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Abstract Atherosclerosis is characterized by lipid accumula-
tion and chronic inflammation of the arterial wall, and its main
complications—myocardial infarction and ischemic stroke—
together constitute the first cause of death worldwide.
Accumulation of lipid-laden macrophage foam cells in the
intima of inflamed arteries has long been recognized as a hall-
mark of atherosclerosis. However, in recent years, an unex-
pected complexity in the mechanisms of macrophage accumu-
lation in lesions, in the protective and pathogenic functions
performed by macrophages and how they are regulated has
been uncovered. Here, we provide an overview of the latest
developments regarding the various mechanisms of macro-
phage accumulation in lesion, the major functional features
of lesion macrophages, and how the plaque microenvironment
may affect macrophage phenotype. Finally, we discuss how
best to apprehend the heterogeneous ontogeny and functional-
ity of atherosclerotic plaque macrophages and argue that mov-
ing away from a rigid nomenclature of arbitrarily defined mac-
rophage subsets would be beneficial for research in the field.
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Introduction

Atherosclerosis is a chronic inflammatory disease of the vas-
cular wall, and its complications, in particular myocardial in-
farction and stroke, constitute the first cause of death in the
world. Macrophages are the most abundant immune cell type
in atherosclerotic lesions and have an essential role during all
stages of the disease, from lesion initiation to plaque rupture.
Hence, thoroughly understanding macrophage biology in vas-
cular inflammation and atherosclerosis appears as a prerequi-
site to develop novel therapeutic strategies aiming at taming
the disease burden associated with this pathology.

A long standing paradigm regarding the major steps of
macrophage-dependent vascular inflammation in atherosclerosis
could be briefly described as follows: in areas of non-laminar
vascular blood flow, endothelial dysfunction permits circulating
low density lipoprotein (LDL) infiltration into the vascular inti-
ma, which is increased under conditions of hyperlipidemia. In
the vessel wall, LDL undergoes modifications such as oxidation,
and modified LDL activates endothelial cells and resident im-
mune cells leading to expression of chemokines and adhesion
molecules that attract circulating monocytes to the vessel wall
and allow their adhesion, rolling and transendothelial migration,
resulting in monocyte infiltration in the intima. Once in the inti-
ma, monocytes differentiate into macrophages and ingest modi-
fied lipoprotein to become foam cells. Gradually accumulating
foam cells die in the intima through apoptosis and, when not
promptly disposed of, become necrotic, progressively leading
to the formation of a thrombogenic and proinflammatory necrot-
ic core. Macrophages further fuel lesion inflammation through
secretion of cytokines, and their proteolytic activity promotes
plaque destabilization and rupture that leads to atherothrombosis
and the associated ischemic events such as myocardial infarction
or stroke. Although this view is still considered generally valid
and an important underlying mechanism of lesion formation,
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recent research has revealed an unexpected complexity in the
mechanisms of macrophage accumulation in atherosclerotic
plaques, in the functions performed by macrophages, and in
the mechanisms determining macrophage phenotype in lesions.
In this review, we provide a brief overview of the origins of
macrophages in the vessel wall, their fundamental function,
and how these are regulated. Finally, we will discuss how to best
apprehend investigations of macrophage phenotypic heterogene-
ity and its implications in disease, and how moving beyond the
macrophage polarization paradigm might be beneficial for re-
search in the field.

Mechanisms of macrophage accumulation
in the vessel wall

Recruitment of bone marrow and spleen-derived
circulating monocytes

Recruitment of circulating monocytes to the inflamed vessel
wall is instrumental in the initiation and progression of athero-
sclerotic lesions. In mice, hypercholesterolemia induces
monocytosis and more particularly a rise in levels of circulating
Ly6Chi monocytes, the equivalent of human CD14+ CD16−

monocytes [120, 123]. Ly6ChiCCR2+ monocytes are consid-
ered to be the major precursors of plaque macrophages, and
their recruitment to plaques depends on expression of the che-
mokine receptors CCR2, CCR5, and CX3CR1 [120, 123] and
receptors that bind various adhesion molecules expressed on
endothelial cells [46]. Interestingly, the systemic control of cir-
culating monocyte levels appears to have a crucial role in
lesional macrophage accumulation as plaque macrophage con-
tent is directly correlated to circulating monocyte levels [30].
Medullary hematopoiesis has long been considered as the ma-
jor—if not sole—source of monocytes in atherosclerosis, and
hyperlipidemia as well as associated comorbidities, such as hy-
perglycemia, promote monocyte production in the bone mar-
row [81, 114]. Bone marrow monocytes are mobilized to the
bloodstream mainly in response to chemokine/chemokine re-
ceptor signaling, in particular CCL2/CCR2 [30, 107]. However,
it is now well established that also extramedullary hematopoie-
sis in the spleen significantly contributes to atherosclerosis-
associated monocytosis and that monocytes originating from
the spleen participate in macrophage accumulation within le-
sions [97]. Mechanistically, hematopoietic stem cells (HSCs)
migrate from the bone marrow to the spleen, where the micro-
environment supports their progressive differentiation towards
mature monocytes [97]. Interestingly, mobilization of mono-
cytes from the splenic reservoir appears to be independent of
CCR2, but relies on angiotensin II signaling through its type 1
receptor AT1 [121], and may also depend on splenic B cells,
although the underlying mechanisms are still unclear [78].

