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Abstract The coexistence of different subtypes of voltage-
dependent calcium channels (VDCC) within the same chro-
maffin cell (CC) and the marked interspecies variability in the
proportion of VDCC subtypes that are present in the plasma-
lemma of the CCs raises the question on their roles in control-
ling different physiological functions. Particularly relevant
seems to be the role of VDCCs in the regulation of the exocy-
totic neurotransmitter release process, and its tightly coupled
membrane retrieval (endocytosis) process since both are Ca2+-
dependent processes. This review is focused on the role of Ca2+

influx through L-type VDCC in the regulation of these two
processes. It is currently accepted that the different VDCC sub-
types (i.e., T, L, N, P/Q, R) contribute to exocytosis proportion-
ally to their density of expression and gating properties.
However, the pattern of stimulation defines a preferential role
of the different subtypes of VDCC on exocytosis and endocy-
tosis. Thus, L-type channels seem to control catecholamine
release induced by prolonged stimuli while fast exocytosis in
response to short square depolarizing pulses or action potentials
is mediated by Ca2+ entering CCs through P/Q channels. The
pattern of stimulation also influences the endocytotic process,
and thus, electrophysiological data suggest the sustained Ca2+

entry through slow-inactivating L-type channels could be re-
sponsible for the activation of fast endocytosis.
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Introduction

The Bfight or flight^ response constitutes a highly coordinated
and precise response physiologically generated as an attempt
for maintaining the equilibrium of the internal milieu against
fear or stress conflicts [15, 19]. This response is highly regu-
lated by the sympathetic nervous system, being particularly
relevant the participation of the chromaffin cells (CCs) of the
adrenal gland that release the catecholamines adrenaline and
noradrenaline, a response that is dependent on extracellular
Ca2+ [33] that enters the CC upon opening of different
voltage-dependent Ca2+ channels (VDCCs) present in their
plasma membrane [43].

As it happens for other neurotransmitters and hormones,
the Ca2+-dependent release of catecholamines is highly depen-
dent on the preservation of the equilibrium between the
amount of vesicular membrane that incorporates into the plas-
malemma during the exocytotic process and the membrane
retrieval during subsequent endocytosis. This will serve to
warrant that a given number of secretory vesicles are available
to participate in subsequent rounds of exocytosis during repet-
itive cell activation [10, 27, 50]. Both exocytosis and endocy-
tosis processes are mediated by a rise in intracellular Ca2+

concentration ([Ca2+]i) achieved primarily by Ca2+ entry
through VDCCs [16, 27, 74, 84].

The identification and characterization of the properties,
the regulation, and the functional role of the different subtypes
of VDCC have been possible thanks to the improvement of
the patch-clamp techniques [49], the isolation, the purification
and synthesis of different neurotoxins [76], and the molecular
biology and genetic approaches that have led to the
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elucidation of the molecular structure of VDCCs [26]. The
main properties of the different subtypes of VDCC, including
the major pore-forming subunit and their pharmacological
profile are summarized in Table 1.

By combining electrophysiological techniques and selec-
tive blockers of VDCC, we have found that the whole-cell
inward ICa of bovine chromaffin cells (BCCs) is mainly

mediated by Ca2+ entry through, at least, three of the subtypes
of VDCCs described in neurons [76], namely, 20% L-type
(α1D, Cav 1.3), 30% N-type (α1B, Cav 2.2), and 50% P/Q-
type (α1A, Cav 2.1) [4, 5, 37, 40, 80]. The coexistence of these
three subtypes of VDCCs within the same CC raises the ques-
tion on their roles in controlling different physiological func-
tions, particularly the implication of each VDCC subtype in

Table 1 Voltage-dependent calcium channel subtypes (adapted from [7, 26, 43])

