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Resistance exercise improves cardiac function
and mitochondrial efficiency in diabetic rat hearts
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Abstract Metabolic disturbance and mitochondrial dysfunc-
tion are a hallmark of diabetic cardiomyopathy (DC).
Resistance exercise (RE) not only enhances the condition of
healthy individuals but could also improve the status of those
with disease. However, the beneficial effects of RE in the
prevention of DC and mitochondrial dysfunction are uncer-
tain. Therefore, this study investigated whether RE attenuates
DC by improving mitochondrial function using an in vivo rat
model of diabetes. Fourteen Otsuka Long-Evans Tokushima
Fatty rats were assigned to sedentary control (SC, n = 7) and
RE (n = 7) groups at 28 weeks of age. Long-Evans Tokushima

Otsuka rats were used as the non-diabetic control. The RE rats
were trained by 20 repetitions of climbing a ladder 5 days per
week. RE rats exhibited higher glucose uptake and lower lipid
profiles, indicating changes in energy metabolism. RE rats
significantly increased the ejection fraction and fractional
shortening compared with the SC rats. Isolated mitochondria
in RE rats showed increase in mitochondrial numbers, which
were accompanied by higher expression of mitochondrial bio-
genesis proteins such as proliferator-activated receptor-γ
coactivator-1α and TFAM. Moreover, RE rats reduced proton
leakage and reactive oxygen species production, with higher
membrane potential. These results were accompanied by
higher superoxide dismutase 2 and lower uncoupling protein
2 (UCP2) and UCP3 levels in RE rats. These data suggest that
RE is effective at ameliorating DC by improving mitochon-
drial function, which may contribute to the maintenance of
diabetic cardiac contractility.
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Introduction

Type 2 diabetes (T2DM) is an important risk factor for heart
failure, and the strong correlation between the two is well
established. According to the Framingham Study, the risk of
heart failure increases two- to fivefold in patients with diabe-
tes, independent of hypertension or coronary artery disease
[24]. Research has shown that complex interplay among
changes in glucose tolerance and serum glucose and glycated
hemoglobin levels are associated not only with systolic heart
failure but also with the prevalence of diastolic dysfunction
[60]. Although cardiovascular disease is still the main cause of
death in patients with heart failure, the risk of death attributed
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to diabetic cardiomyopathy (DC) remains high. The incidence
of DC is as high as 75% in asymptomatic patients [61] and is
significantly associated with heart failure in diabetics. DC is a
heart muscle disease with structural and functional abnormal-
ities resulting from diabetes, independent of congenital, val-
vular, or hypertensive heart disease, alcoholism, or coronary
artery atherosclerosis [14]. Moreover, DC indicates abnormal
energy metabolism (higher fatty acid metabolism and lower
glucose metabolism), thereby reducing energy production
[35]. Although the pathology of DC and its relevant clinical
phenotypes are heterogeneous, DC could be caused by dis-
turbed myocardial metabolism [14].

Although the pathophysiology of DC and its relevant clin-
ical phenotypes vary widely, it can be caused by disturbed
myocardial metabolism [7]. The accumulation of myocardial
triglycerides (TG) due to enhanced cardiac free fatty acid
(FFA) uptake and decreased insulin-mediated glucose uptake
in patients with T2DM increases cardiac oxygen consumption
and mitochondrial uncoupling and dysfunction, subsequently
inducing cardiomyocyte death and ventricular dysfunction
[42]. Moreover, mitochondrial dysfunction caused by altered
substrate utilization reduces mitochondrial respiration and
adenosine triphosphate (ATP) production, leading to cardiac
contractile dysfunction in DC [29]. Therefore, it would be
therapeutically beneficial if the altered substrate metabolism
of the failing heart in T2DM patients could be reversed. One
well-known strategy for targeting metabolism is exercise.

Regular physical exercise improves cardiac function
caused by obesity [50] and serves as an alternative for improv-
ing metabolism [47] and mitochondrial function, as well as in
the treatment and prevention of cardiovascular disease [15].
The cardiovascular advantages of exercise are multifactorial
and contain systemic metabolic effects, as well as beneficial
changes within the myocardium [33]. It also improves mito-
chondrial metabolism through increased mitochondrial ATP
synthesis by oxidative phosphorylation [49]. Recent evi-
dences have demonstrated that aerobic exercise prevents car-
diac dysfunction by apoptosis, fibrosis, and mitochondrial
biogenesis in db/db mice [58]. In addition, Veeranki S et al.
have revealed restoration of cardiac and mitochondrial func-
tion by aerobic exercise, leading to enhancing cardiac contrac-
tion in db/db mice [56]. Likewise, aerobic exercise has been
recommended as an adjuvant therapy against DC. On the oth-
er hand, resistance exercise (RE) increases muscle strength
[48] and improves one’s glucose tolerance and lipid profile
due to an increase in muscle mass, even in patients with
T2DM [10]. Previous studies have demonstrated that mito-
chondrial contents is enhanced by RE in patients with chronic
kidney disease or T2DM [53]. Moreover, RE improves mito-
chondrial biogenesis by modulation of peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α) in
human skeletal muscle [11]. Recent study suggested that RE
improves mitochondrial respiration by altering mitochondrial

proteins and transcriptional expression in skeletal muscle [40].
Likewise, RE enhances health benefits via substrate metabo-
lism and mitochondrial function, thereby enhancing energy
production. Therefore, RE could be expected to be potential
therapeutic strategy for treatment of T2DM, as well as aerobic
exercise.

