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Abstract The venom of the Brazilian armed spider
Phoneutria nigriventer is a rich source of biologically
active peptides that have potential as analgesic drugs.
In this study, we investigated the analgesic and adverse
effec ts of pept ide 3-5 (Tx3-5) , pur i f ied from
P. nigriventer venom, in several mouse models of pain.
Tx3-5 was administered by intrathecal injection to mice
selected as models of postoperative (plantar incision),
neuropathic (partial sciatic nerve ligation) and cancer-
related pain (inoculation with melanoma cells) in ani-
mals that were either sensitive or tolerant to morphine.
Intrathecal administration of Tx3-5 (3–300 fmol/site) in
mice could either prevent or reverse postoperative
nociception, with a 50 % inhibitory dose (ID50) of
16.6 (3.2–87.2) fmol/site and a maximum inhibition of
87 ± 10 % at a dose of 30 fmol/site. Its effect was
prevented by the selective activator of L-type calcium
channel Bay-K8644 (10 μg/site). Tx3-5 (30 fmol/site)

also produced a partial antinociceptive effect in a neu-
ropathic pain model ( inhibi t ion of 67 ± 10 %).
Additionally, treatment with Tx3-5 (30 fmol/site) nearly
abolished cancer-related nociception with similar effica-
cy in both morphine-sensitive and morphine-tolerant
mice (96 ± 7 and 100 % inhibition, respectively).
Notably, Tx3-5 did not produce visible adverse effects
at doses that produced antinociception and presented a
TD50 of 1125 (893–1418) fmol/site. Finally, Tx3-5 did
not alter the normal mechanical or thermal sensitivity
of the animals or cause immunogenicity. Our results
suggest that Tx3-5 is a strong drug candidate for the
treatment of painful conditions.
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Abbreviations
ANOVA Analysis of variance
BSA Bovine serum albumin
EDTA Ethylenediamine tetraacetic acid
ID50 Inhibitory dose 50 %
IL-1β Interleukin-1 beta
i.p. Intraperitoneal
i.pl. Intraplantar
i.t. Intrathecal
LPS Lipopolysaccharide
PBS Phosphate-buffered saline
PMSF Phenylmethylsulphonyl fluoride
PSNL Partial sciatic nerve ligation
s.c. Subcutaneous
TD50 Toxic dose 50 %
Tx3-5 Peptide 3-5
VSCC Voltage-sensitive calcium channels

Introduction

Pain is the most common complaint in the medical field and
the main reason people seek medical care. However, the arse-
nal of analgesics is small, only partially effective and can be
accompanied by potentially serious adverse effects [1, 2]. It is
estimated that around 600 million people worldwide will ex-
perience negative health impacts due to untreated pain in the
next few years [1, 2]. Thus, there are several different types of
pain which produce severe distress in many patients and dom-
inate and disrupt their quality of life. Approximately half of all
patients who have undergone surgery report severe to intoler-
able postoperative pain [29, 44, 49]. Nonsteroidal anti-
inflammatory drugs and opioids are useful to prevent and treat
postoperative pain, but these drugs can cause adverse effects
that limit their use [10]. Neuropathic pain is a common clinical
condition in which the current treatments are often inadequate
and ineffective or produce potentially severe adverse effects
[6–9, 15]. Moreover, it has been estimated that there is likely
to be an increase of 70 % in cancer cases until 2030, with
many cancer patients experiencing pain that negatively im-
pacts on their quality of life [17]. This pain is severe and often
requires chronic opioid treatment, which can lead to the de-
velopment of tolerance to opioids after prolonged treatment
[35, 38]. Thus, novel, effective and safe alternatives to the
current analgesic drugs are needed.

An alternative for the treatment of patients that have postop-
erative, neuropathic or cancer-related pain and are refractory to
opioid therapy has been the intrathecal administration of
ziconotide [2, 42, 57, 61, 63, 73, 82]. Ziconotide is the synthetic
form of the conopeptideω-MVIIA (isolated from the venom of
the Pacific fish-hunting snail, Conus magus), which acts as a
blocker of N-type voltage-sensitive calcium channels (VSCC)
[42]. Clinical and pre-clinical trials with ziconotide

demonstrated efficacy in the treatment of pathological pain
[13, 80]. However, it has a narrow therapeutic window and
produces some serious adverse effects in analgesic doses that
limit its use [47, 67, 68]. Thus, although VSCC seem to be
interesting targets for the development of analgesic and opioid
adjuvant drugs, adequately safe VSCC blockers remain elusive.