Local proliferation of macrophages

Proliferation of macrophages in atherosclerotic plaques has been
observed in human and animal models more than 20 years ago
[49, 95, 102], but its quantitative contribution to macrophage
accumulation in lesions has long remained enigmatic. A study
based on a model of parabiosis, where the blood circulation of
twomice is joined, shed new light on this paradigm. By allowing
a discriminating of the origin of cells in tissue from either recruit-
ed circulating or locally expanded cells, macrophage prolifera-
tion was proposed to account for ∼87% of macrophage accumu-
lation in established lesions, while recruitment of circulating
monocytes was only instrumental in the early phases of the dis-
ease [98]. However, data from the same study using a long-term
bone marrow chimera model showed that all macrophages in
established lesions ultimately originate from circulating precur-
sors, and a proportional increase in monocyte recruitment with
lesion progression was also reported [119]. In contrast to the
work by Robbins et al. [98], a recent report suggested that mac-
rophage proliferative activity was higher in early rather than in
advanced lesions [69]. To add another layer of complexity, it was
recently found that a substantial proportion of macrophages in
established lesions are senescent, thus by definition incapable of
proliferating, and that their clearance through pharmacological
intervention significantly reduces macrophage content in
established lesions [23]. The fact that highly proliferative and
plastic vascular smooth muscle cells can adopt a macrophage-
like phenotype and express classical macrophage markers such
asMac3 orMac2 (Lgals3) in lesions (as discussed below) further
complicates interpretation of studies investigating macrophage
proliferation in atherosclerosis [20, 40, 109].

VSMC transdifferentiation into macrophage-like cells

Cells co-expressing markers of macrophages and vascular
smooth muscle cells (VSMCs) have been described in human
atherosclerotic lesions 20 years ago [8], and a study recently
showed that up to 50% of cells identified as macrophage foam
cells co-expressed smooth muscle cell markers [7]. However,
these studies based on immunohistological analyses cannot de-
termine whether these cells originate from macrophages upreg-
ulating VSMCmarkers or VSMCs transdifferentiating into mac-
rophage foam cells. Convincing evidence of VSMC
transdifferentiation into macrophage-like cells in lesions has
been obtained from lineage fate mapping of VSMCs in murine
atherosclerosis. Using pulse-labeling of VSMCs in reporter
Apoe−/−-ROSA26 mice expressing the tamoxifen-inducible
Cre recombinase under the control of aVSMC-specific promoter
in the SM22α gene locus, Feil et al. demonstrated loss of VSMC
markers and conversion to a macrophage-like cell phenotype of
clonally expanded VSMC-originating cells in advanced lesions
[40]. Using a similar fate mapping strategy, albeit with expres-
sion of inducible Cre under the control of another VSMC-
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specific promoter, Shankman et al. demonstrated that a vast pro-
portion of pulse-labeled cells lost expression of VSMC markers
and acquired expression of macrophage or mesenchymal stem
cell markers. Furthermore, it was demonstrated that this pheno-
typic transition depended on expression of the transcription fac-
tor Klf4 [109]. A recent report using a model of stochastic mul-
ticolor fate mapping further suggested that a subset of highly
proliferative plastic VSMCs can clonally expand in lesions and
that progeny of a single VSMC can adopt different phenotypes,
including conversion to a macrophage-like phenotype with ex-
pression of the macrophage marker Mac3 [20].

In in vivo studies, VSMC-derived macrophage-like cells
could form foam cells, but these are likely functionally different
from bona fide macrophages [40, 109]. This notion is corrobo-
rated by in vitro studies, where cholesterol-loading induces
VSMC transdifferentiation to macrophage-like cells [101].
Indeed, these VSMC-derivedmacrophage-like cells have a tran-
scriptional profile that largely differs from bonemarrow-derived
macrophages and perform poorly in classical macrophage func-
tion tests, such as phagocytosis and efferocytosis [131].

Resident aortic macrophages and differentiation of local
precursors

In the absence of hypercholesterolemia and atherosclerotic dis-
ease, healthy arteries already contain resident macrophages and
dendritic cells. This was recently demonstrated with the help of
genetic fate mapping models, and it could be revealed that mu-
rine arteries contain a resident population of macrophages de-
rived from two distinct sources, namely CX3CR1+ embryonic
precursors and bone marrow-derived monocytes that colonize
arterial tissue during embryonic development and in the first few
days after birth, repsectively [35]. This arterial macrophage pop-
ulation appears to self-renew during homeostasis and after
infection-induced depletion [35]. The role of this resident mac-
rophage population in atherosclerosis remains to be determined,
but it is conceivable that they may impact disease initiation in a
similar fashion as vascular resident dendritic cells that take up
lipids and form foam cells at very early stages of lesion forma-
tion [86]. Their proliferative ability also suggests that they may
contribute to macrophage accumulation during lesion progres-
sion. In addition to resident arterial macrophages, some studies
have furthermore suggested that a population of adventitial mac-
rophage progenitor cells resides in the adult mouse aorta and
may locally differentiate to contribute to macrophage accumu-
lation in atherosclerosis [90, 91].

The notion that a large part of resident tissue macrophages
arise from stem cells during embryonic development has chal-
lenged the general Bmonocyte-derived macrophage^ para-
digm [47, 87]. The exact developmental origin of these mac-
rophages, however, is still debated [47, 87]. It appears that
macrophages in any given tissue originate from various
sources of precursors such as yolk sac-derived progenitors,

fetal hematopoietic stem cells (HSCs), or adult HSC-derived
monocytes, both during homeostasis and inflammation [47]. It
remains to be determined whether ontogeny has functional
implications in mature macrophages [47], and it will be inter-
esting to investigate not only the contribution of resident arte-
rial macrophages and macrophage progenitors to macrophage
accumulation in atherosclerosis, but also the impact of mac-
rophage origin on disease-relevant functions.

