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Abstract Given that most malignant tumors are derived from
epithelium, developing a strategy for treatment of epithelium-
derived cancers (i.e., carcinomas) is a pivotal issue in cancer
therapy. Carcinomas, including ovarian, breast, prostate, and
pancreatic cancers, are known to overexpress various claudins
(CLDNs); in particular, CLDN-3 and -4 are frequently
overexpressed in malignant case. The generation of CLDN
binders is a key for expanding CLDN-targeted cancer therapy
but has been delayed due to the small size of CLDN extracellu-
lar domains (approximately 50 amino acids for the first domain
and 15 amino acids for the second) and their high homology
among species. Interestingly, however, the receptors for
Clostridium perfringens enterotoxin (CPE), a foodborne toxin
in humans, happen to be identical to CLDN-3 and -4. Thus, the
first CLDN binder, CPE, has provided us CLDN-targeted can-
cer therapy from a concept into a potential reality. In this review,
we describe roles of CPE technology in cancer therapy and
discuss future directions in the CLDN-targeting concept-to-
therapy process.
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Introduction

The tight junction (TJ) is critical for the epithelial barrier
protecting our cells, organs, and body systems from

pathogens and other harmful agents [23]. These structures
reside in the most apical region of the lateral membranes,
where they function as both gates and fences. As gates,
TJs create selective barriers between tissue spaces. As
fences, TJs inhibit the diffusion of lipids and membrane
proteins between the apical and basolateral membrane do-
mains, thus maintaining cell polarity. However, epithelial
carcinogenesis often introduces aberrations into the pro-
teins that form the TJs, consequently disrupting their gate
and fence functions [64]. Thus, TJ proteins are attractive
candidate targets for cancer therapy [48].

One group of proteins that is integral to TJs and to their gate
and fence functions are the claudins (CLDNs) [19]. Each of
the 27 mammalian members of the CLDN family is a tetra-
transmembrane protein that contains 2 extracellular loop do-
mains and N- and C-terminal intracellular domains [55]. The
expression pattern of CLDNs differs among tissues [23]. A
series of gene and histological analysis has revealed that ab-
normal expression patterns of CLDNs are observed in many
cancers (Table 1). These findings indicate that CLDN binders
might be potent therapeutic and diagnostic molecules for can-
cer therapy.

Clostridium perfringens enterotoxin (CPE) is responsible
for the diarrhea and abdominal cramps of C. perfringens type
A food poisoning, which is the second most common
foodborne illness in the USA [21]. The receptors for CPE
were identified in 1997—before the Bdiscovery^ of
CLDNs—and, in 1999, the CPE receptors were found to be
identical to CLDN-3 and -4 [18, 31, 32, 58]. Thus, by being
identified as the first CLDN binder, CPE became an important
nexus between the concept of CLDN-targeted cancer therapy
and, through its application as a model for drug discovery, the
reality of this treatment modality. In this review, we overview
the journey to CLDN-targeted cancer therapy with CPE
technology.
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CPE and its receptor-binding domain

The CPE protein comprises 319 amino acids and has two
domains: the N-terminal cytotoxic domain, which is involved
in oligomerization and pore formation, and the C-terminal
receptor-binding domain (Fig. 1a, b) [35]. To elicit the high
cytotoxic activity of the N-terminal domain requires digestion
of the extreme N-terminal residues by intestinal protease [36].
The CPE oligomerization domain corresponds to amino acids
45–53, and residues 80–106 are responsible for the insertion
of CPE into the membrane and for pore formation [10, 36].
The C-terminal fragment of CPE (corresponding to amino
acids 184–319) is the receptor-binding domain [31, 32].
CLDN-3 and -4 were the first recognized CPE receptors, with
the second extracellular loop domain considered to be the
CPE receptor domain [17, 79]. CPE typically binds to
CLDNs that are Bfree^ on the cell surface and only infrequent-
ly binds to CLDNs that are incorporated into TJs [42, 94].
After interacting with CLDNs, CPE first becomes a small
(∼90 kDa) complex consisting of CPE and a cell surface
CLDN, followed by oligomerization of six of these small
complexes into a large (∼450 kDa) complex. This large com-
plex forms a permeable pore, causing a robust influx of Ca2+,
and the subsequent disruption of the cellular osmotic equilib-
rium and activation of Ca2+-dependent protease cause rapid

cell lysis (Fig. 2) [9]. In this context, CPE is the first CLDN-
targeted cytotoxic molecule. Numerous binding studies have
revealed that CPE strongly binds to CLDN-3, -4, -6, -7, and -9
and weakly binds to CLDN-8, -14, and -19 [17, 71, 94].