The venom of the Brazilian armed spider Phoneutria
nigriventer contains a variety of peptides that display a diverse
range of actions, including modulation of VSCC [21]. Of the
six peptide isoforms purified from the fraction PhTx3 of the
venom, we have previously demonstrated the analgesic poten-
tial of Tx3-6 (Phα1β), Tx3-3 and Tx3-4 in rodent models of
inflammatory, neuropathic and oncological pain, with a good
therapeutic window [11, 54–56, 65, 72, 74]. However, the
analgesic potential of peptide 3-5 (Tx3-5) is currently un-
known. Tx3-5 is known to be both a selective and potent
blocker of L-type VSCC [31, 32], which has little structural
similarity to other P. nigriventer venom isolates [9, 53]. Thus,
in the present study, we aimed to investigate the
antinociceptive potential and possible toxic effects of Tx3-5
in different pain models in mice.

Methods

Animals

The experiments were conducted using male Swiss mice (30–
35 g, 8 weeks old) or C57BL/6 mice (20–30 g, 8 weeks old at
the time of inoculation with melanoma cells). The animals had
free access to food and water and were maintained in a
temperature-controlled room (22±2 °C) under a 12-h light–
dark cycle. The animals were acclimatized to the laboratory
for at least 1.5 h before the experiments and were used only
once. The experiments were performed with the approval of
the Ethics Committee of the Federal University of SantaMaria
(process number 11/2010), and were carried out in accordance
with the current guidelines for the care of laboratory animals
[83]. The number of animals and the intensities of noxious
stimuli used were the minimum necessary to consistently
demonstrate the effects of the drug treatments.

A total of 221 mice were used in this study distributed as
follows:

Effects of Tx3-5 on the acute thermal nociception or the
mechanical threshold of mice: n=4–6/group (total 27).
Effects of Tx3-5 on the postoperative pain model: n=5–
8/group (total 55).
Reversion of Tx3-5-induced antihyperalgesic effect by
Bay-K8644 in the postoperative pain model: n=6–7/
group (total 25).
Effects of Tx3-5 on the neuropathic pain model: n=6–8/
group (total 14).
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Effects of Tx3-5 on the cancer-related pain model and
morphine tolerance in mice: n = 6–7/group (total 32;
C57BL/6 mice).
Adverse effects induced by Tx3-5: total 68.
Behavioural evaluation was performed blindly with re-
spect to drug administration.

Drugs

The peptide Tx3-5 was purified from the venom of
P. nigriventer by a combination of chromatographic steps ac-
cording to the method described by Corbett et al. [9]. Tx3-5
has a molecular weight of 5063 kDa, and the amino acid
sequence is GCIGRNESCKFDRHGCCWPWSCSCWN
KEGQPESDVWCECSLKIGK [53]. ω-Conotoxin MVIIA
was purchased from Latoxan (Valence, France), and morphine
was obtained from Cristália (São Paulo, Brazil). Bay-K8644,
an activator of L-type calcium channels, was obtained from
Sigma (St. Louis, MO, USA) and murine interleukin-1β (IL-
1β) kits were purchased from PeproTech (Rocky Hill, USA).

Drug administration

Tx3-5, ω-conotoxin MVIIA and Bay-K8644 were adminis-
tered by the intrathecal route (i.t.) according to the technique
described by Hylden andWilcox [26]. Except for Bay-K8644,
which was dissolved in phosphate-buffered saline (PBS) con-
taining 4 % dimethyl sulphoxide, all other drugs were dis-
solved only in PBS, which was used as a vehicle, and deliv-
ered in a volume of 5 μl/site for each mouse. Behavioural
testing was performed blindly with respect to the drug
treatments.

Assessment of Tx3-5 or morphine on the thermal
sensitivity or the mechanical threshold of mice

Naïve animals received Tx3-5 (30 fmol/site, i.t.) or PBS (5 μl/
site, i.t.). The mechanical threshold and thermal sensitivity of
the animals were measured at 0.5, 1, 2 and 4 h after drug
administration, as described below. Morphine (10 mg/kg,
s.c.) was used as a positive control [75].

