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Abstract Endothelial nitric oxide synthase (eNOS) plays an
essential role in the regulation of endothelial function and acts
as a master regulator of vascular tone and homeostasis through
the generation of the gasotransmitter nitric oxide (NO). The
complex network of events mediating efficient NO synthesis
is regulated by post-translational modifications and protein-
protein interactions. Dysregulation of these mechanisms in-
duces endothelial dysfunction, a term often used to refer to
reduced NO bioavailability and consequent alterations in en-
dothelial function, that are a hallmark of many cardiovascular
diseases. Endothelial dysfunction is linked to eNOS
uncoupling, which consists of a switch from the generation
of NO to the generation of superoxide anions and hydrogen
peroxide. This review provides an overview of the eNOS
signalosome, integrating past and recently described protein-
protein interactions that have been shown to play a role in the
modulation of eNOS activity with implications for cardiovas-
cular pathophysiology. The mechanisms underlying eNOS
uncoupling and clinically relevant strategies that were adopted
to influence them are also discussed.
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Introduction

The lumen of all healthy blood vessels is lined by the vascular
endothelium, a monolayer of cells that constitutes the interface
between oxygen, nutrients, circulating cells and a variety of
factors carried within the bloodstream and all tissues and organs
of the body. As such, the endothelium is the first organ that is
exposed to exogenous insults and altered endothelial cell func-
tion, or endothelial cell activation, is recognized as the initiating
event of many cardiovascular diseases. Nitric oxide (NO) is a
gasotransmitter generated by the “healthy” endothelium with
well-documented effects on vascular tone as well as in the pre-
vention of smooth muscle cell proliferation and migration, leu-
kocyte adhesion and platelet aggregation [1]. Early studies dem-
onstrated that a functional endothelial NO synthase (eNOS) en-
zyme is protective against pathological vascular remodelling [2],
hypertension [3], atherosclerosis [4] and complications associat-
ed with diabetes [5, 6].

In endothelial cells, NO is synthesized by the eNOS, which is
a multi-domain enzyme consisting of an N-terminal oxygenase
domain containing binding sites for heme, the substrate L-argi-
nine and the cofactor tetrahydrobiopterin (BH4) and a reductase
domain where the reduced form of nicotinamide adenine dinu-
cleotide phosphate (NADPH), flavin mononucleotide (FMN),
flavin adenine dinucleotide (FAD), and calmodulin (CaM) bind.
During the synthesis of NO, NADPH-derived electrons pass to
flavins in the reductase domain and must be then transferred to
the heme located in the oxygenase domain so that the heme iron
can bind O2 and catalyse the stepwise synthesis of NO from L-
arginine. The activity of eNOS is determined by intracellular
calcium concentrations and CaM binding but can also be mod-
ulated at the transcriptional, post-transcriptional and post-
translational levels (e.g. palmitoylation, phosphorylation, S-
glutathionylation and S-nitrosylation). Phosphorylation of
eNOS on serine (Ser), threonine (Thr) and tyrosine (Tyr)
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residues modulates its activity (Fig. 1). Many kinases including
AKT [7, 8], adenosine monophosphate-activated kinase
(AMPK) [9], CaM kinase II [10] and protein kinase (PK) A
[11, 12] can phosphorylate eNOS on Ser1177, thus potentiating
the enzyme’s catalytic activity in response to a variety of stimuli.
Phosphorylation on Ser615 and Ser633 by AKT, PKA, AMPK
or Pim1 (see below) has also been associated with increased NO
production [13]. AMPK and PKC were shown to mediate the
inhibitory phosphorylation on eNOS Thr495 which interferes
with the binding of calcium-activated CaM [9, 10, 14]. Thr495
is basally phosphorylated in endothelial cells, and as the binding
of CaM is required to initiate NO production, it follows that cell
stimulation is usually linkedwith the rapid dephosphorylation of
Thr495 [10, 15]. This is a general response elicited by calcium-
elevating agonists and usually slightly precedes the phosphory-
lation of the serine residues. In fact, agonist-induced enzyme
activity is associated with reciprocal changes in the phosphory-
lation of Ser1177 and Thr495 i.e. one transiently decreaseswhile
the other transiently increases. The role of eNOS tyrosine phos-
phorylation is less well studied, but Src activation has been
linked with the phosphorylation of Tyr81 which indirectly in-
creases eNOS activity and NO production [16–18], while
proline-rich tyrosine kinase 2 (PYK2)-mediated phosphoryla-
tion of Tyr657 abrogates eNOS catalytic activity [19, 20].
Dysregulation of any of the post-translational modifications
mentioned above can lead to the attenuated or altered enzymatic
activity and decrease in bioavailable NO that characterizes the
state referred to as “endothelial dysfunction”. The latter is linked
with the switch of eNOS from an NO-generating enzyme to an
enzyme that can also generate superoxide anions (O2

−) and hy-
drogen peroxide (H2O2), a phenomenon known as “eNOS
uncoupling”. eNOS activity is also regulated by a series of

protein-protein interactions with the ability to influence enzyme
localisation, trafficking and catalytic activity. As the regulation
of eNOS function by post-translational modifications has been
reviewed elsewhere [21, 22], this review will focus on recent
findings related to protein-protein interactions that modulate
eNOS function, the context in which these interactions were
identified and their link to endothelial dysfunction. Recent ad-
vances in understanding the mechanisms leading to eNOS
uncoupling and the implications of these findings for cardiovas-
cular medicine will also be discussed.