Macrophages and plaque regression

Atherosclerotic plaques—and their macrophage content—can
regress, as shown in particular in murine models of hypercho-
lesterolemia reversal [39, 42, 89]. However, the exact underly-
ingmechanisms are still debated. Some reports based onmodels
of atherosclerotic aortic transplantation proposed that egress of
mature macrophages from lesions drove plaque regression in a
process involving liver X receptor (LXR)-dependent induction
of CCR7 in macrophages [38] and that this is hampered by
expression of the adhesionmolecule JAM-C on endothelial cells
[17]. It was further proposed that lesional macrophages can
express retention molecules such as netrin-1 and its receptor
UNC5b, which inhibit their emigration from lesions and thereby
promote plaque progression [129]. Another study proposed that
regression of lesional macrophage burden was independent of
CCR7-driven macrophage emigration, but rather relied on sup-
pression of monocyte recruitment and steady local apoptosis of
plaque macrophages [89].

Functions of macrophages in atherosclerosis

Production of inflammatory cytokines and proteases

Once in lesions, macrophages actively participate in vascular
inflammation through secretion of proinflammatory cytokines
and the production of chemokines to promote further recruit-
ment of immune cells. Plaque macrophages express proin-
flammatory cytokines which have been assigned a pro-
atherogenic role such as TNFα [84], IL-18 [75, 138], and
IL-12 [67]. Although affecting all hematopoietic cells and
not only macrophages, experimental studies of lethal irradia-
tion and bone marrow reconstitution in atherosclerosis-prone
mice have been essential in establishing the crucial role of
macrophage-derived cytokines in plaque inflammation. IL-
1α and IL-1β deficiency in bone marrow-derived cells was
shown to reduce lesion formation and inflammation in Apoe−/
− mice [59], although a subsequent study proposed that only
leukocyte-derived IL-1α, but not IL-1β, has a crucial role in
atherogenesis [44]. CCL2 overexpression in bone marrow
cells increased macrophage recruitment to lesions, showing
that leukocyte-derived chemokines can fuel plaque inflamma-
tion [3]. Plaque macrophages also produce anti-inflammatory
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cytokines, and leukocyte-specific deficiency in IL-10 or IL-13
increased plaque inflammation and lesion formation [19, 88].

Proteolytic activity in lesions is associated with the pro-
gression towards a vulnerable and rupture-prone phenotype
[112]. Lesional macrophages are known to have a strong pro-
teolytic activity and are thus considered to substantially par-
ticipate in plaque destabilization and rupture [92]. A proof-of-
concept for the critical role of macrophage-mediated proteol-
ysis in plaque destabilization was obtained in Apoe−/− mice
overexpressing active matrix metalloproteinase (MMP)-9 spe-
cifically in advanced lesion macrophages, which induced fea-
tures of plaque disruption [50]. Conversely, MMP-14 defi-
ciency in bone marrow-derived cells led to formation of stable
plaques with increased collagen content in Ldlr−/− mice, sug-
gesting a role of macrophage-derived MMP-14 in plaque de-
stabilization [105].

Foam cell formation

Formation of macrophage foam cells in the vascular intima is
a hallmark of atherosclerosis. The extent to which macro-
phages accumulate intracellular lipids represents the balance
between extracellular lipid uptake and reverse lipid transport
from the intracellular compartment to extracellular lipid ac-
ceptors. Macrophages take up modified LDL through various
scavenger receptors such as CD36, scavenger receptor A1
(SR-A1, also known as MSR1), scavenger receptor B1,
LDL receptor-related protein 1 (LRP-1), and lectin-like
oxLDL receptor-1 (LOX-1) [122]. Experimental studies in
mice deficient for scavenger receptors have investigated their
role in foam cell formation and atherogenesis. Ldlr−/− mice
with macrophage-specific deficiency in LRP-1 have de-
creased cholesterol accumulation in macrophages upon high-
fat diet feeding but accumulate cholesterol and triglycerides in
the bloodstream, hampering interpretation of the specific role
of LRP-1 in lesion macrophages [72]. Several studies have
demonstrated reduced foam cell formation in mice with total
or macrophage-specific deficiency in CD36 [36, 37] and
MSR1 [10, 118]. However, another report in Apoe−/− mice
deficient for CD36 or MSR1 demonstrated normal lesional
foam cell accumulation despite reduced cholesterol accumu-
lation in peritoneal macrophages, suggesting that alternative
pathways of lipid uptake can compensate for the loss of CD36
or MSR1 [79]. In addition to its role in lipid uptake, a critical
role forMSR1 has been identified in macrophage proliferation
in advanced lesions [98]. Recent research demonstrated that
the adhesion receptor CD146 (also known as melanoma cell
adhesion molecule, MCAM), which is expressed on human
and murine plaque macrophages, promotes the accumulation
of oxidized LDL in macrophages by aiding CD36 internaliza-
tion. Interestingly, CD146 also appears to promote macro-
phage retention within lesions [73].

Intracellular cholesterol can be removed frommacrophages
through an active reverse cholesterol transport process from
the intracellular compartment to extracellular lipid acceptors
such as Apolipoprotein A-1 (ApoA-1), a major constituent of
high-density lipoprotein (HDL) [141]. Macrophage cholester-
ol efflux depends on the ATP-binding cassette transporters
(ABC) ABCA1 and ABCG1 [141]. Accordingly, hypercho-
lesterolemic mice lacking ABCA1 and ABCG1 expression in
leukocytes display enhanced atherosclerotic lesion formation,
likely in part due to increased accumulation of macrophage
foam cells [139]. However, the role of ABCA1 and ABCG1-
dependent cholesterol efflux pathways goes beyond the regu-
lation of foam cell formation. Indeed, ABCA1 and ABCG1
are suppressors of hematopoietic stem and progenitor cell
(HSPC) proliferation and mobilization [136, 140], and
Acba1−/−Abcg1−/− mice show uncontrolled HSPC prolifera-
tion, leukocytosis [140], and increased extramedullary hema-
topoiesis [136], which altogether promote immune cell accu-
mulation within lesions [140].