Recombinant C-terminal fragments of CPE (C-CPE), cor-
responding to amino acids 184–319 or 194–319, bind to

Fig. 1 Structure of Clostridium perfringens enterotoxin (CPE). a
Structure of CPE (PDB code, 3AM2) by X-ray crystallography. The N-
terminal domain is shown in green, and the C-terminal domain is
turquoise. Regions involved in oligomerization (red), pore formation
(pink), and claudin binding (navy) are indicated. b Schematic diagram
of the roles of the CPE domains. Amino acids shown in blue are
particularly important for claudin binding

Table 1 Cancers characterized by changes in CLDN protein or mRNA
expression

Cancer site or type Upregulated
CLDNs

Downregulated
CLDNs

References

Breast 1, 3, 4, 7 2 [6, 33, 38, 60]

Breast (claudin-
low subtype)

– 3, 4, 7 [25]

Cervical 1, 2,4, 7 – [47, 77]

Colon 1, 2, 3, 4, 12 1, 8 [14, 22, 34, 68]

Endometrial 3, 4 – [40, 73]

Esophageal 3, 4, 7, 18 – [57, 70]

Gastric (intestinal
type)

1, 3, 4, 7 18 [65, 67, 72]

Germ cell 6 – [90]

Hepatocellular 7, 10 1 [7, 11, 26]

Lung (squamous
cell cancer)

3 – [27]

Lung (small cell cancer) 3, 4 – [56]

Oral 1 – [16]

Ovarian 1, 3, 4, 6, 7 – [13, 78, 87]

Pancreatic 4, 18 – [30, 63]

Prostate 3, 4 1, 2, 5, 8 [82]

Renal 1, 4, 7 8 [28, 45]

Renal (oncocytomas) 4, 7, 8 3 [45]

Urothelial 1, 3, 4, 7 – [61]

Fig. 2 CPE-mediated cytolysis. This schematic diagram illustrates the
mechanism underlying CPE-mediated cytolysis. In brief, CPE binds to
CLDNs to form a hexameric complex in the membrane. This complex
creates a pore throughwhich Ca2+ enters the cell. The rapid influx of Ca2+

triggers Ca2+-dependent protease, leading to necrosis
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CLDNs [79, 89, 91]. Treatment of epithelial cell sheets with
C-CPE disrupts the intercellular seal function of TJs without
inducing cytotoxicity [39, 85, 89]. Functional domain-
mapping studies indicate that the minimal CLDN-binding do-
main comprises amino acids 290–319 in the C-terminus and
that Y306, Y310, Y312, and L315 are critical for the interac-
tion of C-CPE with CLDN-4 [24, 84].

The role of CPE for cancer therapy

Ovarian cancers have been studied most frequently as targets
for CPE and its derivatives. A large-scale serial analysis of
gene expression revealed that CLDN-3 and -4 are
overexpressed (83- and 109-fold, respectively) in several
cases of ovarian cancers compared with normal epithelium
[29]. In addition, DNA microarray analysis has shown that
CLDN-3 and -4 are two of the top five differentially expressed
genes in ovarian cancers [75]. CLDN-6 and -7 are also
overexpressed in ovarian cancers [13, 87]. This means that
the expression of several CPE-sensitive CLDNs (that is, those
that strongly bind CPE) is frequently increased in ovarian
cancers [74]. Moreover, the expression levels of CLDN-3
and -4 were higher in chemotherapy-resistant or recurrent
ovarian cancers than in chemotherapy-sensitive ovarian can-
cers [74, 95]. Intraperitoneal injection of CPE into intraperi-
toneal mouse xenografts models of chemotherapeutic-
resistant primary ovarian cancer cells attenuated tumor growth
without apparent side effects [8, 74].

In studies comparing primary breast carcinoma and normal
mammary epithelial tissues, CLDN-3 and -4 were
overexpressed in 62 and 26 % of breast cancers, respectively,
and CLDN-7 gene expression was increased in breast cancers
[38, 60]. Furthermore, CPE has been shown to be cytotoxic in
freshly resected samples of breast cancer tissue [38].
However, 5–10 % of breast cancers comprise a BCLDN-low^
subtype that shows decreased expression of CLDN-3, -4, and -
7 [25].