The eNOS signalosome

Core interactions

CaM and Cav-1: CaM was the first protein found to directly
interact and regulate eNOS function [23], and eNOS activity
is generally proportional to the level of intracellular calcium
and the binding of calcium-activated CaM. There are however
subtle differences in the relationship between calcium/CaM
and NO output depending on the subcellular localisation of
eNOS, with intracellular eNOS pools being less responsive to
changes in calcium than the enzyme associated with mem-
brane subdomains [24]. Under basal conditions, eNOS is an-
chored to plasma membrane caveolae via the N-
myristoylation and palmitoylation of its N-terminus and is
maintained in an inactive/basally active state through its inter-
action with the scaffolding domain of Cav-1 [25–27]. Upon
stimulation with calcium-elevating agonists, Cav-1 is
displaced by calcium-activated CaM, resulting in a conforma-
tional change that promotes NADPH-dependent electron flux
to the heme moiety and the generation of NO [28–30]. The
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Fig. 1 The eNOS signalosome. In its inactive state, human eNOS is
phosphorylated on Ser114 and Thr495 and forms a complex with Cav-
1. Hsp90 mediates the inhibitory interaction with CHIP and Cdc37.
Direct binding of Pin1 to eNOS phosphorylated on Ser114 is
considered inhibitory, though other reports suggest that Pin1 binding
enables dephosphorylation of Ser114 and eNOS activation (see main
text). Increases in intracellular Ca2+ concentrations lead to the
displacement of Cav-1 by CaM, which initiates a burst in eNOS
activity. A variety of protein kinases phosphorylate eNOS on Tyr81,
Ser615, Ser633 and Ser1177, resulting in enhanced activation of the

enzyme. SDF2 is required for the assembly of a functional eNOS
complex including CaM and Hsp90. In endothelial cells, the interaction
of ILK with Hsp90 and eNOS promotes NO production and prevents
eNOS uncoupling. At least in sinusoidal endothelial cells, GIT1 binds
directly to eNOS and facilitates AKT-mediated phosphorylation of eNOS
on Ser1177. Small peptides and mutant proteins, such as Cavnoxin and
Cav-1 Phe92Ala (F92A), can be effectively used to interfere with
dynamic changes of the eNOS signalosome, thereby influencing eNOS
activity
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importance of this regulatory mechanism is demonstrated by
the fact that peptides containing the Cav-1 scaffolding domain
inhibit NO generation by eNOS [31]. Moreover, Cav-1−/−

mice display enhanced basal and stimulated eNOS activity
as well as subsequently enhanced vasorelaxation [32, 33], an
effect that can be rescued by reintroduction of Cav-1 [34, 35].
Within the Cav-1 scaffolding domain, Thr90 and 91 and
Phe92 are responsible for the interaction with and inhibition
of eNOS [36], information that has been exploited to generate
peptides based on the Cav-1 scaffolding domain that are able
to increase NO bioavailability [37]. For example, the Cav-1
Phe92Ala mutant protein and Cavnoxin (a peptide containing
the Thr90/91 and Phe92 substitutions) act as “dominant neg-
ative” scaffolding domains in that they release eNOS from the
inhibitory interaction with endogenous Cav-1 to increase bas-
al NO release from endothelial cells [37]. Moreover,
Cavnoxin attenuates vessel tone ex vivo and lowers blood
pressure in wild-type mice while leaving eNOS−/− and Cav-
1−/−mice unaffected. The potential benefit of such peptides to
increase eNOS activity was recently demonstrated in a mouse
model of diabetes-associated atherosclerosis where it signifi-
cantly attenuated atherosclerotic burden in vivo. The latter
was accompanied by a decrease in oxidative stress markers,
attenuated expression of pro-atherogenic mediators and re-
duced leukocyte-endothelial interactions [38].

Hsp90: The molecular chaperone heat shock protein 90
(Hsp90) is a major signalling hub in many cell types including
endothelial cells. Hsp90 is involved in the folding of NOS
enzymes and is likely to influence the insertion of heme into
the immature protein and thus eNOS maturation and stability
[39]. The inhibition of Hsp90 by prolonged exposure to
geldanamycin results in the degradation of Hsp90 client pro-
teins, including eNOS [40]. Domain mapping studies have
shown that eNOS binds to the M domain of Hsp90 [41], and
this interaction is increased in endothelial cells by several
stimuli including vascular endothelial growth factor
(VEGF), histamine, estrogen, and fluid shear stress [42, 43].
The binding of Hsp90 alone is able to induce a conformational
change that promotes eNOS activity and increases NO pro-
duction [29, 42, 44]. Moreover, Hsp90 functions as a molec-
ular scaffold for the recruitment of many proteins that regulate
the activity of eNOS. The best characterized of these proteins
is the serine/threonine kinase AKT [41], but the list of proteins
requiring the presence of Hsp90 to bind and modulate eNOS
activity and/or localisation is increasing.