However, the underlying mechanisms of mitochondrial
function in RE-induced DC have been well unknown.
Moreover, the beneficial effects of aerobic exercise on mito-
chondrial function have been recognized for decades [43] and
preventing against DC [56], but the effects of RE on cardiac
mitochondrial function in T2DM individuals require clarifica-
tion; in particular, its effects on improving cardiac metabolism
and mitochondrial dysfunction in DC have not been fully
elucidated.

Although the causal relationship between heart and mito-
chondrial function is difficult to prove, mitochondrial dys-
function is pivotal in patients with DC [12]. Therefore, we
hypothesized that RE would prevent ventricular dysfunction
in an advanced T2DM heart by preserving substrate metabo-
lism and preventing mitochondrial dysfunction and examined
this in an advanced diabetic animal model.

Materials and methods

Ethics statement

All experimental procedures were approved by the
Institutional Review Board of Animals, Inje University
College of Medicine (approval number: 2011-049). All sur-
gery was performed under sodium pentobarbital anesthesia,
and every effort was made to minimize animal suffering.

Animals

We obtained 4-week-old male Otsuka Long-Evans
Tokushima Fatty (OLETF, n = 14) and control male Long-
Evans Tokushima Otsuka (LETO, n = 7) rats from the Animal
Center of Tokushima Research Inst i tute (Otsuka
Pharmaceutical, Tokushima, Japan) and maintained them until
they reached 28 weeks of age, which is the typical age of onset
of diabetes in OLETF rats. All rats were kept on a 12-h light/
12-h dark cycle (lights on at 07:00 a.m.) at a controlled tem-
perature (21–23 °C) with food and water available ad libitum.

RE training

We divided the 28-week-old OLETF rats (n = 14) into two
groups: sedentary control (SC, n = 7) and RE (n = 7). The rats
in the RE group performed corresponding exercises 5 days per
week for 12 weeks after 3 days of familiarization. RE rats
exercised by climbing a 1-m grid ladder inclined at 85°, as
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reported previously [26]. During the familiarization phase, RE
rats performed ten repetitions of ladder climbing without any
extra weight. During the training phase, RE rats underwent
progressive RE with weights attached to their tails. The rats
repeatedly climbed the ladder 20 times during each session,
until they showed signs of fatigue. Each time the rats reached
the top of the ladder, they were allowed to rest for 1 min. At
the beginning of the training phase, the rats performed the
exercise with weights attached to their tails that were 10% of
their body weight; the weight was subsequently increased by
10% of the rat’s body weight every 2 weeks (Fig. 1a).

Glucose tolerance test

OLETF rats are characterized by abnormal glucose tolerance
and they develop overt T2DM at approximately 20–28 weeks
of age [51]. To confirm abnormal glucose tolerance, we per-
formed intraperitoneal glucose tolerance tests (IPGTT) on the
OLETF and LETO rats at 28 weeks of age and again after the
12-week experiment. The IPGTTconsisted of injecting 1 g/kg
of glucose intraperitoneally after a 16 h fast, followed by
blood samples obtained from the tail vein 30, 60, 90, and
120 min post-injection. Blood glucose levels were measured
by Accu-check (Hoffmann la Roche, Ltd., Basel,
Switzerland). The area under the curve for the IPGTT
(AUCglucose): glucose concentration × time curve was calcu-
lated by the trapezoidal rule [28].

Echocardiography

The rats were anesthetized for transthoracic echocardiography
by i n h a l i n g 2% i s o f l u r a n e i n 1 00% oxyg en .
Echocardiographic studies were performed using the VIVID
7 Dimension System (General Electric-Vingmed Ultrasound,
Horton, Norway). Images were obtained with high spatial and
temporal resolution using a 10S transducer (5.5–12 MHz).
The transducer was placed directly on the chest wall. A com-
plete two-dimensional M-mode echocardiogramwas obtained
according to the standards of the American Society of
Echocardiography. The following data were recorded: left
ventricular (LV) internal dimension in diastole and systole
(LVIDd and LVIDs), LV volume in diastole and systole
(LVEDV and LVESV), ejection fraction (EF), and LV frac-
tional shortening (FS). Epicardial fat thickness (EFT) was
used to assess the echocardiography from the right ventricular
free wall at the end of systole, as described by Shim et al. [52].