Among the CLDNs, both CLDN-3 and -4 are strongly
expressed in prostate cancers [51, 82]. In particular, a cDNA
microarray analysis of prostate cancer cell lines and normal
prostate cell lines showed that CLDN-4 mRNA has the
greatest upregulation among 51 upregulated genes in prostate
cancer cells, and an immunohistologic study indicated that
CLDN-4 is highly expressed in primary prostate cancers and
at the secondary sites of metastatic prostate cancers and is
moderately expressed in benign prostatic hyperplasia [43].
Although intratumoral injection of CPE inhibited tumor
growth in mice bearing PC-3 prostate cancer cells, the possi-
bility of side effects of this treatment scheme should be con-
sidered, given that CLDN-3 is strongly expressed in normal
prostate tissues [51, 52].

A Northern blot analysis demonstrated frequent high
CLDN-4 expression in pancreatic cancer tissues, whereas

CLDN-4 expression was low or absent in normal pancreatic
tissue [54]. In addition, immunohistologic analysis using tis-
sue samples from patients with pancreatic cancers revealed
that expression of CLDN-4 was increased in primary and met-
astatic pancreatic cancer cells compared with normal pancre-
atic duct epithelial cells [63]. Intratumoral injection of CPE in
mice carrying Panc-1 xenografts (pancreatic cancer cells)
completely inhibited tumor growth and induced widespread
tumor necrosis without causing any adverse effects [54].

One of the hurdles to the clinical application of human
induced pluripotent stem cells for regenerative medicine is
the risk of teratoma formation from contaminating undifferen-
tiated cells [46]. In this context, CLDN-6 has been shown to
be present in pluripotent-undifferentiated cells and germ cell
tumors but not in differentiated cells [3, 90]. Although trans-
plantation of a mixture of undifferentiated and differentiated
cells into mice led to teratoma formation, treatment of the cell
mixture with CPE prior to transplantation prevented this con-
sequence [3]. Of note, CLDN-6-deficient mice showed a nor-
mal phenotype, indicating that CLDN-6 is dispensable for the
self-renewal and survival of pluripotent cells [1].

The role of C-CPE as an adjunct to chemotherapy

An increasing tumor mass causes an increase in tumor
interstitial fluid pressure and thus hampers the uptake
and penetration of anti-tumor drugs [2]. This situation
prompted the search for a strategy to increase the tissue
penetration of anti-tumor drugs by opening epithelial
junctions, given that intercellular junctions, including
TJs, are not fully compromised in cancer cells [53]. C-
CPE can be used as such an enhancer of anti-tumor drug
penetration (Fig. 3a) [37]. In particular, C-CPE induced
morphologic changes in ovarian cancer cells (causing
them to become spheroids) and repeated combined intra-
peritoneal administration of paclitaxel and C-CPE that
yielded significant synergic anti-tumor effects in mice im-
planted with subcutaneous tumors [20]. Another mole-
cule, a categorized enhancer of anti-tumor drug penetra-
tion, increased the therapeutic efficacy of paclitaxel,
protein-bound paclitaxel, doxorubicin, and a monoclonal
antibody [4, 5].

The biological roles of CLDNs in cancer cells are still not
fully understood, but several reports suggest that the suppres-
sion of CLDNs in cancer cells increased their sensitivity to
anti-tumor drugs. Knockdown of CLDN-4 in ovarian cancer
cells enhanced the cellular uptake of cisplatin and thus their
sensitivity to this drug [95]. Samples of ovarian cancer tissue
resected from cisplatin-resistant patients consistently showed
significantly higher CLDN-4 expression than did those
resected from cisplatin-sensitive patients [95]. CLDNs recruit
various membrane proteins to the plasma membrane and reg-
ulate others at the gene-expression level, suggesting that the
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loss of CLDN-4 might affect the recruitment or expression of
a drug influx or efflux transporter [41, 83, 97]. Moreover,
knockdown of CLDN-7 in pancreatic cancer cells increased
their cisplatin sensitivity by reducing the expression of anti-
apoptotic proteins [88]. Because C-CPE treatment causes the
degradation of CLDN-4 proteins, C-CPE might enhance the
sensitivity to anti-tumor drugs by increasing their cellular up-
take (Fig. 3b) [79]. In an example of an alternative mecha-
nism, CLDN-4 associates with the cisplatin influx transporter
CTR1 and knockdown of CLDN-4 in ovarian cancer cells
hampered the internalization of cisplatin by reducing CTR1
mRNA [76]. The cell type-specific biological functions of
CLDNs should be considered for the utility of CLDN binders
as adjunct therapeutics.