Channel type Pore-forming
subunit

Type of
current

Blockers Activators Tissue location Function

Cav 1.1 α1S L Nifedipine
Calcicludine
Calciseptine
Diltiazem
Verapamil

BAY-K-8644
FPL64176

Skeletal muscle Excitation-contraction coupling

Cav 1.2 α1C L Nifedipine
Calcicludine
Calciseptine
Diltiazem
Verapamil

BAY-K-8644
FPL64176
PCA5094

Heart
Smooth muscle
Brain
Pituitary
Endocrine cells
Adrenal medulla

Excitation-contraction coupling
Hormone release
Regulation of transcription
Synaptic integration

Cav 1.3 α1D L Verapamil
Less sensitive to DHP

antagonists

BAY-K-8644
FPL64176
PCA50941

Brain
Pancreas
Adrenal medulla
Cochlea
Kidney
Ovary

Hormone release
Regulation of
Transcription
Synaptic regulation
Cardiac pacemaking
Repetitive firing
Hearing
Neurotransmitter release from

sensory cells

Cav 1.4 α1F L Less sensitive to DHP
antagonists

BAY-K-8644
FPL64176

Retina Neurotransmitter release from
photoreceptors

Cav 2.1 α1A P/Q ω-aga- IVA
ω-ctx-MVIIC
ω-ctx-MVIID

Cerebellum
Pituitary
Cochlea
Adrenal medulla

Neurotransmitter release
Dendritic Ca2+ transients
Hormone release

Cav 2.2 α1B N ω-ctx-GVIA
ω-ctx-MVIIA
ω-ctx-MVIIC

Brain
Peripheral
nervous system
Adrenal medulla

Neurotransmitter release
Dendritic Ca2+ transients
Hormone release

Cav 2.3 α1E R SNX-482 Brain
Cochlea
Retina
Heart
Pituitary
Adrenal medulla

Repetitive firing
Dendritic Ca2+ transients

Cav 3.1 α1G T Mibefradil
Kurtoxin
Low sensitivity to Ni2+

Brain
Peripheral
nervous system
Adrenal medulla

Pacemaking; repetitive firing

Cav 3.2 α1H T Mibefradil
Kurtoxin
High sensitivity to Ni2+

Heart
Brain
Kidney
Liver

Pacemaking; repetitive firing

Cav 3.3 α1I T Mibefradil
Kurtoxin
Low sensitivity to Ni2+

Brain Pacemaking; repetitive firing

DHP dihydropyridines, ω-aga-IVA ω-agatoxin IVA, ω-ctx-GVIA ω-conotoxin GVIA, ω-ctx-MVIIA ω-conotoxin MVIIA, ω-ctx-MVIIC ω-conotoxin
MVIIC, ω-ctx-MVIID, ω-conotoxin MVIID
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the regulation of the two main Ca2+-dependent steps involved
in the neurotransmitter release process, i.e., the exocytotic
release of catecholamines and the subsequent endocytotic pro-
cess [43, 66]. In this review, we will focus on the Ca2+ influx
into the chromaffin cell through L-type VDCC that serves
to regulate both the exocytosis and the endocytosis pro-
cesses. In addition, growing evidence suggest that L-type
(Cav1.2 and Cav1.3) channels are also directly involved in
the repetitive firing of spontaneous [69, 71, 72] and evoked
AP firings [89, 90].

L-type Ca2+ channels in chromaffin cells

The presence of L-type currents has been electrophysiolog-
ically characterized in bovine [4, 11, 12, 17, 18, 20, 37], rat
[6, 28, 32, 35, 38, 69, 78], mouse [52, 67, 71, 72], pig [58],
cat [2, 62], and human CCs [42, 55].

A comparative study has shown a high interspecies vari-
ability in the proportion of L-type VDCCs that are present in
the plasmalemma of the CCs. Thus, L-type calcium channels
account for near half of the whole-cell Ca2+ channel current in
the cat [2], rat [38], and mouse CCs [52], while in pig [58],
bovine [4, 37], and human species [42] L channels carry only
15–20% of the whole-cell Ca2+ current measured at holding
voltage of about −70 to −80 mV. In addition, within the same
animal species, age-dependent differences have also been de-
scribed, i.e., in rat embryo CCs (RECCs) whole-cell ICa is
carried 60% by L channels in comparison with 50% found
in adult rat CCs [36].