Serum biochemistry and heart and skeletal muscle weight

After 12 weeks of exercise or the observational period, the rats
were anesthetized with sodium pentobarbital (100 mg/kg, in-
traperitoneally) and heparin (300 IU/mL/kg, intraperitoneally)
and killed. Hearts and skeletal muscles were removed from
the animals and weighed. Blood samples were collected from
the rats’ hearts and placed in serum separator tubes. The serum
was collected after centrifugation at 3000×g for 20 min and

a

b c d e f

g h i j k

Fig. 1 RE improves glucose tolerance and lipid profiles in T2DM. a
Following RE for 12 weeks, which were divided into SC and RE
groups and exercised after development of T2DM. b, c IPGTT and
AUCglucose before RE. d Fasting glucose level. e, f IPGTT and
AUCglucose after 12 weeks of RE. g Representative image of
measurement of epicardial fat tissue (EFT) in LETO, SC, and RE rats,

respectively. hComparison of EFT between experimental rats. i–k Serum
total cholesterol (TC), triglyceride (TG), and free fatty acids (FFA), re-
spectively. The red arrows indicate the area of EFT. Values are
mean ± SEM, n = 7 per group). *P < 0.05 vs. LETO rats, #P < 0.05 vs.
SC rats (color figure online)
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stored at − 80 °C until analysis. To optimize accuracy, we
submitted the samples to a certified commercial reference lab-
oratory (Ewon Reference Laboratory, Seoul, Korea) for the
biochemical analyses, including measurements of glucose, to-
tal cholesterol (TC), triglyceride (TG), and free fatty acids
(FFAs).

Electron microscopy

To determine the mitochondrial morphology, including num-
ber, size, and shape, the hearts were sliced and fixed in a 2.5%
glutaraldehyde in PBS solution at 4 °C overnight, and then
fixed with 1% osmium tetroxide in PBS for 2 h. The sliced
hearts were double stained with uranyl acetate and lead citrate.
Mitochondrial morphology was observed using an electron
microscope (× 6000 and × 30,000 images) [20], and the num-
ber of mitochondria was calculated using the program ImageJ
(NIH software).

Mitochondrial isolation

Using a medium-fitting glass Teflon Potter–Elvehjem ho-
mogenizer, the cardiac tissues were manually homogenized
in mitochondrial isolation buffer (MIB buffer; 250 mM
sucrose, 0.5 mM Na2EDTA, 10 mM Tris, and 0.1% BSA
at pH 7.4), and the homogenate was clarified by centrifu-
gation two times at 1000×g for 5 min at 4 °C. The super-
natant was centrifuged twice at 10,000×g for 10 min, and
the mitochondrial pellets were collected and diluted with
three volumes of MIB buffer [55].

Mitochondrial respiration

Mitochondria oxygen consumption rates were measured using
anOroboros Oxyrgaph-2K (Oroboros Instruments, Innsbruck,
Austria). This involved the use of a 2.1-ml chamber at 37 °C in
an air-saturated (200 nmol O2/mL) respiration medium
(MiR05) that consisted of 0.5 mM ethylene glycol tetraacetic
acid, 3 mM MgCl2 6H2O, 10 mM KH2PO4, 20 mM HEPES,
110 mM sucrose 60 mM K-lactobionate, and 0.1% BSA at
pH 7.1. State 4 respiration rates were examined with 1 mM
glutamate and 0.5 mMmalate as respiration substrates. State 3
active respiration rates were determined in the presence of
1 mM ADP. Proton leakage was assessed by the difference
in oxygen consumption rates between oligomycin (2.5 μM)
and antimycin A (2.5 μM), which is the amount of oxygen
consumed by a proton leak [41]. Oxygen consumption was
expressed as pmol O2/min/mg of mitochondrial protein.

Mitochondrial ROS level

Isolated mitochondria were double stained with MitoTracker
Red (0.5 μM; excitation/emission 550/590 nm) and

dichlorodihydrofluorescein (DCF) diacetate (10 μM;
excitation/emission 488/535 nm). H2O2 levels were examined
by changes in DCF fluorescence at 525 nm using flow cytom-
etry. Mean values were analyzed by CellQuest (ver. 5.2; DB
CellQuest™ Pro).

Mitochondria membrane potential

Isolated mitochondria were stained for 30 min with 0.1 μM
tetramethylrhodamine ethyl ester (excitation/emission 564/
580 nm) at room temperature and measured by flow cytome-
try to detect mitochondrial membrane potential. Mean values
were analyzed by CellQuest (ver. 5.2; DB CellQuest™ Pro).

Measurement of ATP levels

Mitochondrial ATP was measured by the mitochondrial
ToxGlo™ assay (Promega, Madison, WI, USA) according
to the manufacturer’s protocol. Isolated cardiac mitochondria
were plated at 1 μg/100 μL/well in white and clear-bottomed
96-well culture plates. The assay solution (100 μL) was added
to the plate, and the plate was incubated at room temperature
for 30 min. Luminescence was measured using a luminometer
(Molecular Device, Sunnyvale, CA, USA) [23].

Western blot analysis

Heart tissues were homogenized in RIPA lysis buffer with
protein and phosphatase inhibitor cocktail. The lysates were
centrifuged at 16,000×g for 15 min at 4 °C. Protein concen-
trations were determined by the Bradford protein assay (Bio-
Rad, Hercules, CA, USA), and 30 μg protein was loaded per
lane onto 10% SDS polyacrylamide gels. The gels were trans-
ferred to nitrocellulose membranes (Whatman, Freiburg,
Germany) and incubated with specific antibodies against glu-
cose transporter 4 (GLUT4), superoxide dismutase 2 (SOD2),
peroxisome proliferator-activated receptor alpha (PPARα),
beta-tubulin (Cell Signaling Technology, Danvers, MA,
USA), peroxisome proliferator-activated receptor gamma co-
activator (PGC) 1α, carnitine palmitoyltransferase 1α (CPT-
1α), mitochondrial transcription factor A (TFAM) (Santa
Cruz Biotechnology, Santa Cruz, CA, USA), pyruvate dehy-
drogenase E1-alpha (PDH E1α), or uncoupling proteins
(UCP) 2 and 3 (Abcam, San Francisco, CA, USA). Western
blot analysis was performed using these antibodies and an Ab
Signal™ Western blotting detection kit (AbClon, Seoul,
Korea). Blots were visualized with an LAS-3000 Plus imager
(Fuji Photo Film, Tokyo, Japan) and analyzed using ImageJ.