Interactions involving Hsp90

Cdc37: Cell division cycle 37 (Cdc37) is a co-chaperone of
Hsp90 that was found to interact with and inhibit eNOS [45].
Despite studies that have assessed the consequences of inhib-
itors that disrupt the interaction between Cdc37 and Hsp90,
especially in the context of cancer therapy (reviewed in [46]),

there has been no detailed studies addressing the interaction
between Cdc37 and eNOS. Although Cdc37 has potential to
influence NO output, it is not an attractive therapeutic target
given its central role in the maturation of the catalytic domains
of many protein kinases.

CHIP: The subcellular localisation of eNOS is an impor-
tant determinant of its activation state, as well as downstream
NO-sensitive signal transduction pathways. One protein that
affects localisation is the C-terminal hsp70-interacting protein
(CHIP) which prevents eNOS from trafficking through the
Golgi complex and the distribution of eNOS into an inactive
detergent-insoluble compartment [47]. CHIP is also not an
attractive target for potential intervention given its role as an
Hsp90/Hsp70 co-chaperone and ubiquitin ligase.

ILK: Integrin-linked kinase (ILK) is a phosphoinositide 3-
kinase-dependent serine/threonine kinase that binds to the cy-
toplasmic domain of β-integrin and lies upstream of many
intracellular signalling pathways [48, 49]. ILK has been de-
tected in a complex with eNOS and Hsp90 [50] and has been
attributed roles in angiogenesis and vasculogenesis [51, 52] as
well as endothelial cell survival and vascular development
[53]. ILK has also been proposed as a regulator of endothelial
function since ILK expression could not be detected in the
endothelium of atherosclerotic arteries (human or mouse)
[50].Moreover, endothelial cells from conditional ILK knock-
out mice show signs of eNOS uncoupling i.e. reduced BH4

levels, increased 7,8-dihydro-L-biopterin (BH2) levels, de-
creased dihydrofolate reductase (DHFR) expression and in-
creased eNOS-dependent generation of O2

− accompanied by
extensive vascular protein nitration. The situation is however
not entirely clear as the same conditional ILK knockout mice
were used to generate essentially contradictory data in that
ILK depletion in aortic vessels led to increased vascular ex-
pression and activity of the primary NO receptor i.e. soluble
guanylate cyclase (sGC) and its downstream target protein
kinase G (PKG), both of which promote relaxation [54]. To
resolve these controversial findings, studies in conditional cell
type-specific knockout mice may help dissecting the diverse
actions of ILK in the vessel wall.

Pim1: A member of the Pim (proviral integration site for
Moloney murine leukemia virus) family of serine/threonine
kinases, Pim1, is a downstream effector of AKT that mediates
cardiomyocyte survival in response to ischemic insults [55,
56]. Moreover, its downregulation contributes to the patho-
genesis of diabetic cardiomyopathy [57]. Interestingly, a re-
cent report identified a consensus Pim1 phosphorylation motif
in eNOS that would target Ser633 to increase NO production
[58]. Several kinases have been reported to phosphorylate
eNOS on serine residues, and Pim1 may be more important
in the longer-term phosphorylation and activation of the pro-
tein rather than its rapid and transient phosphorylation follow-
ing agonist stimulation. Certainly, Pim1 has been implicated
in the sustained activation of eNOS by VEGF, taking over
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from the transient phosphorylations attributed to AKT and
PKA. These findings have also implications for vascular com-
plications associated with diabetes and hyperglycaemia, as
Pim1 expression as well as eNOS phosphorylation on
Ser633 are reduced in endothelial cells and aortae from dia-
betic mice [58]. Also, Pim1 has a link to Hsp90 which protects
Pim1 from proteasomal degradation [59, 60]. It is tempting to
speculate that Hsp90 participates in the stabilisation of the
eNOS/Pim1 complex, much in the same way that it does for
AKT, thus facilitating eNOS phosphorylation on Ser633 and
eNOS activation.

SDF2: Stromal cell-derived factor 2 (SDF2) was originally
identified as a secreted protein using the signal sequence trap
method in the mouse ST2 stromal cell line. Even though its
function in mammals remains largely unknown, SDF2 is
expressed in several mouse tissues where it localizes to the
endoplasmic reticulum [61]. Its link to eNOS was revealed
using a proteomic strategy of tandem affinity purification
followed by mass spectrometry, and SDF2 was found prefer-
entially in a complex with the active Hsp90-bound, Ser1177-
phosphorylated form of eNOS [40]. SDF2 seems to directly
affect eNOS activity as SDF2 knockdown decreases while
overexpression enhances NO release. Moreover, the ability
of SDF2 to stimulate NO production is markedly attenuated
by the point mutation of Ser1177 to alanine. SDF2 was also
identified as a novel Hsp90 client protein, and inhibition of
Hsp90 triggered its degradation (similar to many client pro-
teins including AKTand eNOS). Also, domain mapping stud-
ies revealed that SDF2 binds to the M domain of Hsp90, a
common site for Hsp90-interacting proteins [62]. Stimulation
of endothelial cells with VEGF triggers the formation of a
complex comprising eNOS, SDF2, Hsp90 and CaM, an effect
attenuated in cells lacking SDF2. The higher rates of NO
synthesis accompanying increases in the expression of SDF2
suggest that the interaction between SDF2 and Hsp90 is main-
ly driven by the abundance of each protein. The interaction
between Hsp90 and SDF2 is stable upon inhibition of PI3K or
AKT activation or reduction of calcium concentrations [40].
However, it is possible that other post-translational modifica-
tions of Hsp90 may regulate the interaction. Future studies
will be needed to address the regulatory aspects of the inter-
action as well as the direct effect of SDF2 on Hsp90 function
as a signalling hub. Moreover, whether reduced amounts of
SDF2 result in eNOS uncoupling and could therefore contrib-
ute to the development of cardiovascular diseases remains to
be investigated.