Proliferation and senescence, survival, and apoptosis

Given its recently appreciated importance in lesional macro-
phage accumulation (see above), proliferative ability can also
be considered an important functional trait of lesion macro-
phages. As macrophage proliferation has been proposed to be
preferentially activated in advanced lesions [10], deciphering
the mechanism underlying the transition from a non-
proliferative to a proliferative state would be of interest. In
contrast to proliferating macrophages, lesions also contain
cells with terminal loss of proliferative ability, namely senes-
cent cells. Although a general pathogenic role of senescence
in atherosclerosis was already suspected [22, 134], a recent
report proposed that senescent macrophage foam cells within
the vascular intima were pathogenic during the whole athero-
genic process [23]. Intimal macrophage foam cells expressing
senescent markers were abundantly found in the intima of the
lesion-prone lesser curvature of the aortic arch in Ldlr−/−mice
after 9 days of atherogenic diet feeding, and their pharmaco-
logical clearance reduced mRNA expression of Tnfa, Vcam1,
and Mcp1, suggesting a role of these cells in lesion initiation.
Senescent markers were also found in ∼20% of macrophage
foam cells in established lesions, and sorted senescent macro-
phages had increased mRNA expression of some proinflam-
matory cytokines (Il1α,Mcp1) and metalloproteases (Mmp12,
Mmp13). Accordingly, clearance of senescent cells from
established lesions halted lesion progression and was associ-
ated with features of plaque stability [23]. Thus, senescence
can be considered as a novel deleterious dysfunctional state of
macrophages in lesions.

Survival and apoptosis in plaques represent critical aspects
of macrophage biology in atherosclerosis as they dictate not
only formation of the necrotic core, but can also underlie
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plaque regression and resolution of inflammation upon nor-
malization of blood lipid levels [89]. In line, it is still unclear
how modulation of macrophage survival impacts atheroscle-
rosis, as contrasting results have been reported in various ge-
netic mouse models that showed that increased macrophage
survival appeared either beneficial [16, 104] or deleterious
[11, 12, 48, 143]. Whether increased macrophage survival or
apoptosis ultimately determines plaque progression or regres-
sion most likely depends on the plaque stage and total
efferocytotic ability of surrounding viable macrophages.

Efferocytosis and authophagy

Efferocytosis corresponds to the immunologically silent clear-
ance of apoptotic cells by phagocytes and is essential in the
maintenance of self-tolerance [51]. Several lines of evidence
indicate that macrophage efferocytotic ability has a critical
impact on atherosclerotic lesion formation and progression
[130]. Evidence supporting this concept mostly stems from
genetic mouse models in which major pathways of apoptotic
cell recognition by phagocytes have been invalidated. MFG-
E8 bridges apoptotic cells to macrophages through binding of
exposed phosphatidilyserine (PS) on themembrane of apopto-
tic cells and αvβ3/β5 integrins on macrophages, and Ldlr−/−

mice with immune cell-specific deficiency in MFG-E8
displayed increased atherosclerosis and necrotic core forma-
tion [4]. Apoptotic cells can also be recognized by the PS-
binding protein GAS6, which binds the receptor MER-TK
on macrophages. Increased atherosclerosis, accumulation of
apoptotic cells, and plaque necrosis were observed in Apoe−/
−Mertk−/− mice [126] and in Ldlr−/− mice [5] with immune
cell MER-TK deficiency. In line, it was recently proposed that
proteolytic cleavage of MER-TK from the macrophage sur-
face triggers defective efferocytosis in advanced lesions, as
Ldlr−/− mice expressing a cleavage-resistant MER-TK
showed improved efferocytosis and decreased necrosis in le-
sions [18]. Blockade of TIM-1 or TIM-4, which are expressed
by macrophages and recognize PS on apoptotic cells [43], or
genetic deficiency in the complement C1q, known to be in-
volved in apoptotic cell clearance, also increased lesion for-
mation in Ldlr−/− mice [14]. Apoptotic cells can also express
Bdo not eat me^ signals such as CD47, which inhibit
efferocytosis upon binding to its receptor SIRPα on macro-
phages, and therapeutic neutralization of CD47 via monoclo-
nal antibodies was recently shown to promote efferocytosis
and reduce lesion formation in murine models of atheroscle-
rosis [63]. This further shows that efferocytosis is a crucial and
therapeutically targetable function of atherosclerotic lesion
macrophages. Beyond its role in preventing accumulation of
secondary necrotic cells, efferocytosis also has a profound
impact on macrophage phenotype. Notably, phagocytosis of
apoptotic cells reprograms macrophages towards an anti-
inflammatory profile, with increased expression of anti-

inflammatory IL-10 and TGFβ, and decreased expression of
proinflammatory IL-12 and TNFα [25]. Furthermore, apopto-
tic cell phagocytosis triggers LXR-dependent expression of
MER-TK by phagocytes, further promoting efferocytosis
[83]. Given the multifaceted anti-atherogenic functions of
LXR-mediated gene expression in macrophages [38, 57,
115], LXR activation through efferocytosis may further par-
ticipate in a beneficial macrophage phenotype.

Autophagy can be induced in response to oxidative and
endoplasmic reticulum (ER) stress in plaque macrophages,
and disruption of this process through genetic deficiency in
the autophagy-related gene 5 (Atg5) increased plaque macro-
phage apoptosis and necrosis. Additionally, apoptotic Atg5-
deficient macrophages were less efficiently efferocytosed by
viable macrophages [71]. These findings suggest that macro-
phage autophagy plays a protective role in advanced
atherosclerosis.