Statistical analysis

All data are presented as the means ± standard error of mean
(SEM). The statistical analyses were performed with SPSS
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23.0 (IBM Corp., Armonk, NY, USA) using a one-way anal-
ysis of variance (ANOVA). If the ANOVA indicated a differ-
ence, Duncan’s post-hoc test was performed. Statistical signif-
icance was set at a P value < 0.05.

Results

Effect of RE on body and heart weights of OLETF rats

Table 1 presents the body weight and food intake data of the
three groups before and after the 12-week exercise period. The
OLETF rats (both SC and RE) showed a significantly higher
body weight compared to that of the LETO rats before RE.
Mean daily food intake at baseline was lower in LETO rats
than that in OLETF rats. After 12 weeks of RE, the weights of
the RE rats were decreased significantly, while those of the SC
rats had not changed significantly. In addition, the mean daily
food intake of the SC rats was higher than that of LETO rats,
but similar to RE rats. Heart weight was higher in SC and RE
rats than in LETO rats, and the heart/body weight ratio of the
RE rats was significantly higher than those of the LETO and
SC rats. However, the LV mass index (LV mass/body weight,
LVMI) and RWT, an indicator of cardiac hypertrophy [25],
did not differ among groups. RE did not attenuate cardiac
hypertrophy as calculated by the heart/body weight ratio and
LVMI in OLETF rats. Although the weights of the soleus and
gastrocnemius muscles were similar between the SC and RE
rats, muscle weight and body weight were higher in the RE
than in the SC rats. These data indicate that RE only reduces
body weight, not involved in attenuating cardiac hypertrophy.

RE improves glucose tolerance and lipid profiles in T2DM

Impaired glucose tolerance was defined as a maximum blood
glucose level of at least 300 mg/dL or a blood glucose level of
at least 200 mg/dL after 120 min [51]. Blood glucose levels
were measured every 30 min for 2 h after glucose injection
before (Fig. 1b) and after (Fig. 1e) the 12-week test period.
The glucose levels of the OLETF rats (392.50 ± 25.60 mg/dL
at 60 min and 354.67 ± 29.56 mg/dL at 120 min) were consis-
tently higher than those of the LETO rats (191.67 ± 7.18 mg/dL
at 60 min and 174.17 ± 8.01 mg/dL at 120 min) before the 12-
week test period. The AUCglucose was also higher in theOLETF
rats compared with the LETO rats (Fig. 1c). These differences
between the OLETF and LETO rats remained the same after
the 12-week test period, but the rats who underwent RE showed
significantly attenuated levels of glucose and AUCglucose com-
pared with the SC rats (Fig. 1d–f).

The epicardial fat thickness (EFT) measurement during trans-
thoracic echocardiography was higher in SC rats compared to
LETO rats (Fig. 1g, h). However, the EFTwas lower in RE rats
compared to SC rats and similar to that in LETO rats. The SC
rats had higher fasting levels of TC, TG, and FFA than the LETO
rats, and the RE rats were closer to the LETO rats than the SC
rats in terms of those levels (Fig. 1i–k). These results suggest that
RE not only enhances glucose tolerance but also decreases lipid
metabolism, leading to altering energy metabolism.

RE enhances cardiac contraction in T2DM

Next, we investigated the effect of cardiac contraction on RE-
induced T2DM hearts. The LVIDd and LVEDV were not

Table 1 Body weight, mean
daily food intake, and tissue
weight of experimental rats after
12 weeks of RE

LETO (n = 7) SC (n = 7) RE (n = 7)

Before RE

Body weight (g) 462.71 ± 6.23 566.00 ± 13.85* 567.00 ± 7.35*

Daily food intake (day/g) 21.80 ± 0.82 29.62 ± 1.40* 26.18 ± 0.80*

After RE

Body weight (g) 518.71 ± 10.12 571.50 ± 22.09* 523.29 ± 13.34**

Daily food intake (day/g) 20.31 ± 1.05 34.11 ± 2.20* 28.68 ± 2.38*

HW (g) 1.33 ± 0.03 1.52 ± 0.05* 1.59 ± 0.06*

HW/BW (mg/g) 2.56 ± 0.05 2.66 ± 0.09 3.05 ± 0.10*,**

LV/BW (mg/g) 2.29 ± 0.20 2.27 ± 0.06 2.12 ± 0.04

SW (g) 0.46 ± 0.02 0.39 ± 0.03 0.42 ± 0.01

SW/BW (mg/g) 0.88 ± 0.03 0.68 ± 0.06* 0.81 ± 0.03**

GW (g) 4.62 ± 0.08 4.08 ± 0.25* 4.23 ± 0.12

GW/BW (mg/g) 8.91 ± 0.13 7.12 ± 0.29* 8.10 ± 0.22*,**

Values are the mean ± SEM (n = 7 per group)

