinea pig
SAN cells. a. Scatter plots of If versus Ist density in spindle cells (black),
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(red). Lines (solid or dotted) in each cell type indicate the least squares fit

to the combined data points from the spontaneous active cell (filled dot)
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versus the Ist density in distinct cell types. c. Scatter plots of the If density
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entire range of the diastolic depolarization, while CaV1.3-me-
diated ICa,L is activated in the diastolic depolarization and gen-
erates Ca2+ influx that controls ryanodine receptor-dependent
Ca2+ release [27]. In addition, both Ist and CaV1.3-mediated
ICa,L are enhanced byβ-adrenergic stimulation [29], suggesting
that these currents coordinately contribute to the sympathetic
regulation of the SAN pacemaker activity.
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