Microenvironmental determinants of macrophage
function in atherosclerosis

In lesions, macrophages are exposed to a vast variety of stim-
uli that can profoundly impact on their phenotype. In response
to microenvironmental factors, several intracellular pathways
involving signaling hubs such as, e.g., nuclear factor Bkappa-
light-chain-enhancer^ of activated B cells (NF-κB), various
signal transducer and activation of transcription (STAT) tran-
scription factors or nuclear receptors, notably of the
peroxisome-proliferator activating receptor (PPAR) family,
are activated and control macrophage phenotype [29]. To il-
lustrate the complexity of the plaquemicroenvironment and of
the determinants of lesional macrophage phenotype, we here
provide a brief and non-exhaustive overview of some of the
major cues governing macrophage function in atherosclerosis
(Fig. 1).

Lipids

Within lesions, macrophages are exposed to native and mod-
ified lipoproteins and accumulate intracellular lipids.
Efferocytosis of apoptotic cells can also contribute to macro-
phage accumulation of intracellular lipids. How this affects
macrophage phenotype is still unclear [122]. Lipid loading
itself was unexpectedly shown to inhibit, rather than to acti-
vate inflammatory gene expression in peritoneal macrophage
foam cells of Ldlr−/− mice fed a high-fat diet, a process that
depended on accumulation of the lipid intermediate
desmosterol and activation of LXR target gene expression
[115]. This suggests that the plaque microenvironment, rather
than lipid loading itself, controls proinflammatory functions
of lesional macrophages. On the other hand, excess intracel-
lular cholesterol accumulation has toxic effects in
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macrophages through activation of endoplasmic reticulum
(ER) stress, which also has proinflammatory effects (see be-
low) [41]. Fatty acid accumulation in macrophages can also
promote a proinflammatory macrophage phenotype through
activation of the fatty acid binding protein (FABP)-4 [74].

Oxidized phospholipids and lipoproteins (ox-LDL) promote
macrophage inflammation [68], notably through the scavenger
receptor CD36, which induces proinflammatory effects through
promotion of the formation of a Toll-like receptor (TLR)-4/
TLR-6 heterodimer upon ox-LDL binding [116].

Recently, it was proposed that HDL, which is essential in
macrophage reverse cholesterol transport and generally
considered atheroprotective, could induce a proinflammatory
phenotype in macrophages, with increased secretion of IL-12,
IL-1β, and TNFα and reduced IL-10 production. This study
proposed that HDL-dependent passive cholesterol efflux led
to depletion of membrane cholesterol and disruption of lipid

rafts, leading to activation of several protein kinase C isoforms
and proinflammatory effects mediated by NF-κB and STAT-1
signaling [128]. In contrast, ABCA1- and ABCG1-dependent
active cholesterol efflux to HDL is thought to have anti-
inflammatory effects in macrophages, as ABCA1/G1
double-deficient lesional macrophages display a clearly pro-
inflammatory profile [137].

A family of anti-inflammatory, pro-resolving lipid media-
tors has a crucial role in the resolution of inflammation partic-
ularly through promotion of macrophage efferocytosis, sup-
pression of proinflammatory, and activation of anti-
inflammatory gene expression [108]. The concentration of
two of these pro-resolving mediators, Maresin 1 and
Resolvin D2, was recently found to decrease in vascular tissue
during plaque progression, and their therapeutic delivery fa-
vored an antiatherogenic macrophage phenotype and de-
creased lesion formation [132].
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Fig. 1 Nonexhaustive overview of microenvironmental and intrinsic
modulators of atherosclerotic plaque macrophage phenotype. In lesions,
macrophages are exposed to a variety of microenvironmental signals that
either promote a pathogenic phenotype (in red), or in contrast attenuate
pro-atherogenic features (in green). The exact influence of some
microenvironmental signals (e.g., hypoxia) is still poorly defined.
Abbreviations: ABCA1/G1 ATP binding cassette transporter A1/G1,
ATP adenosine triphosphate, CHOP C/EBP homologous protein,
CLEC4e C type lectin domain family 4 member E, dsDNA double-
stranded deoxyribonucleic acid, FABP4 fatty acid binding protein 4,

Neutro neutrophils, NETs neutrophil extracellular traps, eRNA
extracellular ribonucleic acid, HDL high-density lipoprotein, HSPs
heat-shock proteins, IFN interferon, IL interleukin, NF-ϰB nuclear
factor Bkappa-light-chain-enhancer^ of activated B cells, NLRP3,
NACHT, LRR and PYD domain-containing protein 3, OxLDL oxidized
low-density lipoprotein, PKC protein kinase C, PS phosphatidylserine,
ROS reactive oxygen species, TGFβ transforming growth factor-β, TLR
Toll-like receptor, ER stress endoplasmic reticulum stress, TNFα tumor
necrosis factor-α, UPR unfolded protein response
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Cholesterol crystals

In lesions, cholesterol crystals can form both intra- and
extracellularly, and cholesterol crystal deposits can be
detected even in early atherosclerotic lesions [33].
Importantly, cholesterol crystals can activate the
NLRP-3 inflammasome, which converts the proinflam-
matory cytokines IL-1β and IL-18 to their mature and
secretable form, and cholesterol crystal-mediated activa-
tion of the NLRP-3 inflammasome has been suggested
to be essential in atherogenesis [33]. Formation of cho-
lesterol crystals in macrophages and subsequent NLRP-3
inflammasome activation depends on CD36 [110].
Besides their direct proinflammatory effects in macro-
phages, cholesterol crystals also induce formation of ex-
tracellular traps (NETs) by neutrophils. NETs, in turn,
prime macrophages for proinflammatory cytokine pro-
duction, notably IL-1α and IL-1β, at the transcriptional
level, disclosing cholesterol crystals not only as a direct
inducer of macrophage inflammation but also as an in-
direct priming signal through NETosis [135].