The role of C-CPE in cancer diagnosis

CLDNs are targets not only for cancer therapeutics but also for
cancer diagnosis. C-CPE is a non-toxic CLDN binder, and
concepts for CLDN-targeted cancer diagnosis have been prov-
en by using C-CPE (Fig. 3c).

Intravenous injection of fluorescent dye-conjugated C-CPE
into mice intraperitoneally grafted with OSPC-ARK-1 cells
(intraperitoneal metastatic ovarian cancer cells) detected tu-
mor tissues as small as 1 mm2 in area, which went undetected
by conventional visual observation [12]. C-CPE-mediated de-
tection of peritoneal micrometastases and CPE-mediated cy-
tolysis have been useful in the treatment of uterine serous
cancers, which are gynecologic cancers showing high expres-
sion of CLDN-3 and -4 [12, 73].

SPECT imaging using 111In-conjugated glutathione S-
transferase–C-CPE showed significantly increased accumula-
tion of the radioactive tracer in the tumor tissues of MDA-
MB-468 xenografts (CLDN-4-positive breast cancer cells)
compared with CLDN-4-negative xenografts [59]. This
SPECT imaging technique also detected aplastic lesions in
genetically engineered mice that spontaneously developed
breast cancer (Balb/neuT mouse). As another example, the
accumulation of fluorescein-conjugated C-CPE was greater
in Capan-1 xenografts (CLDN-4-positive pancreatic cancer
cells) than in CLDN-4 negative xenografts [62]. In addition,
the C-CPE conjugate accumulated more strongly in spontane-
ously developed pancreatic intraepithelial neoplasms than in
normal pancreatic tissues [62]. Together, these findings sug-
gest a potential application of C-CPE in the detection of pre-
cursor lesions in some cancers.

Safety evaluation of CPE and C-CPE

Because CLDN-3 and -4 are expressed in normal tissues, in-
cluding lung, thyroid, liver, kidney, and intestines, damage to
these tissues is inevitable once CPE or C-CPE-conjugated
drugs are applied. C-CPE was distributed in thyroid, liver,
kidney, and intestines after intravenous injection [49]. For
instance, a single intraperitoneal injection of CPE in excess
of 0.75 mg/kg was lethal to mice [93]. Similarly, a single
intravenous injection of more than 10 μg/kg of C-CPE conju-
gated with protein synthesis inhibitory factor, which is the
exotoxin derived from Pseudomonas aeruginosa, induced he-
patic injury and loss of body weight in mice [49]. The high
systemic toxicity of CPE limits the administration route and
dose of CPE and C-CPE-conjugated drugs. Indeed, CPE
injected directly into xenografted tumors or into the peritoneal
cavity of mice with peritoneal metastatic cancer inhibited tu-
mor growth in the absence of systemic effects [8, 52, 54, 74].
To reduce the systemic cytotoxicity of CPE and its derivative,
one group designed a CPE-based protoxin [69]. The protoxin
comprised two domains: CPE and the CPE-binding motif

Fig. 3 C-CPE-based therapeutic and diagnostic approaches. a C-CPE-
mediatedmodulation of the epithelial barrier to enhance the penetration of
anti-tumor drugs. b C-CPE-mediated sensitization of cancer cells to anti-
tumor drugs. c Using C-CPE derivatives to target and image cancer cells
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derived from the second extracellular domain of CLDN-3.
The two domains were connected by flexible linker that
contained a cleavage site for prostate-specific antigen (PSA).
PSA is an enzyme secreted from prostate cancer cells and is
activated in tumormicroenvironments because serum protease
inhibitors bind to (and thus inactivate) PSA in the systemic
circulation [15]. This CPE-based protoxin was cytotoxic to
cells that expressed both CLDN-3 and -4, and PSAyet showed
reduced adverse effects.