At this point, it should be mentioned that the estimate of L-
type channels expression based on the action of
dihydropyridines (DHPs) is highly sensitive to the holding
potential [67]. Thus, for instance, in a recent study conducted
in human CCs, the block of Ca2+ currents by nifedipine at
−80 mV is 20%, but increases to 50% at −50 mV [55].
These differences could be partially related to the voltage-
dependent inactivation of non L-type VDCCs as will be
discussed below.

Molecular evidence indicates that L-type currents in CCs is
mediated by the expression of two subtypes of L channels,
α1C and α1D [13, 46, 47, 55, 66, 92], and the most common
view is that CCs express equal percentages of Cav1.2 and
Cav1.3 L-type channels [68, 72]. However, on the basis of
their affinities for DHPs, from RT-PCR and from single-
channel recordings, it is difficult to separate the contribution
of these two channel types to the total L-type current [67, 72,
88]. Also, using Cav1.3 KO mice show clearly that both iso-
forms are equally modulated by cAMP and cGMP [68].

At this point, we would like to comment that, in order to
characterize the functional role of L-type VDCC, some char-
acteristics that differentiate L-type channels from other
VDCCs should be considered, as these could contribute to
explain some of the discrepancies observed between different

studies. These differences are related to (1) the different
autocrine/paracrine regulation by catecholamines and other
co-exocytosed vesicular components (the L current is regulat-
ed by neurotransmitters in a voltage-independent manner
while N and PQ currents are regulated in a voltage-
dependent manner [3, 20, 39, 51]), (2) the voltage-dependent
inactivation (N and PQ channels undergo a pronounced
voltage-dependent inactivation while L channels are resistant
to such inactivation [53, 91]), and/or (3) the Ca2+-dependent
inactivation (L-type channels undergo Ca2+-dependent inhibi-
tion at a rate slower than that of N and PQ-type channels [54,
80]). Finally, it should be noted that the number of Ca2+-chan-
nel and its distribution might be also altered by culturing con-
ditions as result of denervation/isolation of the CCs.

L channels and exocytosis in chromaffin cells

Some discrepancies on the role of the different subtypes of
VDCCs on the regulation of the exocytotic process have been
published. These differences are somehow related to the dif-
ferent stimulation patterns used (i.e., stimulation with the
physiological neurotransmitter acetylcholine, K+ depolariza-
tion, electrical stimulation, short or long stimulation, …), the
preparation used (i.e., intact gland, adrenal slices, cultured cell
populations, or cultured isolated cells), and/or the techniques
used to quantify the catecholamine secretion (i.e.,
amperometry in cell populations or in single cell, cell capac-
itance in patch-clamped cells, …).

For instance, in the intact adrenal gland of the cat, the K+-
evoked secretion of catecholamines is effectively blocked in a
concentration dependent manner by DHPs and by other drugs
acting on L-type VDCCs like verapamil and diltiazem [25, 41]
and markedly potentiated by the DHP agonist BAY-K-8644
[44] thus suggesting that catecholamine secretion in these
cells was mainly controlled by an L-type channel. However,
electrophysiological experiments demonstrated that cat CCs
also contained N-type channels in a similar proportion to that
of L-type channels [2]. Further experiments showed that
though Ca2+ entry through both channels (N- and L-type) lead
to similar increments of the average [Ca2+]c, the control of K

+-
evoked catecholamine release response in cat chromaffin cells
was dominated by Ca2+ entering through L-type VDCCs [62].

In the intact rat adrenal gland, it was reported that the L-type
VDCC blocker isradipine partially inhibited electrical
stimulation- and acetylcholine-induced catecholamine secre-
tion, but potently inhibited nicotine- and K+-induced secretion
in the perfused rat adrenal gland. In addition, BAY-K-8644
potentiated mildly the secretory responses to electrical stimula-
tion and to acetylcholine, but increased threefold the responses
to K+ and nicotine. These results suggested that responses me-
diated by high K+ or nicotinic receptors are mediated by Ca2+

entry through L-type channels, although other VDCCs also
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contributes to modulate the physiological adrenal catechol-
amine secretory process [63].