Interactions indirectly affecting eNOS function

NOSIP and NOSTRIN: Yeast two hybrid studies identified
eNOS interacting protein (NOSIP) and eNOS traffic inducer
(NOSTRIN) as members of the eNOS signalosome that mod-
ulate NO generation by affecting the subcellular localisation

of eNOS [63–65]. Initially, NOSIP or NOSTRIN overexpres-
sion was shown to promote the translocation of eNOS from
the plasma membrane caveolae to intracellular compartments,
such as the Golgi, thereby reducing overall NO output. While
these initial reports seemed convincing, translocation is not
always synonymous with inhibition and differentially distrib-
uted pools of eNOS exist within endothelial cells, which are
all equally able to synthetize NO [66–68]. For example, the S-
nitrosation of Golgi, mitochondrial and even nuclear proteins
has been recently demonstrated, corroborating the existence of
active NO synthesis also in cellular organelles [69, 70].
Meanwhile, NOSIP and NOSTRIN have been allocated alter-
native roles in the regulation of cell function. NOSIP belongs
to the family of U-box ubiquitin E3 ligases, and global NOSIP
deficiency in mice results in perinatal lethality due to
holoprosencephaly and craniofacial malformations. The char-
acterisation of NOSIP ubiquitination targets by interactomic
studies revealed that NOSIP and protein phosphatase 2A
(PP2A) interact and that loss of NOSIP results in reduced
PP2A ubiquitination and increased PP2A catalytic activity
[71]. NOSTRIN, on the other hand, has maintained its link
to vascular function as its selective deletion from endothelial
cells results in elevated blood pressure and diastolic dysfunc-
tion [72].What has changed is the importance of direct actions
on eNOS for its physiological actions as NOSTRIN interacts
directly with the muscarinic acetylcholine receptor subtype
M3 (M3R) and is required for its correct spatial localisation
at the plasma membrane in aortic endothelial cells. In the
absence of NOSTRIN, the function of the M3R is markedly
impaired, resulting in abolition of the calcium response to
acetylcholine, impaired activation of eNOS and inhibition of
vascular relaxation, leaving responses to other eNOS activat-
ing endothelial cell agonists intact and fully functional [72].
Global NOSTRIN deletion was also found to impair post-
natal retinal angiogenesis—an effect attributed to the fact that
NOSTRIN assembles a signalling complex containing
FGFR1, Rac1 and Sos1 thereby facilitating FGF‐2‐dependent
activation of Rac1 in endothelial cells during developmental
angiogenesis [73].

Interactions linked to endothelial dysfunction

PYK2: Interactions between kinases and their substrates can
be difficult to capture as they are transient in nature, but one of
the most recent kinases shown to contribute significantly to
the modulation of eNOS activity is PYK2. The phosphoryla-
tion of eNOS by PYK2 (on Tyr657) has a direct inhibitory
effect, and the fluid shear stress-induced association of eNOS
with PYK2 was proposed as a mechanism to facilitate
prolonged but low output eNOS activation (i.e. prevent
uncoupling). In in vitro studies, the phosphorylation of
eNOS Tyr657 within the FMN binding domain results in a
complete loss of the ability of the enzyme to generate NO, O2

−
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or citrulline [19]. A clue as to why this particular tyrosine
residue could have such dramatic effects can be found by
considering the mechanisms known to regulate the activity
of the neuronal NOS (nNOS), which was reported to be de-
termined by a large-scale swinging motion of the FMN do-
main to deliver electrons to the catalytic module in the holo-
enzyme [74]. From the crystal structure of nNOS, the phos-
phorylation of a tyrosine residue (Tyr889, rat nNOS se-
quence), which is in the vicinity of the FMN domain, could
prevent its movement, essentially locking the FMN domain
into its electron-accepting position, thus inhibiting enzyme
activity [74]. Since Tyr657 is the equivalent tyrosine residue
in the human eNOS sequence, it is highly likely that its phos-
phorylation would inhibit NO production. A number of phys-
iologically relevant stimuli can elicit the activation of PYK2 in
endothelial cells, including insulin [19], angiotensin II (Ang
II) [75] and oxidative stress [76].