Hypoxia

In advanced lesions, growing distance from the vessel lumen
to the plaque core and increased metabolic demand creates
areas of hypoxia. Hypoxia induces stabilization of the
oxygen-sensing transcription factor hypoxia-inducible fac-
tor-1α (HIF1α), a process that can be further substantiated
by inflammatory signaling pathways such as NF-κB [85,
96]. Although the critical role of HIF1α in macrophage func-
tion is well established [31, 85], contradictory findings on its
effects in atherosclerosis have been obtained. Reduced athero-
sclerosis in LysMcreHif1aflox mice with myeloid cell-specific
HIF1α deficiency was reported after 16 weeks of high-
cholesterol diet, and HIF1α-deficient macrophages showed
decreased apoptosis and inflammatory cytokine expression
in vitro [1]. Another study showed no differences in early
lesion formation in the same model at 6 weeks of high-fat diet
feeding [21]. In contrast, increased early lesion formation and
IL-12 expression by antigen-presenting cells were evidenced
in CD11ccreHif1afloxmice where Cre-mediated recombination
occurs not only in dendritic cells but also in some macro-
phages and T cells [2, 21]. Given that Cre expression driven
by the LysM promoter is not macrophage specific, and that not
all macrophages may be affected in CD11ccreHif1aflox mice,
these results are altogether difficult to interpret. One could
speculate that HIF1α differentially affects distinct macro-
phage subsets and has disease stage-specific functions.
Hif1α activation can also induce expression of netrin-1 and
Unc5b in lesional macrophages [94], a process that could
promote their retention in lesions [129], although this has
yet to be addressed experimentally.

Endoplasmic reticulum stress and the unfolded protein
response

In lesions, several factors (e.g., lipid loading, metabolic stress,
inflammatory signaling) can induce an impairment of the en-
doplasmic reticulum (ER) function inmacrophages, leading to
activation of the unfolded protein response (UPR) [56]. The
UPR/ER stress response appears to have a crucial role in the
control of macrophage apoptosis in lesions (for detailed re-
view about the role of ER stress and UPR in atherosclerosis,
we refer the reader to references [56, 58]). Indeed, macro-
phage cholesterol loading induces ER stress and triggers cell
death through a mechanism depending on the transcription
factor CHOP, a major effector of the UPR [41]. CHOP defi-
ciency drastically reduced apoptotic cell accumulation and
necrotic core formation in advanced lesions in Ldlr−/− and
Apoe−/− mice [127]. Other effector proteins of the UPR such
as XBP1 or IRE1α may also have a substantial role in the
control of lesional macrophage phenotype [26, 56].

Necrotic cells

During atherosclerotic plaque progression towards advanced
and unstable phenotypes, accumulation of apoptotic cells is
thought to eventually overcome macrophage efferocytic abil-
ity, leading to local secondary necrosis of plaque cells and
formation of the necrotic core. In contrast to apoptotic cells,
recognition and engulfment of necrotic cells elicit proinflam-
matory responses inmacrophages [99]. Loss of cell membrane
integrity allows leakage of intracellular molecules that are
recognized by macrophages as damage-associated molecular
patterns (DAMPs) such as double-stranded DNA (dsDNA),
RNA, heat shock proteins (HSPs), or nucleotides (e.g., ATP)
[100]. Notably, HSPs and dsDNA promote macrophage in-
flammation via Toll-like receptors (TLRs) [142], and extracel-
lular RNA was recently shown to promote atherosclerosis,
presumably in part through induction of proinflammatory cy-
tokine secretion (e.g., TNFα, IL-1β) by macrophages [113].
A recent study demonstrated a critical role of the necrotic cell
sensor C type lectin receptor 4e (CLEC4e) in the control of
lesional macrophage phenotype [26]. In vitro, activation of
CLEC4e increased macrophage lipid accumulation by reduc-
ing Abca1 and Abcg1 expression and inhibiting reverse cho-
lesterol transport, without affecting ox-LDL uptake. CLEC4e
signaling also activated the UPR inmacrophages in vitro, with
increased expression of the UPR/ER stress-associated proteins
inositol-requiring enzyme-1α (Ire1α) and Chop and splicing
of Xbp1 mRNA. Although the role of the UPR/ER stress
response and particularly of CHOP in lesional macrophage
apoptosis is well established [41, 127], as previously men-
tioned, Clec4e signaling was not associated with increased
macrophage cell death, but instead promoted a proinflamma-
tory macrophage phenotype and macrophage proliferation
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through upregulation of macrophage colony-stimulating fac-
tor (CSF1). Accordingly, Ldlr−/− mice with CLEC4e-
deficient bone marrow cells showed decreased atherosclerosis
associated with reduced lesional macrophage content and pro-
liferation, lower plaque lipid accumulation, and diminished
inflammatory cytokine expression [26].

Growth factors, proinflammatory and anti-inflammatory
cytokines, and interaction with other immune cells

In lesions, macrophages are exposed to growth factors such as
granulocyte-macrophage colony-stimulating factor (CSF2) or
CSF1 that control macrophage survival, proliferation, and var-
ious aspects of their function [26, 32]. CSF2 was also shown
to indirectly induce plaque macrophage apoptosis through up-
regulation of IL-23 expression [117]. The plaque microenvi-
ronment also contains a plethora of pro- and anti-
inflammatory cytokines that impact macrophage phenotype
[6, 124]. Cytokines such as IL-1β, TNFα, or IFNγ promote
acquisition of a pro-atherogenic macrophage phenotype with
increased expression of proinflammatory cytokines and
chemokines, proteases, and can in addition also affect macro-
phage lipid metabolism [93]. Type I interferons seem to par-
ticularly influence foam cell formation, as IFN-α promotes
lipid uptake [70] while IFN-β both increases uptake and re-
duces efflux of cholesterol in macrophages [15]. In contrast,
IL-10 confers anti-atherogenic properties to macrophage by
reducing their expression of inflammatory cytokines and pro-
teases and amodulation of the lipid metabolism [54]. The anti-
atherogenic cytokine IL-33 limits foam cell formation by re-
ducing macrophage lipid uptake and increasing reverse cho-
lesterol transport [77]. Likewise, IL-13 has been shown to
promote an anti-atherogenic plaque phenotype [19].