In a similar study, the catecholamine release induced by
electrical field stimulation of splanchnic nerves was halved
either byω-conotoxin MVIIC (a non L-type channel blocker)
and the DHP furnidipine, thus suggesting that both the L- and
P/Q-types of Ca2+ channels were involved. Similar results
were observed when secretion was elicited by acetylcholine.
However, the K+-induced secretory responses were reduced
75% by furnidipine and 45% by ω-conotoxin MVIIC, indi-
cating that this type of stimulation preferentially recruited L-
type channels [82]. Similarly, Nagayama et al. found that L-
type channels were responsible for the catecholamine secre-
tion mediated by nicotinic receptors but not by muscarinic
receptors, and that their contribution to noradrenaline secre-
tion may be greater than that of adrenaline secretion. N-type
voltage-dependent Ca2+ channels may not contribute to cate-
cholamine secretion, and P/Q-type Ca2+ channels may control
the secretion at presynaptic sites [73].

By using bovine chromaffin cell populations stimulated
with K+ depolarization, it was first concluded that Ca2+ entry
through both L- and P/Q-type channels controlled the K+-
evoked catecholamine release responses [64], in spite that L-
type channels account for only 20% of the whole-cell currents
in these cells. These results led to the hypothesis that L and P/
Q channels were strategically located close to the secretory
machinery, thus regulating the exocytosis of catecholamines
[59, 64]. In a similar study conducted in distinct populations
of bovine chromaffin cells, it was described that exocytosis in
noradrenaline-containing cells was regulated mainly by L-
type channels, while in adrenaline-containing cells exocytosis
was controlled by P/Q-type channels [61].

However, when the possible coupling between VDCCs
and exocytosis was evaluated at the single-cell level by mea-
suring membrane capacitance, no preferential role of any
VDCC subtype in eliciting exocytosis has been found in rat
[48, 57] or in bovine CCs [34, 85, 83, 65, 87], thus suggesting
an uneven distribution of calcium channels in chromaffin
cells. A possible explanation for these discrepancies could
be, at least partially, related to the voltage-dependent inactiva-
tion of VDCCs that minimizes the role of N and PQ channels
in the experiments conducted in intact adrenal glands or
in isolated cell populations, in which the physiological
resting membrane potential of the chromaffin cells might
favor a partial voltage-dependent inactivation of non L
channels, while L channels are more resistant to such type
of inactivation [53, 91].

Some striking differences have been observed related to the
role of the different VDCC subtypes in the regulation of
hypoxia-induced catecholamine secretion (HIS response).
Thus, during fetal and neonatal periods in which there is no
functional innervation of the adrenal medulla, a non-
neurogenic acute HIS response is produced that depends on

Ca2+entry through VDCCs of CCs, as is proven by the fact
that this response is abolished in the absence of Ca2+ [1] and
blocked by cadmium [45]. Different studies have concluded
that this acute HIS response is mainly controlled by L chan-
nels in fetal sheep CCs [1], embryonic rat CCs [36], and neo-
natal rat CCs [85, 86]; However, the study by Levitsky and
López-Barneo suggests that neonatal rat CCs express relative-
ly high levels of T-type VDCCs and that the function of these
channels is required for a proper secretory response to acute
hypoxia [60]. On the other hand, by using both electrophysi-
ological andmolecular biology tools, it has been demonstrated
that chronic hypoxia up-regulates the expression of T-type
channels in adult CCs [22, 23, 70, 83]. These data are in good
agreement with the idea that hypoxia, like other stress-
mimicking conditions, up-regulates T-type channels in CCs
[56, 75].