The response to insulin is an interesting response to focus
on as it highlights the need to study native endothelial cells in
situ or low passaged endothelial cells in culture at the same
time as demonstrating that eNOS phosphorylation on Ser1177
is not an absolute indicator of eNOS activation. Insulin has
been attributed with vasodilator effects in vivo, but the role of
NO and indeed endothelium in such responses has long been
controversial. It is correct that the application of insulin to
native or to cultured endothelial cells elicits the rapid phos-
phorylation of AKT as well as the phosphorylation of eNOS
on Ser1177. However, in the same samples, there is neither a
rapid NO-dependent relaxation nor an increase in cyclic GMP
levels [77, 78]. The clue to the puzzle seems to be that insulin
induces the simultaneous phosphorylation of Ser1177 and
Tyr657, and as the latter event basically prevents electron
transport through the FMN binding domain, the end result is
a decrease in activity. In favour of this hypothesis is the report
that the siRNA-mediated downregulation of PYK2 can couple
endothelial cell stimulation with insulin with an increase in
cyclic GMP [19]. Looking at the regulation of PYK2 expres-
sion in cultured endothelial cells also helps explain why there
are so many reports in the literature of insulin-induced eNOS
activation as PYK2 levels decrease relatively rapidly after cell
isolation and the kinase—like the tyrosine phosphorylation of
eNOS—can only be convincingly demonstrated in primary
endothelial cell cultures [19].

The tyrosine phosphorylation of eNOS may be more im-
portant in pathophysiology than physiology as Ang II was
also found to enhance the phosphorylation of eNOS Tyr657
in an angiotensin receptor 1-, H2O2- and PYK2-dependent
manner [20]. In isolated mouse aortae, H2O2 induces phos-
phorylation of eNOS on Tyr657 and impairs acetylcholine-
induced relaxation and endothelial overexpression of a
dominant-negative PYK2 mutant protects against H2O2-in-
duced endothelial dysfunction. Carotid arteries from eNOS−/
− mice overexpressing the non-phosphorylatable eNOS

Y657F mutant are also protected against H2O2. Chronic treat-
ment with Ang II to elicit endothelial dysfunction and hyper-
tension considerably increases levels of Tyr657-
phosphorylated eNOS in aortae from wild-type but not
Nox2y/−mice [20], suggesting that PYK2-mediated phosphor-
ylation of eNOS on Tyr657 may contribute significantly to the
impaired endothelial function characterizing many cardiovas-
cular diseases (Fig. 2). Further studies are needed to clarify the
relevance of the eNOS phosphorylation on Tyr657 in vivo as
well as the molecular consequences of this phosphorylation on
eNOS-dependent signalling and function in pathophysiologi-
cal states. Interestingly, the post-translational modification of
PYK2 by S-nitrosation [79, 80] has been linked to increased
PYK2 activity [80]. If this event is confirmed in the endothe-
lium, it may represent a novel negative feedback loop for the
regulation of eNOS function and downstream signalling.

GIT1: G-protein-coupled receptor (GPCR) kinase
interactor-1 (GIT1) was recently described as a novel eNOS
interactor and activator in sinusoidal endothelial cells [81].
Interestingly, GIT1 expression is reduced in sinusoidal endo-
thelial cells after liver injury by liver duct ligation, consistent
with previously described endothelial dysfunction in this dis-
ease. Re-expression of GIT1 after liver injury rescues eNOS
phosphorylation on Ser1177 and NO synthesis [81]. A model
for the fine regulation of the association between GIT1 and
eNOS in sinusoidal endothelial cells has been recently pro-
posed [82] as follows: upon endothelin-1 binding to the
endothelin B receptor, Src is activated and phosphorylates
GIT1 on Tyr293 and Tyr554. Phosphorylated GIT1 then as-
sociates with eNOS to facilitate its activating phosphorylation
at Ser1177 by AKT. Thus, both Src and AKT kinases are
crucial in the resultant phosphorylation-enhanced association
of GIT1 and eNOS and in stimulating eNOS activity and NO
production [82].

Pin1: The association between eNOS and prolyl isomerase
(Pin) 1 is dependent on the constitutive phosphorylation of
eNOS on Ser116. While the ability of Pin1 and eNOS to
associate with each other is not controversial, the result of
the interaction is. Initial studies indicated that Pin1 suppresses
basal eNOS activity in a manner analogous to the tonic sup-
pression of eNOS activity by its association with caveolin-1
[83], a mechanism that may be of particular relevance in en-
dothelial cells exposed to high glucose concentrations.
Certainly, pharmacological inhibition or genetic deletion of
Pin1 in diabetic mice was shown to be protective against mi-
tochondrial oxidative stress, endothelial dysfunction and vas-
cular inflammation [84, 85]. Others have reported that the
association of eNOS with Pin1 enables the dephosphorylation
of Ser116 and stimulates NO production and demonstrated
that a pharmacological inhibitor of Pin1 increased aortic
eNOS Ser116 phosphorylation, endothelial dysfunction and
hypertension, findings that were reproduced using Pin1-
deficient mice [86]. To shed light in this controversial issue,
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a recent study demonstrated that Pin1 interacts directly with
eNOS and the interaction increases when the phosphorylation
of eNOS on Ser116 is mimicked. In bovine endothelial cells,
TNFα induces ERK 1/2-mediated phosphorylation of eNOS
on Ser116 (Ser114 in the human sequence), accompanied by
Pin1 binding and a consequent reduction in NO release. This
mechanism is however dependent on the presence of an adja-
cent proline residue (Pro117 in the bovine sequence, Pro115 in
the human sequence); without a proline in this position, Pin1
binding and prolyl isomerisation, cannot occur. The impor-
tance of this residue is highlighted by the fact that in themouse
and rat eNOS sequences, Pro115 has been replaced by gluta-
mine and can account for the fact that eNOS phosphorylation
of Ser116 seems not to be detectable in mouse tissues [87].
The stability of Pim1 is thought to be determined by its ability

to complex with Pin1, which promotes Pim1 degradation [88].
It is therefore tempting to speculate that in diabetes, the in-
creased binding of Pin1 to eNOS may explain also the report-
ed reduction of Pim1 protein levels and subsequent decreased
Ser633 phosphorylation.