LETO Long Evans Tokushima Otsuka, OLETF Otsuka Long-Evans Tokushima Fatty, SC sedentary control, RE
resistant exercise, HW heart weight, BW body weight, LV left ventricle, SW soleus muscle weight, GW gastroc-
nemius muscle weight

*P < 0.05 vs. LETO rats; **P < 0.05 vs. SC rats
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different between the groups (Fig. 2a, d). However, the LVIDs
and LVESV in the RE rats were lower than those in the SC rats
(Fig. 2b, e), resulting in higher FS and EF values in RE rats
compared to SC rats (Fig. 2c, f). The SC and RE rats exhibited
a decreased heart rate (HR) compared to the LETO rats and no
difference was detected between the SC and RE rats (Fig. 2g),
indicating that RE affects the inotropic response more than the
chronoscopic response in the diabetic heart.

RE regulates energy metabolism in T2DM hearts

To determine whether RE can regulate glucose and fat
metabolism-related gene expression in the T2DM heart,
GLUT4, PDH E1α, CPT-1α, and PPARα were quantified
byWestern blotting (Fig. 3a). The hearts from SC rats showed
lower expression of GLUT4 and PDH E1α compared with
LETO rats, while the hearts from RE rats expressed higher
levels of these proteins than SC rats (Fig. 3b, c). The increased
expression of CPT-1α and PPARα in SC rats compared with
LETO rats was significantly reversed in RE rats (Fig. 3d, e).
These observations suggest that RE modulates glucose and fat
metabolism in T2DM hearts.

RE alters mitochondrial morphology in T2DM hearts

In SC rats, the sarcomeres had a collapsed appearance and the
mitochondria were bizarrely shaped with poorly defined cris-
tae (Fig. 4a). There were also fewer mitochondria compared
with the LETO rats (Fig. 4b). However, themitochondria from
RE rats did not show these changes, and significantly, more
mitochondria were observed than in SC rats. Damaged mito-
chondria were higher in SC rats, but RE rats showed signifi-
cantly lower than SC rats (Fig. 4c). These results were

accompanied by higher expression of mitochondrial
biogenesis-related genes, including PGC-1α and TFAM [44]
(Fig. 4d–f). These results reveal that RE attenuates aberrant
mitochondrial morphology in response to change mitochon-
drial biogenesis.

RE improves mitochondrial function in T2DM hearts

We confirmed that RE ameliorates abnormal mitochondrial bio-
genesis in T2DMhearts. Therefore, we next investigatedwhether
RE improves mitochondrial function in T2DM hearts. State 4
respiration (Fig. 5a), but not state 3 respirations (Fig. 5b), by
mitochondria from SC rat hearts significantly increased com-
pared to LETO rats; however, the hearts from theRE rats showed
attenuated increases in state 4 respiration (Fig. 5a). Despite the
lack of a difference in state 3 respiration between the experimen-
tal groups, the respiratory control ratio (RCR) was higher in
mitochondria from RE rats compared to those from SC (Fig.
5c). The membrane potential was lower in mitochondria from
SC rats, which were improved in RE rats compared to SC rats
(Fig. 5d). These observations agree with the finding of increased
ATP levels in RE rats (Fig. 5e). Mitochondria from SC rats
showed higher levels of ROS compared to those from LETO
rats. However, the mitochondrial ROS levels in RE rats were
significantly lower compared to those in SC rats (Fig. 5f).
These results were accompanied by higher expression of SOD2
in RE rats (Fig. 5h, i). Proton leak, as represented by different
oxygen consumption rates between oligomycin and antimycin A
[41], was higher in SC rats andwas significantly decreased in RE
rats (Fig. 5g). These results are related to the lower expression of
UCP2 and 3 in RE rats (Fig. 5j, k). These results suggest that RE
enhances energy metabolism and oxidative phosphorylation,
thereby enhancing energy efficiency.

a b c

d e f g

Fig. 2 RE enhances cardiac contraction in T2DM. a–c Comparison of
left ventricular internal dimension in diastole (LVIDd) and systole
(LVIDs), fractional shortening (FS) between experimental rats,
respectively. d–f Comparison of LV end of volume in diastole

(LVEDV) and systole (LVESV) and ejection fraction (EF) between
experimental rats, respectively. g Heart rate (HR). Values are
mean ± SEM, n = 7 per group). *P < 0.05 vs. LETO rats, #P < 0.05 vs.
SC rats
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Discussion

In this study, we examined the effects of RE for 12 weeks on
OLETF rat hearts within an established diabetic range of hy-
perglycemia at the age of 28 weeks. We observed significant
differences in physiological and mitochondrial functions, in-
cluding the fasting blood levels of glucose, TC, TG, and FFA,
between SC and RE rats. RE prevented the higher EFT and
systolic dysfunction in diabetic rat hearts. Electronmicroscop-
ic (EM) studies revealed that RE also preserved mitochondrial
morphology and number. The beneficial effects were also ob-
served in the mitochondrial function study, as reflected by the
enhanced oxidative phosphorylation level, higher membrane
potential, decreased ROS level, and increased SOD2 level.
These results demonstrate the protective effects of RE on

systolic and mitochondrial dysfunction with altered substrate
metabolism in OLETF rats, even in an established diabetic
stage.