Finally, it has been proposed that channel gating and the
type of stimuli applied, rather than the possible co-localization
of the exocytotic machinery with VDCCs, regulate the exocy-
tosis in chromaffin cells. Thus, as commented above, the dif-
ferent experimental approaches used during the last 30 years,
mostly based on the application of a long-lasting stimulus, i.e.,
prolonged stimulation with high K+ containing solutions [62]
or acetylcholine [73], support the idea of a preferential cou-
pling of L-type VDCCs to catecholamine secretion. However,
a predominant role of P/Q-type channels in regulating the fast
release of vesicles from the immediately releasable pool (IRP)
has been proposed when short (10 ms) stimulation with square
depolarizing pulses [8, 9] or trains of action potentials [29] are
used to stimulate catecholamine secretion in mouse CCs. This
seems to be likely due to the rapid activation of P/Q channels
(Cav2.1) with respect to the other VDCCs which is more
evident during stimuli of short duration since less affected
by fast channel inactivation. The slow-inactivating L-type
channels would be regulating the vesicular replenishment of
the releasable pool, that is, the sustained or tonic release [24].

L channels and endocytosis in chromaffin cells

As commented above, the Ca2+-dependent release of catechol-
amines is highly dependent on the preservation of the mem-
brane equilibrium between the amount of vesicular membrane
that incorporates into the plasmalemma during the exocytotic
process and the membrane retrieval during subsequent com-
pensatory endocytosis.

In trying to characterize the possible relationship between
Ca2+ entry, exocytosis, and endocytosis bymeasuring changes
in membrane capacitance (ΔCm) in BCCs, we found that
Ca2+ entry through VDCCs induced by the application of
depolarizing pulses (DPs) of increasing length (50–2000 ms)
produced different patterns of exo/endocytosis. A linear rela-
tionship between exocytotic responses and DP duration was
found; however, endocytotic responses were almost absent
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when short DPs (50–200 ms) were applied and were more
pronounced with longer DPs (500–2000 ms) [31]. These data
pose the question on whether the same Ca2+ entry that triggers
exocytosis is also responsible to initiate subsequent
endocytosis.

As far as the specific contributions of the different VDCC
subtypes in controlling endocytosis are concerned, it has been
proposed that, as for exocytosis, the pattern of stimulation, and
therefore, the characteristics of the Ca2+ signal generated by
the stimulus also influence endocytosis [24].

In bovine CCs stimulated with single DPs of long (500 ms)
duration, a preferential coupling of L-type VDCCs to endocy-
tosis has been proposed [79]. In this study, we found that,
despite the small contribution of L-type VDCCs to the total
global Ca2+ current, their inhibition by the DHP nifedipine
almost completely abolished the endocytotic response without
significantly affecting exocytosis. ω-Conotoxin GVIA (N-
channel blocker) affected little the exo/endocytotic responses
while ω-agatoxin IVA (P/Q-channel blocker) markedly
blocked those responses in a parallel manner. These data sup-
port the hypotheses that Ca2+-entry through L channels is
more effective in triggering endocytosis than exocytosis
[79]. Additional experiments were performed with the isola-
tion of L from N/PQ channels by blocking the non L channels
withω-conotoxin MVIIC (MVIIC). It was found that, in cells
treated with MVIIC, superfusion with FPL64176 (an L-type
VDCC agonist) increased Ca2+ entry and doubled the endo/
exocytosis ratio, indicating a selective augmentation of endo-
cytosis related to this Ca2+ entry through L-type channels [81].
Similar results were obtained by using the FM-dye methodol-
ogy and long stimulations with high K+; endocytosis was
inhibited by about 50% when the L-channel blocker nifedi-
pine was present [81].

Bay et al. (2012) have also reported the implication of L-
type VDCC in the membrane excess retrieval that follows a
strong Ca2+ entry in mouse CCs. In this study, excess retrieval
(a rapid endocytosis process that retrieves more membrane
than the one fused by preceding exocytosis) was monitored
with FM1.43 after the stimulation with high-K+ or cholinergic
agonists lasting for 15–30 s. It was found that this excess
retrieval membrane pool is associated with the generation of
a non-releasable fraction of membrane co-localizing with the
lysosomal compartment and is controlled by the concerted
contribution of extracellular and intracellular Ca2+ sources.
The blocking of the L-type VDCC with nitrendipine sup-
pressed excess retrieval [14].