In line, interaction with other cytokine-producing immune
cell types shapes lesional macrophage phenotype. CD4+ T
cells primed by antigen presenting cells in atherosclerotic ves-
sels express IFNγ and TNFα and promote modified LDL
uptake by lesional macrophages, as demonstrated in an
ex vivo aortic explant model [64]. Co-culture with activated
CD8+ T cells promotes secretion of CCL2 and CXCL1 by
macrophages, and aortas from atherosclerotic mice display
reduced Ccl2 and Cxcl1 mRNA levels after CD8+ T cell de-
pletion [28]. CD8+ T cell-derived TNFα was also proposed to
potentiate macrophage-mediated inflammation in lesions, and
CD8+ T cell production of cytotoxic enzymes granzyme-B
and perforin trigger macrophage cell death in lesions [66],
indicating a potential role of CD8+ T cells in the control of
plaque macrophage phenotype.

Other microenvironmental and intrinsic factors

In lesions, macrophages are exposed to reactive oxygen spe-
cies (ROS) produced by other vascular cells such as

endothelial cells and VSMCs that may impact their pheno-
type. ROS production can be activated in macrophages in
response to modified LDL and is thought to have proinflam-
matory effects, as demonstrated in macrophages deficient for
the NADPH-oxidase component Nox2 [13]. ROS also pro-
mote cellular senescence [134]. Exposure to hemostatic fac-
tors in lesions can also impact macrophage phenotype [62],
and we could for example recently demonstrate that coagula-
tion factor XII induced a proinflammatory macrophage phe-
notype and promoted lesion formation [133]. Epigenetic reg-
ulation of gene expression plays a role in definingmacrophage
phenotype in lesions, and changes in acetylation or methyla-
tion of specific histones associated with plaque progression
have been observed in human lesion macrophages [52].
How these epigenetic marks are acquired and how they influ-
ence gene expression and macrophage function remain to be
determined. Non-coding RNAs such as microRNAs [60] or
long-noncoding RNAs [55] may also affect gene expression
and macrophage function in atherosclerosis.

Some studies indicate that macrophage phenotype could be
in part predetermined before their precursors reach atheroscle-
rotic lesions. In particular, it has been demonstrated that hy-
percholesterolemia leads to hematopoietic stem cell priming
in the bone marrow towards a proinflammatory phenotype
[106]. In a model of gastrointestinal infection, resident bone
marrow natural killer cells were shown to educate monocytes
during medullar development and to prime them towards reg-
ulatory functions [9]. As developing and mature monocytes
are in contact with a plethora of other immune cells in the bone
marrow and spleen, one could speculate that this concept of
monocyte pre-education at their production sites may be rele-
vant in atherosclerosis.

Atherosclerotic lesion macrophage identity: moving
beyond the polarization paradigm

Limits of the M1/M2 paradigm and its variations

It has long been recognized that macrophages can adopt a
wide range of phenotypes in response to specific stimuli. A
commonly used classification of macrophage phenotypes re-
lies on the in vitro defined M1/M2 paradigm and its variants.
Macrophages stimulated with IFNγ and LPS adopt a M1 phe-
notype, characterized by high expression of proinflammatory
cytokines and chemokines, expression of inducible nitric ox-
ide synthase (iNOS), and production of ROS, associated with
pathogen destruction [76, 80, 111]. In contrast, macrophages
exposed to the Th2 cytokines IL-4 and IL-13 adopt an anti-
inflammatory M2 phenotype and secrete IL-10 and TGFβ
[76, 80, 111]. Using various stimulation cocktails, variants
of the M2 phenotype (M2a, M2b, M2c) have further been
described [76, 80, 111].
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The M1/M2 polarization states were defined in specific
conditions in vitro and represent extreme, artificial ends of a
spectrum of macrophage phenotypes. However, the M1/M2
classification is commonly used to attempt defining macro-
phage phenotype in in vivo contexts. For example, expression
of genes associated with M1/M2 polarization (e.g., Arginase-
1, CD206, iNOS) is employed to infer macrophage function in
disease models in vivo. This represents at best an approxima-
tion but could potentially be misleading: recently, in an obe-
sity model, adipose tissue macrophages expressing the M2
marker CD301b were shown to induce weight gain and glu-
cose intolerance, which is in contrast to the predicted benefi-
cial role of M2-polarized macrophages in this setting [61, 65].
Although prototypical M1/M2 phenotypes associated with the
expression of respective markers can be faithfully recapitulat-
ed in specific contexts in vivo (e.g., allergy or parasitic infec-
tion), the M1/M2 paradigm cannot be readily transposed to
any disease setting where macrophages are exposed to a more
complex microenvironment [76, 111]. In light of the complex-
ity of the atherosclerotic plaque environment (Fig. 1), the M1/
M2 paradigm is unlikely to embrace the complexity of mac-
rophage phenotypic heterogeneity in atherosclerosis.