Cx37/Cx40: First evidence of the interaction between
eNOS and connexin 37 (Cx37) came from a high-
throughput phage display screening in search for peptide se-
quences that bind to Cx37 C-terminus, as a polymorphism in
this region is associated with arterial stenosis and myocardial
infarction in humans [89]. Experiments in vitro confirmed that
a Cx37/eNOS complex also exists in native murine and hu-
man endothelial cells and that Cx37 exerts an inhibitory action
on NO synthesis [89]. However, these results were not sup-
ported by in vivo or ex vivo evidence (see below). Another
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endothelial-specific connexin, connexin 40 (Cx40), has been
shown to play a pivotal role in the regulation of blood pressure
and vasorelaxation [90, 91]. This effect has been linked to
reduced eNOS expression in Cx40-deficient mice [92].
Restoration of Cx40 expression in endothelial cells from
Cx40-deficient mice normalizes eNOS levels [93], suggesting
a link between these proteins. Volume-dependent hyperten-
sion (one kidney, one clip model) promotes the interaction
of both Cx40 and Cx37 with eNOS resulting in increased
release of NO [93]. Contrary to what was previously shown
for Cx37’s effect on eNOS function in vitro, vascular reactiv-
ity studies demonstrated that basal NO release and the sensi-
tivity to acetylcholine are decreased in aortae from Cx37−/−

and Cx40−/− mice but not in Cx40+/− mice [94]. A more de-
tailed analysis of the mechanisms regulating the interaction
between these two connexins and eNOS and the generation
of endothelial-specific knockout mice will deepen our under-
standing of the complex role of these connexins in eNOS
signalling and function.

Hbα: Haemoglobin (Hb) is a well-characterised NO scav-
enger, so the first report that Hbα is expressed in endothelial
cells exclusively at the sites of myo-endothelial junctions [95]
was rather surprising. Mechanistically, Hbα was proposed to
regulate NO diffusion to vascular smooth muscle during α1-
adrenergic-dependent vasoconstriction and prevent NO
flooding the microcirculation. The somewhat paradox associ-
ation of Hbα with eNOS at myo-endothelial junctions has
been substantiated by different lines of evidence including
immunofluorescence, proximity ligation assays and co-
immunoprecipitations from both cell lysates and purified pro-
teins [95]. However, although an interaction between Hbα
and eNOS has been proposed by in silico modelling [96],
rigorous domain mapping and mutation experiments remain
to be performed. Nevertheless, the modelling studies allowed
the generation of a 10 amino acid-long Hbα mimetic peptide
(called Hbα X) able to interfere with the association between
Hbα and eNOS. Incubation of thoracodorsal arteries with
HbαX enhanced phenylephrine-induced cyclic GMP produc-
tion and decreased vasoconstriction. In addition, when
injected into normotensive and hypertensive mice, Hbα X
induced a significant decrease in blood pressure, whereas in-
jection of HbαX into eNOS−/−mice had no effect [96]. Future
studies are required to dissect the molecular mechanism be-
hind the assembly of the Hbα/eNOS complex in endothelial
cells and whether endothelial Hbα expression may participate
in arteriogenesis at the myo-endothelial junction as well as
anti-inflammatory signalling and what role it may potentially
play in eNOS coupling.

NOX2: The S-glutathionylation of eNOS reversibly de-
creases its activity, resulting in an increase in endothelial cell
O2

− generation [97]. A role for NOX2 in this particular post-
translational modification has recently been reported [98].
NOX2-specific inhibition prevents lipopolysaccharide-

induced eNOS S-glutathionylation and reduces O2
− produc-

tion and permeability in lung microvascular endothelial cells.
Lipopolysaccharide exposure induces the formation of a com-
plex between eNOS and NOX2 that in turn enables low-level
NOX2-catalysed O2

− and/or reactive metabolites of O2
− to

oxidize cysteine residues in the eNOS reductase domain, mak-
ing them susceptible to S-glutathionylation [98]. Though BH2

and BH4 were not measureable in lung microvascular endo-
thelial cells in vitro, NOX2-derived O2

− could also promote
the oxidation of BH4 to BH2, resulting in further eNOS
uncoupling. Future studies will need to explore how this in-
teraction is regulated and whether targeting the interaction
may prove successful in preventing eNOS uncoupling.