The pathophysiology of DC remains controversial. One
explanatory mechanism may be a change in fuel metabolism
by the heart, particularly fatty acid (FA) metabolism. PPARα,
which is primarily expressed in locations with high capacity
for FA oxidation such as heart and skeletal muscle [16], plays
a pivotal role in FA metabolism by regulating mitochondrial
transport (CPT-1) [9]. Previous studies have demonstrated that
rats with DC have higher PPARα and CPT-1 expression
levels, which may be related to abnormal glucose and FA
metabolism [45]. Moreover, a disturbance in mitochondrial
uncoupling caused by the intramyocardial accumulation of
TG induces mitochondrial dysfunction in DC [4]. The

a

d e f

b

Fig. 4 RE alters mitochondrial morphology in T2DM hearts. a
Representative image of mitochondrial morphologies with transmission
electron microscopy (× 6000 and × 30,000 images) of hearts from LETO,
SC, and RE rats, respectively. b Quantification of cardiac mitochondrial
number relative to total cellular area. c Quantification of damaged
mitochondrial number relative to total mitochondrial number and

represents as a fold to LETO. d–f PGC-1α and TFAM protein
expressions were evaluated by western blotting. M, mitochondria; S,
sarcomere; LETO, white line (× 6000); 1 μm, white line (× 30,000);
200 nm. Values are mean ± SEM (n = 4–7 per group). *P < 0.05 vs.
LETO rats, #P < 0.05 vs. SC rats

a b c d e

Fig. 3 RE regulates energy metabolism in T2DM hearts. a The
expression of proteins related to glucose (GLUT4 and PDH E1α) and
fat (CPT-1α and PPARα) metabolism were evaluated by western
blotting. b–e The relative ratio of proteins, including GLUT4, PDH

E1α, CPT-1α, and PPARα to β-tubulin levels were determined by
image J. Values are mean ± SEM (n = 4 per group). *P < 0.05 vs.
LETO rats, #P < 0.05 vs. SC rats
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OLETF rats already showed marked hyperglycemia compati-
ble with the animal model of T2DM at the beginning of RE in
our experiment [51]. However, the RE rats showed signifi-
cantly improved plasma glucose as evidenced by the IPGTT,
TC, TG, and FFA results. These improved glucose metabo-
lism and lipid profiles were accompanied by higher expres-
sion of glucose metabolic proteins (GLUT4 and PDH E1α) in
the hearts of RE rats [42]. Epicardial fat deposits are greater in
obese patients with T2DM compared with those in non-
diabetic obese subjects and are positively correlated with
myocardial TG content as measured by proton magnetic res-
onance spectroscopy. In addition, myocardial TG content is
independently associated with decreased stroke volume [17].
In line with these findings, our results suggest that manipulat-
ing myocardial metabolism from non-esterified FA to glucose
uptake by RE is supported by the increased GLUT4 and de-
creased CPT-1α and PPARα expression, which parallel de-
creased epicardial fat depots and improved LV function.
Although the RE rats did not reverse their heart/body weight
and LVMI compared with the SC rats (Table 1), RE prevented
the increases in LVIDs and LVESV, resulting in an increased
FS and EF (Fig. 2). We speculate that RE rats showed

increases in heart/body weight compared to SC or LETO rats.
Restoration of EF and FS without increasing the LVESV in-
dicates improved cardiac function in RE rats compared to that
in SC rats.

Emerging studies have shown the role of mitochondria in
causing DC. Mitochondrial dysfunction and decreased mito-
chondrial biogenesis brought about by oxidative stress due to
ROS can result in a vicious cycle of ROS and mitochondrial
dysfunction, leading to the progression and development of
diseases such as DC [12]. Therefore, we postulated that RE
could attenuate these changes in diabetic OLETF rats.
Mitochondrial biogenesis is related to mitochondrial antioxi-
dant defense, oxidative capacity, and regulation of mitochon-
drial morphology [5] and is mainly regulated by PGC-1α [45].
It has also been found that T2DM is associated with decreased
expression of PGC-1α [36], and the altered levels could affect
mitochondrial ultrastructure in disease models [31]. Previous
studies have demonstrated that ultrastructural alterations in
mitochondria reflect their dysfunction in the oocytes of wom-
en with diabetes [59]. The EM examination in our study re-
vealed fewer mitochondria and damaged cristae in SC, but not
in RE rat hearts. We also observed higher expression of

dcba
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kj li

Fig. 5 RE improves mitochondrial function in T2DM hearts. Oxygen
consumption rate in a state 4 and b state 3. c Relative control ratio (RCR)
of mitochondrial respiration. dMitochondrial membrane potential. eATP
level. f Reactive oxygen species (ROS) level. g Proton leak. h
Representative Western blots and quantification of superoxide
dismutase (SOD) 2, uncoupling proteins (UCP) 2 and 3 in the hearts

from each group. i–k The relative ratio of SOD2, UCP2 and 3 to β-
tubulin levels were determined by ImageJ. l Schematic diagram of the
proposed protective mechanism of RE in diabetic cardiomyopathy.
Values are mean ± SEM (n = 4–7 per group). *P < 0.05 vs. LETO rats,
#P < 0.05 vs. SC rats
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mitochondrial PGC-1α and TFAM in RE rats compared to
that in SC rats, suggesting that RE-induced mitochondrial
biogenesis prevented impaired mitochondrial structure in dia-
betic hearts [5]. Our results indicate that mitochondria from
OLETF rat hearts processed less oxygen with lower ATP
levels, increased ROS, and increased depolarization of the
membrane potential, whereas RE training tended to reverse
these abnormalities, which could help prevent mitochondrial
dysfunction in OLETF rat hearts. Taken together with im-
proved mitochondrial biogenesis, these results show that RE
exhibited improved mitochondrial efficiency, which might be
associated with higher cardiac contractility in T2DM hearts.