In trying to characterize if this preferential role of L-type
VDCCs in controlling endocytosis was related to the existence
of a close co-localization between endocytosis proteins, such
as dynamin and/or clathrin, and L-type channels, we per-
formed immunofluorescence experiments on bovine CCs that
showed a practically negligible co-localization of clathrin with
the three VDCC subtypes (CaV1.3, CaV2.1, and CaV2.2)

studied. Also, only a mild co-localization (about 20–30%)
was observed between VDCCs and dynamin. Taken together,
these experiments do not support the existence of a close co-
localization of VDCC subtypes with the endocytotic proteins
clathrin and dynamin in bovine chromaffin cells [81].

The next issue is whether Cav 1.2 or Cav1.3 VDCC has a
preferential control on endocytosis. One argument in favor of
Cav1.3 is its slower and less complete time-dependent inacti-
vation with respect to CaV 1.2 that would condition the mode
of Ca2+ entry. The delayed inactivation of Cav 1.3 would
favor a slow and prolonged Ca2+ entry through the less
inactivating L-type channels that could be physiologically rel-
evant for sustaining prolonged Ca2+ influxes that support nor-
mal endocytosis.

In the study by Rosa et al. (2007), upon the application of a
500-ms DP, the degree of inactivation of each Ca2+ channel
subtype strongly conditioned the kinetics and the amount of
Ca2+ entry. Thus, the slow-inactivating L-type channel, which
contributes only by about 30% to the initial peak ICa, carried
more than half of the total Ca2+ entry along the 500-ms
depolarizing pulse. Conversely, the fast-inactivating N-type
channel that also contributes by about 30% to the initial ICa
peak, only contributed by about 24% to the total QCa. These
data support the idea that a low-rate, non-inactivating Ca2+

entry might be more critical to trigger compensatory as well
as excess endocytosis [30, 66, 79].

In addition, a pharmacological approach that serves to fur-
ther slow-down the Ca2+ entry through the slow-inactivating
L-type calcium channels is based on the use of L-channel
activators such as FPL64176 and Bay-K-864. Membrane ca-
pacitance recordings and fluorescence imaging with FM-dyes
in chromaffin cells have demonstrated that endocytic process
is increased in the presence of both agonists without signifi-
cantly altering exocytosis [14, 81]. The effect of BAY-K-8644
on endocytosis was also studied in the mouse neuromuscular
junction, where the vesicle loading with FM2-10 was in-
creased in the presence of the agonist BAY-K-8644 [77].
This finding further supports the hypothesis that L channels
are preferentially coupled to the endocytic machinery than the
exocytic, and that, not all calcium that enters into the cell
through VDCCs have the same function.

Concluding remarks

By measuring membrane capacitance at the single-cell level,
no preferential role of any VDCC subtype in eliciting exocy-
tosis has been found in rat [57] or in bovine CCs [21, 34, 48,
65, 87]. It has been proposed that channel gating and the type
of stimuli applied, rather than the possible co-localization of
the exocytotic machinery with VDCCs, regulate the exocyto-
sis in chromaffin cells. Thus, a predominant role of P/Q-type
channels in regulating the fast release of vesicles when short
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stimulation with square depolarizing pulses [8, 9] or trains of
action potentials [29] are used, while the slow-inactivating L-
type channels would be regulating the sustained or tonic exo-
cytosis when prolonged stimulations are applied [24].

As for exocytosis, it has been proposed that the pattern of
stimulation, and therefore, the characteristics of the Ca2+ sig-
nal generated by the stimulus also influence endocytosis [24].
A predominant role of L-type channels on the regulation of the
endocytotic process has been described, but this functional
coupling between L channels and endocytosis is related nei-
ther to the co-localization of VDCCs and endocytosis proteins
nor to the total amount of Ca2+ entering the cell through a
given subtype of VDCC, suggesting that a low-rate, non-
inactivating Ca2+ entry through L channels (Cav 1.3) might
be more critical to trigger compensatory as well as excess
endocytosis [30, 66, 79, 81].
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