The eNOS uncoupling phenomenon

The efficient conversion of the substrate L-arginine into NO
and L-citrulline by an active eNOS homodimer requires a very
specific and controlled balance between availability of sub-
strate and cofactors, regulated post-translational modifications
and protein-protein interactions. There are however some sit-
uations in which the enzyme can be switched from a purely
NO-generating enzyme to one that generates NO as well as
O2

− (Fig. 2). The switch to O2
− production is referred to as

“eNOS uncoupling”, which basically means that the transport
of electrons to ferrous-heme-O2 species generated during the
stepwise activation of O2 by NOS does not occur fast enough
to prevent their oxidative decay, the result being the genera-
tion of reactive oxygen species. The enhanced generation of
O2

− is likely to result in the formation of the highly potent
oxidant peroxynitrite (ONOO−), which may further enhance
O2

− production by oxidation of the zinc cluster within eNOS
and dissociation of the functional dimer [99].

L-arginine and arginase

Under physiological conditions, the intracellular concentra-
tion of L-arginine is generally high enough to be in excess of
the Km for eNOS. However, cardiovascular disease and the
associated oxidative stress have been linked with reduced L-
arginine transport and/or competition with other arginine-
utilizing enzymes such as arginase, leading ultimately to
eNOS uncoupling. Several studies have convincingly demon-
strated that increased arginase activity is associated with en-
dothelial dysfunction. This is shown in various experimental
models of hypertension [100], atherosclerosis [101], diabetes
[102] and aging [103] (reviewed in [104]). In all of these
studies, the disease state induces elevated expression of argi-
nase and oxidative stress, thus resulting in decreased NO bio-
availability and impaired endothelial-dependent vasorelax-
ation and function. Accordingly, inhibition of arginase de-
creases oxidative stress and restores NO bioavailability and
normal endothelial function. Certainly, the results obtained in
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animal models have encouraged clinical studies to test the use
of arginase inhibitors to treat cardiovascular diseases. In pa-
tients with coronary artery disease and type 2 diabetes, the
intra-arterial infusion of the arginase inhibitor Nω-hydroxy-
nor-L-arginine (nor-NOHA) was shown to improve forearm
endothelial function [105]. Coronary arterioles obtained from
patients with type 1 and type 2 diabetes displayed reduced
endothelium-dependent relaxation in vitro and increased ex-
pression of arginase I in endothelial cells, and treatment with
nor-NOHA improved coronary arteriolar endothelial function
[106]. Plasma levels of arginase in patients with heart failure
were higher than in control subjects and proportional to the
severity of the disease. Again, local administration of nor-
NOHA resulted in improved sublingual microcirculation by
an NO-dependent mechanism [107]. Lastly, reflex cutaneous
vasodilatation in patients with hypertension was increased fol-
lowing administration of S-(2-boronoethyl)-L-cysteine and
nor-NOHAvia skin microdialysis catheters [108]. Thus, argi-
nase presents an attractive and promising pharmacological
target against cardiovascular disease.

BH4/BH2 ratio

Suboptimal concentrations of the essential cofactor BH4 result
in eNOS uncoupling. Replenishment of BH4 levels with
sepiapterin or the overexpression of the guanosine triphos-
phate cyclohydrolase I (GTPCH), the rate-limiting enzyme
in BH4 biosynthesis, effectively augments BH4 levels in cul-
tured endothelial cells and improves NO output. It is also
known that BH4 levels decline quite rapidly in cultured endo-
thelial cells, requiring exogenous BH4, for example by sup-
plementation of sepiapterin to the culture media in order to
maintain NO production. Although fully reduced BH4 sup-
ports catalysis by eNOS, oxidized species such as BH2 and
biopterin are catalytically incompetent, having the same allo-
steric effects without the ability to catalyse NO production (for
review, see [109]). Uncoupled eNOS in dysfunctional endo-
thelium, therefore, generates O2

− and ONOO– causing oxida-
tion of BH4, creating a vicious feedback loop sustaining fur-
ther eNOS uncoupling, increased oxidative stress and reduced
NO bioavailability. Another mechanism leading to reduced
BH4 bioavailability is by downregulation of GTPCH expres-
sion [109]. Regardless of the cause for BH4 deficiency, BH4

supplementation has been shown to enhance NO-mediated
effects in cell culture (sepiapterin), in animal models and also
in patients with cardiovascular disease [110]. For example,
gene transfer of human GTPCH in hypertensive rats restores
BH4 levels, improves endothelial function [111] and constitu-
tive endothelial-specific overexpression of GTPCH in diabetic
mice as well as in ApoE−/− mice and prevents the loss of
endothelial BH4, eNOS uncoupling and endothelial dysfunc-
tion [112, 113]. Conversely, other reports show that in athero-
sclerosis, BH4 levels may also be depleted due to its oxidative

degradation to BH2 by ONOO– and O2
− in the vascular wall

[114]. Numerous clinical studies have tested whether the phar-
macological supplementation of BH4 can sufficiently improve
endothelium-dependent relaxation and endothelial function.
In these studies, acute intra-arterial infusions of BH4 led to
short-term improvements in endothelial function. This has
been demonstrated in patients with risk factors for cardiovas-
cular disease, such as chronic cigarette consumption [115] and
hypercholesterolemia [116], in patients with established coro-
nary artery disease [117] and disease states such as diabetes
and hypertension [118, 119]. Despite the general enthusiasm
generated by these clinical studies, these findings are, howev-
er, difficult to interpret in light of the high doses of BH4 that
were used as well as due to the lack of long-term studies. A
caveat of such approaches, especially for their application to
advanced cardiovascular diseases, is that in the presence of a
highly oxidizing environment, exogenous BH4 is oxidized to
BH2, which lacks eNOS cofactor activity. This was, in fact,
the case in a recent study that reported no net modification of
the ratio of reduced to oxidized biopterins in patients with
coronary artery disease receiving oral administration of BH4,
despite elevated BH4 levels in the blood after administration.
As a consequence, beneficial effects on eNOS coupling, en-
dothelial function, or vascular O2