After identifying improved the mitochondria biogenesis
and efficiency in RE-induced T2DM hearts, we then ex-
amined whether RE further enhanced mitochondrial func-
tion and mitochondrial uncoupling in T2DM hearts. UCPs
are mitochondrial carrier proteins located in the mitochon-
drial inner membrane, which increase with enhanced FA
metabolism. It has been demonstrated that FA-induced ac-
tivation of UCP2 and UCP3 through PPARα increases FA
oxidation and reduces cardiac efficiency in DC [2].
Although the decrease in the expression of UCP2 and
UCP3 with RE in our experiment seemed to be associated
with substrate switching from FAs to glucose, it was also
related to decreased ROS production in T2DM hearts.
Because superoxide is a major mitochondrial ROS elicited
by uncoupling from FA influx [13], attenuated expression
of UCPs in RE rat hearts was partly associated with de-
creased mitochondrial state 4 respiration and higher RCR,
decreased proton leak, and altered mitochondrial mem-
brane potential [6]. Moreover, SOD2 regulates UCP ex-
pression by modulating superoxide radical/anion concen-
trations, and UCP may be part of a negative feedback
mechanism related to SOD2. In addition, mitochondrial
SOD2 (manganese-dependent SOD), which effectively
removes mitochondrial ROS [37], decreased in the hearts
from SC rats, but increased in response to RE. This is
consistent with previous reports, in which diminished
SOD2 due to oxidative stress was reversed by exercise in
an animal model [39], supporting the argument that RE
may prevent oxidative stress by catalyzing superoxide ion
via higher SOD2 expression in RE rat hearts. However, it
is unclear from our study whether the reduced level of ROS
was caused by increased ROS scavenging or decreased
ROS generation because we did not specifically address
the significant sources of extra-mitochondrial ROS, such
as NADPH oxidase (NOX) [1]. One study showed that
swimming attenuates the increase in isoproterenol (ISO)-
induced myocardial expression of NOX4 messenger RNA
(mRNA) and protein and NOX2 mRNA as well as antiox-
idant enzymes (SOD1, SOD2, and catalase) in adenosine
monophosphate-activated protein kinase (AMPK)α2+/+

mice, but not in AMPKα−/− mice, indicating that exercise

attenuates ISO-induced cardiac fibrosis by AMPK-
dependent reduced ROS generation (NOX) and increased
ROS scavenging (MnSOD) [32].

RE improves insulin sensitivity, glucose tolerance, and the
lipid profile by elevating muscle mass, as skeletal muscle is an
important factor in resting metabolic rate [8]. Moreover, a
decreased muscle mass (e.g., sarcopenia) is associated with
heart failure, which is improved by RE [46]. In our experi-
ments, 12weeks of RE increased the ratio of the soleusmuscle
and gastrocnemius muscle weight to body weight as well as
the ratio of heart/body weight compared to those in SC rats,
although RE rats tended to have higher soleus muscle
(P = 0.08) and gastrocnemius muscle (P = 0.08) weights than
did SC rats (Table 1). The effect of RE on the diabetic heart
exerted by improving glucose tolerance and lipid profiles may
be related to peripheral muscle mass with systemic effects, in
accordance with previous reports of the beneficial effect of
muscle mass on T2DM-induced sarcopenia [30].

Numerous clinical trials using angiotensin-converting en-
zyme inhibitors, angiotensin II receptor blockers, and
mineralocorticoid-receptor antagonists showed positive out-
comes and proposed data for the current guidelines to treat
non-diabetic patients with heart failure [34]. However,
diabetes-specific trials or guidelines are limited. In addition,
the effects of glucose-lowering medications except metformin
on LV dysfunction in patients with advanced DC are limited
because of weight gain or aggravated edema (i.e.,
thiazolidinediones) [27] or increased hospitalization for wors-
ening heart failure (saxagliptin, a dipeptidyl peptidase 4 inhib-
itor) [54]. Although the beneficial effects of exercise on gly-
cemic control in T2DM, weight loss, blood pressure, vascular
function, and dyslipidemia have been reported in humans, the
effects of exercise on myocardial function have been less well
studied [21]. This paucity of evidence might be associated
with the difficulty of maintaining rigorous exercise.