Despite these widely recognized limitations, the M1/M2
paradigm is nevertheless ubiquitously used in the atheroscle-
rosis research literature, and analysis of M1/M2-associated
gene expression is a request that often arises during manu-
script peer review. Researchers attempting to decipher macro-
phage functional heterogeneity in atherosclerosis and appre-
hend its role in disease have elaborated on the M1/M2 para-
digm and proposed several macrophage polarization states
induced by specific stimuli (e.g., M4, induced by CXCL4;
Mheme, induced by Heme; Mox, induced by oxidized phos-
pholipids) presumably associatedwith particular functions rel-
evant to atherosclerosis [24, 27]. Although this approach has
some merits as it attempts to integrate the role of plaque-
specific stimuli in the control of lesional macrophage function,
it still appears drastically reductive when considering the va-
riety and complexity of plaque macrophage phenotypic
determinants.

In line, recent articles have questioned the use of a rigid
nomenclature to classify macrophage subsets in the context of
cardiovascular diseases and atherosclerosis. Tabas and
Bornfeldt proposed Bthat the phenotype of lesional macro-
phages cannot be classified into predetermined subsets but
rather is a consequence of the lesional microenvironment
and the activation of specific intracellular signaling
pathways^ [122]. Nahrendorf and Swirski argued that the
M1/M2 paradigm constitutes a hurdle in deepening our un-
derstanding of macrophage function and should be abandoned
in favor of a function-focused identification of macrophage
phenotypes [82]. As true functional features of macrophages
dictated by the plaque environment, rather than their affilia-
tion to arbitrarily defined subsets, determines their

contribution to atherosclerosis, we fully concur with these
views. For a better understanding of their role in various stages
of atherosclerosis, defining macrophages based on their origin
and a set of disease-relevant functions would be much more
informative than assigning them a putative polarized state
based on very limited information (e.g., expression of a set
of predefined markers). Efforts aiming at establishing a unify-
ing nomenclature for macrophage activation and polarization
have been made, and it was proposed to define macrophages
based on their source, activators, and a consensus collection of
markers [80]. Although this is convenient to implement in
in vitro experiments, such an approach may not be readily
applicable to lesional macrophages in vivo, as the definition
of micro-environmental activators may be close to impossible
and no consensus has yet been established for plaque macro-
phage subsets and their markers. Nevertheless, it now appears
technically feasible to elaborate on a similar idea and to at-
tempt defining lesional macrophages based on their origin,
activation of intracellular signaling pathways, and functional
features.

Methodological limitations and future avenues

To date, the most commonly used methodological tools un-
fortunately fail to embrace the full spectrum of macrophage
functional heterogeneity in vivo. Use of arbitrarily defined
sets of markers associated with in vitro macrophage-
polarized states in flow cytometric or immunohistochemical
analyses of lesionmacrophages does not allow deducing func-
tional features. Transcriptomics analyses of bulk lesion mac-
rophage populations, even if presorted according to putative
subset markers, produce averaging effects that likely mask
discrete, intermediate phenotypes, and it is likely that pro-
posed lesional macrophage subsets such as M4 or Mox actu-
ally encompass macrophages with diverse phenotypes. Recent
technological advances may provide researchers with better
tools to investigate macrophage functional heterogeneity in
atherosclerosis and its impact on disease. For example, recent
genetic fate-mapping or parabiosis models allow discriminat-
ing lesionmacrophages and macrophage-like cells of different
origin [35, 40, 98, 109]. High-dimensional flow cytometry
analyses and mass cytometry could be used to simultaneously
analyze an increasingly growing number of cell surface and
intracellular markers in lesion macrophages [53, 103]. This
would for example allow analyzing expression of functionally
relevant cell surface proteins such as ABCA1, MER-TK,
SIRPα, CD36, MSR1, and others in flow cytometric analyses
of macrophages directly extracted from the lesion environ-
ment, and could help identify and sort more precisely defined
macrophage subsets using a wide array of markers, some of
which likely remain to be identified. Single-cell transcripto-
mics approaches such as single-cell RNA-sequencing are able
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to identify cells endowed with distinct phenotypes within
seemingly homogenous immune cell populations and have
for example revealed phenotypes in Th17 Tcells ranging from
regulatory to highly pathogenic in experimental autoimmune
encephalomyelitis [45]. This individual cell approach could
represent a powerful tool to analyze macrophage phenotype
in atherosclerosis while avoiding bias associated with arbi-
trary predefinition of cell subsets. Although these methods
are still costly and require a significant level of technical ex-
pertise that may preclude their routine use in many laborato-
ries, the higher resolution that they offer may be a way to
dwell deeper into lesional macrophage biology in the future.

Understanding the complex biology and function of mac-
rophages in vascular inflammation and atherosclerosis consti-
tutes as prerequisite for the development of novel therapeutic
approaches. Precisely identifying the mechanisms of macro-
phage accumulation and functional regulation in lesions could
pave the way towards the development of original strategies
targeting these processes and limiting lesion formation or pro-
gression towards a vulnerable phenotype. This could also fa-
cilitate the development of novel imaging strategies [34] or the
emergence of new biomarkers [125] to help evaluate plaque
phenotype and the associated atherothrombotic risk in
patients.

Conclusion

Recent research has revealed an unexpected complexity in the
mechanisms of macrophage accumulation in atherosclerosis,
protective and pathogenic functions performed by macro-
phages in lesions, and how these functions are regulated.
Major recent conceptual shifts and challenges to long-
standing paradigms highlight the need to constantly reevaluate
how we apprehend research on the role of macrophages in
atherosclerotic disease. In the near future, higher resolution
analysis of macrophage phenotype in atherosclerotic lesions
through novel methods will allow researchers in the field to
establish more precise macrophage Bidentity cards^ taking in-
to account their origin and disease-relevant functional features.
This will hopefully pave the way for the development of ther-
apeutic strategies targeting macrophages to reduce the disease
burden caused by atherosclerosis and associated pathologies.
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