− production could not be
demonstrated [120]. Until now, the regulation of the binding
of BH4 to eNOS received little attention, the major focus be-
ing the relative availability of the cofactor in endothelial cells.
A recent study, however, revealed a novel layer of complexity
in the relationship between BH4 and eNOS uncoupling as a
tryptophan residue at position 447 within the BH4 binding site
of eNOS is required for efficient NO production by the en-
zyme, by preserving eNOS coupling and dimerisation [121].
However, while mutation of Trp447 switched eNOS to an
O2

−-generating enzyme and highlights the role of BH4 in the
uncoupling phenomenon, there is no information available
regarding modification of Trp447 in pathophysiological
situations.

Another important enzyme that contributes to the balance
between BH4 and BH2 is DHFR, which is able to reduce BH2

thus regenerating BH4. DHFR expression is reduced by Ang
II, leading to reduced BH4 levels and eNOS uncoupling [122].
While targeting BH4 remains a rational and attractive thera-
peutic strategy in cardiovascular disease, future studies should
aim to manipulate the BH4/BH2 ratio in favour of BH4, to
enhance the binding of BH4 to eNOS while preventing its
oxidation or to boost BH4 recycling pathways.

S-glutathionylation

Manipulation of L-arginine or BH4 metabolism is not suffi-
cient to completely restore eNOS activity and NO-dependent
vasodilatation, indicating the existence of additional mecha-
nisms contributing to eNOS uncoupling and dysfunction. S-
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glutathionylation is the reversible binding of a glutathione
tripeptide (glycine, cysteine and glutamic acid) to a protein
via the formation of disulphide bond with a protein thiol,
and the S-glutathionylation of eNOS has been recently iden-
tified as a main cause of eNOS uncoupling. In an oxidative
environment, S-glutathionylation can be mediated by thiol-
disulfide exchange with oxidized glutathione, reaction with
oxidant-induced protein thiyl radicals with reduced glutathi-
one or reaction of a nitrosothiol with another thiol [97]. S-
glutathionylation of two conserved cysteines (Cys), Cys689
and Cys908, in the reductase domain of eNOS leads to in-
creased O2

− generation, and this form of eNOS uncoupling
is (unlike uncoupling induced by BH4 depletion) insensitive to
NOS inhibitors and calcium chelators [97]. These findings
have clear pathophysiological significance, and vessels from
spontaneously hypertensive rats display higher levels of
eNOS S-glutathionylation and impaired endothelium-
dependent vasorelaxation, which can be rescued by treatment
with thiol-specific reducing agents [97]. Also, Ang II-
mediated endothelial dysfunction was shown to involve
eNOS S-glutathionylation in cultured endothelial cells and in
intact vessels. Also, the attenuation of Ang II signalling in
vivo by administration of an angiotensin-converting enzyme
inhibitor reduces eNOS S-glutathionylation and eNOS
uncoupling, improves endothelium-dependent vasorelaxation
and reduces blood pressure [123]. Noticeably, S-
glutathionylation and loss of eNOS activity were shown to
depend on NOX2 activity in two independent studies [98,
123]. When considering the causes of S-glutathionylation, it
is clear that any approach that restores a reducing environment
within endothelial cells, including, for example, the potentia-
tion of the intrinsic cellular thioredoxin and glutaredoxin anti-
oxidant systems, would inhibit S-glutathionylation and eNOS
uncoupling.

Outlook

The last 20 years have seen an enormous advance in knowl-
edge regarding the role of endothelium-derived NO in the
regulation of vascular tone and cardiovascular homeostasis
in general. The fine regulation of eNOS activity has however
turned out to be exceedingly complicated and regulated by
subcellular location, associated proteins and post-
translational modifications. It is clear that the eNOS
signalosome changes rapidly in response to endogenous and
exogenous stimuli, and it is crucial to investigate the temporal
dynamics of these changes in a qualitative and, more impor-
tantly, quantitative manner to develop effective strategies to
optimize NO output. Our increasing understanding of the mo-
lecular mechanisms underlying the phenomenon of eNOS
uncoupling has facilitated the implementation of strategies to
restore NO bioavailability and inhibit the eNOS-dependent
generation of oxygen and nitrogen radicals. Strategies that

target the enzymes involved in the metabolism of the substrate
L-arginine or the cofactor BH4 have demonstrated some de-
gree of benefit in clinical studies, but results remain below
expectation. Further studies targeting the cellular redox state,
i.e. reducing overall oxidative stress, seem to be a sensible and
promising approach to limit the causes that bring about eNOS
uncoupling and endothelial dysfunction.
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