Until now, the beneficial effects of RE on diabetes-related
heart disease have been mainly limited to early-stage diabetes
animal models; few studies have investigated the effect of RE
on DC. This is the first report to investigate the effects of RE
on the relationships between mitochondrial dysfunction and
systolic dysfunction in an animal model of DC with an ad-
vanced stage of hyperglycemia and dyslipidemia. However,
this study had some limitations that should be mentioned.
First, cardiomyopathy has been categorized as restrictive (pre-
served EF) or dilated (reduced EF) according to the clinical
presentation, and phenotype-specific mechanisms have been
proposed [14]. The phenotype of our animal model was sim-
ilar to dilated cardiomyopathy in that it also exhibited in-
creased LVIDs and LVESV with reduced FS and EF.
However, we did not confirm diastolic dysfunction by
assessing mitral inflow with Doppler-based velocities, which
is known as an early sign of DC preceding the systolic dys-
function in patients with diabetes because of rapid heart rates
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and angle dependency.We could not exclude the possibility of
bias in the echocardiographic parameters caused by different
HRHRs between experimental animals (363.65 ± 15.28 vs.
284.03 ± 13.55 vs. 276.14 ± 6.14 bpm, in LETO, SC, and
RE rats, respectively, P < 0.05). However, the variation in
HR was within 100 bpm for a set of experiments. Second,
we did not explore the effects of RE on FA metabolism in
hepatic, peripheral muscles, or adipose tissues because we
used systolic dysfunction after long-standing hyperglycemia
in OLETF rats. Although the attenuation of hyperglycemia by
RE could affect fuel metabolism in the diabetic heart, it is
possible that the direct effects of resistance RE on hepatic
and peripheral tissues by improving insulin resistance is asso-
ciated with the systemic effects [22]. Third, we are curious to
know whether the effect of RE lasts for several weeks after
stopping the exercise. After long-term exercise, cessation of
exercise (detraining) is characterized by loss of exercise-
induced adaptations [38]. One study reported that stopping
exercise after long-term wheel running exercise maintained
the body weight reduction with a higher energy expenditure
in diabetic animal models. Although we did not examine the
effect of stopping exercise after long-term RE, we expect the
effects of RE, as well as aerobic exercise, to continue. Fourth,
we did not confirm the transcriptional levels of molecules
demonstrated in Figs. 3a and 4c. However, we had examined
the alteration of genes by mRNA microarray experiment. In
our experimental data, although protein levels were signifi-
cantly differenced, there were no significant difference of
mRNA levels including SLC2A4 (GLUT4), PDHA1 (PDH
E1α), CPT1A (CPT-1a), PPARA (PPARα), PPARGC1A
(PGC-1α), and TFAM (TFAM) between groups (Fig. S1). It
was well known that the mismatch of mRNA and protein
levels was at same time point [57], due to firstly, there are
complicated post-transcriptional mechanisms (transcription
and translocation). Secondly, proteins may be different half-
lives. And finally, there are errors in protein and mRNA ex-
periments [18]. In this context, we may not definitely explain
the mismatch of mRNA levels and protein levels of selected
molecules; however, we cautiously hypothesize that diabetes
condition could alter the rate of protein synthesis and degra-
dation of muscle proteins selectively and further regulate the
functions of proteins [3]. Fifth, we did not perform the HE
staining, fibrosis, inflammation, and vascularity of cardiac tis-
sues between groups. However, we analyzed microarray data
and we found that a number of fibrosis- and inflammation-
related genes including LTA4H, CYSLTR1, FPR1, TLR3, and
HDAC2 were increased in SC rats, whereas these genes were
decreased by RE (Fig. S2). Our results suggest that chronic
RE can mediate cardiac fibrosis and inflammation in diabetic
cardiomyopathy. Sixth, although we did not evaluate the
strength of RE, we can calculate the strength of exercise by
using potential energy formula. In physics, potential energy is
the stored energy of position possessed by a body by virtue of

its position relative to other factors [57]. The potential energy
formula is given by the following:

Energy Jð Þ ¼ mgh

Wherem indicates mass in kilograms, g is gravity as 9.8 m/s2,
and h is the height of object. In our experiment, RE rats were
trained for20 times on a 1-m ladder with an added weight
percentage relative to their weight. At the beginning of the
training phase, the rats performed the exercise with weights
that were 10% of their body weight attached to their tails; the
weight was subsequently increased in increments of 10% rel-
ative to the rat’s body weight every 2 weeks. Using potential
energy formula, we can analyze potential energy in our RE
models as a measure of energy expenditure; Energy (J) =m (%
of body weight) × g × h (ladder height) (Fig. S3). Last, high-
intensity exercise in our protocol could have increased the risk
of acute hyperglycemia in the diabetic model [19]. Thus, we
trained RE rats to climb at a lower intensity compared to other
studies, which may have used a higher intensity. Our RE pro-
tocol is the first attempt to examine exercise in a T2DM ani-
mal model.

In conclusion, our results show that RE ameliorates not
only hyperglycemia and dyslipidemia but also mitochondrial
biogenesis in an established diabetic stage and that RE im-
proves mitochondrial function, thereby enhancing cardiac
contractility in DC (Fig. 5l). This prospective observational
study shows that RE improved cardiac energetics by modu-
lating mitochondria and provides direct evidence that im-
paired mitochondrial biogenesis and uncoupling in T2DM
hearts is reversed by RE. In turn, modulation of PGC-1α,
UCP2, andUCP3 activation byREmay be a therapeutic target
for preventing T2DM. This mechanism may contribute to
shift energy utilization and enhance cardiac energy efficiency
in T2DM hearts.
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