Because CPE is a bacterial protein, it induces an immune
response. This immunogenicity limits the clinical application
of native CPE and its derivatives because the resulting anti-
body response may complicate the prediction of their pharma-
cokinetic–pharmacodynamic profiles and because the immu-
nogenic compounds might induce complement- or IgE-
mediated hypersensitivity [44]. A previous domain-mapping
analysis of CPE revealed amino acids 16–65, 91–170, and
286–305 as antigenic epitopes, but the minimal CLDN-
binding domain of CPE (amino acids 290–319) is considered
to have low antigenicity [80]. Subsequent conjugation of this
30 amino acid peptide with tumor necrosis factor alpha in-
creased its CLDN-targeting ability and its specific cytotoxicity
against cells that express CLDN-3 and -4 [96]. In another
study, screening of a phage display library yielded two
CLDN-4-binding 12 residue peptides whose amino-acid mo-
tifs were similar to the minimal binding domain of C-CPE
[50]. Future efforts focused on minimizing the CLDN-
binding domain of CPE might overcome its antigenicity.

The role of C-CPE as a template for creating new CLDN
binders

Native CPE binds to a broad range of CLDNs, leading to a risk
of systemic toxicity. Consequently, a CLDN-4-specific CPE
derivative might lack hepatotoxic effects, because CLDN-4 is
not expressed in liver [51]. Similarly a CLDN-6-specific CPE
mutant might accumulate preferentially in tumor tissues because
normal differentiated cells do not express CLDN-6 [3]. To gen-
erate new C-CPE derivatives with narrow CLDN-specificity,
several groups have applied a mutagenesis approach; the
resulting CPE mutants N309A/S313A, L254A/S256A/I258A/
D284A, L223A/D225A/R227A, and Y306W/S313H showed
high affinity for CLDN-4 and high specificity for CLDN-4, -3,
and -5, respectively [66, 86, 92]. In addition, recent findings
regarding the structure of mouse CLDN-15 (Protein Data
Bank [PDB] code, 4P79) and of the mouse CLDN-19–C-CPE
complex (PDB code, 3X29) indicate that C-CPE actually binds
to both the first and second extracellular domains of CLDNs and
not solely to the second extracellular domain of CLDNs, as had
been thought initially (Fig. 4a) [17, 71, 81, 94]. Currently the N-
P-(V/L)-(V/L/T)-(P/A) motif in the second extracellular domain
of CLDN is considered to determine the sensitivity of CLDNs
for CPE, whereas the (A/N/S)-I-(I/L/V)-(T/V) motif in the first

extracellular domain of CLDN is thought to support the inter-
action between CLDNs and CPE by enlarging the hydrophobic
contact area [71]. In this regard, mutations within the (A/N/S)-
I-(I/L/V)-(T/V) motif of mouse CLDN-19 clearly attenuated its
interaction with C-CPE to the same extent as mutation in the N-
P-(V/L)-(V/L/T)-(P/A) motif [71]. Further knowledge regarding
the structures of other CLDNs and CLDNs–C-CPE complexes
will enable the generation mono-CLDN-specific C-CPEs and
their derivatives.

Conclusion

SinceitsdiscoveryasaCLDNbinder,CPEhasconnectedthedots
leading from the conceptualization of CLDN-targeted cancer
therapy to its potential realization as a novel therapeutic and

Fig. 4 Structure of the C-CPE:CLDN-19 complex. a The structure of the
C-CPE:CLDN-19 complex (PDB code, 3X29) by X-ray crystallography.
The regions of CLDN-19 that are involved in binding CPE (red) and
those of C-CPE that are involved in binding CLDN-19 (blue) are shown.
b A schematic diagram of CLDN structure. Regions involved in the
interaction with C-CPE are circled
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diagnostic modality. Many studies have shown that CPE-
mediated cytolysis can be an effective anti-tumor treatment for
CPE-sensitive CLDN-overexpressing cancers, regardless of
whether the lesions are chemotherapy-sensitive or -resistant. In
particular,CLDN-3, -4, -6,and-7areCPE-sensitiveandfrequent-
lyoverexpressedinvariouscancers. Inaddition,C-CPEisauseful
adjunct cancer therapy because it enhances the permeability of
anti-tumordrugs into tumor tissuesand increases thesensitivity to
such drugs at the single-cell level. Alternatively, probe-
conjugated C-CPE efficiently detects micrometastatic cancers
andhyperplastic lesions.However,despite thesediversepotential
applications, neither CPE itself nor any CPE-based derivative is
currently under study in a clinical trial. To advance CPE-based
cancer diagnosis and therapy, new CLDN binders with high
druggability need to be developed.
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