Measurement of the mechanical threshold

The measurement of the mechanical threshold was carried out
using the up-and-down paradigm as described previously by
Chaplan et al. [6]. Briefly, mice were acclimatized in individ-
ual, clear, Plexiglas boxes (9×7×11 cm) on an elevated, wire
mesh platform to allow access to the plantar surface of the
right hind paw. Filaments of von Frey of increasing stiffness
(0.02–10 g) were applied to the hind paw plantar surface with
a pressure causing the filament to bend. Absence of a paw-

lifting response after 5 s led to the use of the next filament with
increasing weight, and paw lifting indicated a positive re-
sponse and led to the use of the next weaker filament. This
paradigm continued until a total of six measurements were
made or until four consecutive positive or four consecutive
negative responses had occurred. All measurements were car-
ried out in the right hind paw. The 50 % withdrawal threshold
(expressed in grams) was then calculated from the resulting
scores, as described previously by Dixon [13]. The 50 %
threshold was evaluated before (basal) and several times after
each drug treatment or surgical procedure. A decrease in the
50 % paw withdrawal threshold, when compared with the
same paw before surgery or melanoma injection (basal value),
was considered to be mechanical hyperalgesia. Conversely,
the antihyperalgesic effect after each treatment was considered
as an increase in the 50 % paw withdrawal threshold when
compared with the control group.

Measurement of acute thermal nociception

The acute nociception evoked by thermal stimulation was
measured as previously described by Hargreaves et al. [24].
A radiant thermal stimulus was projected onto the paw of the
animals and the paw withdrawal latency was measured (s) and
was evaluated before (basal) and several times after drug treat-
ment. To avoid tissue damage, the maximum time of exposure
to the heat source was 40 s. A positive antihyperalgesic effect
was defined as an increase in the paw withdrawal latency with
respect to the control group.

Postoperative pain model

The postoperative pain model was carried out according to the
procedure described by Oliveira et al. [45]. Mice were anaes-
thetized with 2 % halothane via a nose cone. After aseptic
preparation of the right hind paw with 10 % povidone–iodine
solution, a 5-mm longitudinal incision was made with a num-
ber 11 blade through the skin and fascia of the plantar foot.
The incision was started 2 mm from the proximal plantar edge
of the calcaneus/of the tarsus. The underlying flexor tendons
were elevated with curved forceps and then returned to their
normal anatomical position. The skin was apposed with a
single mattress suture of 6.0 nylon.

To evaluate the preventive effect of Tx3-5 in the postoper-
ative pain model, the mice were pretreated with Tx3-5
(30 fmol/site, i.t.) or PBS (5 μl/site, i.t.) 0.5 h before the sur-
gical procedure, and the mechanical threshold was measured
at 0.5, 1, 2 and 4 h after surgery (pretreatment protocol). In
contrast, to assess the curative effect of Tx3-5 in the postop-
erative pain model, the animals were submitted to the surgical
procedure, and the mechanical threshold was determined at
0.5 h after surgery (posttreatment protocol). Firstly, one group
of animals was treated with a single injection of Tx3-5
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(30 fmol/site, i.t.) or PBS (5 μl/site, i.t.), and the responses to
mechanical stimuli were measured at 0.5, 1, 2 and 4 h after
treatment. In a different group of animals, Tx3-5 (30 fmol/site,
i.t.) or PBS (5 μl/site, i.t.) was repeatedly administered at 0.5 h
and 1, 2, 3, 4 and 5 days after the plantar incision; the me-
chanical threshold of mice was measured at 1 h after the last
administration every day.

To determine the dose–response curve, mice were submit-
ted to postoperative treatment with Tx3-5 (3, 30 or 300 fmol/
site, i.t.) or PBS (5 μl/site, i.t.), and the responses to mechan-
ical hyperalgesia were measured at 1 h after treatment.

In another set of experiments, we assessed the possible role
of L-type calcium channels in the antinociceptive effect of
Tx3-5 (30 fmol/site, i.t.). Following the surgical procedure,
the mechanical threshold was determined at 0.5 h after sur-
gery, and immediately after the mechanical threshold determi-
nation, the mice received an intrathecal injection of Tx3-5
(30 fmol/site, i.t.) alone, Bay-K8644 (10 μg/site, i.t.) alone
or Tx3-5 (30 fmol/site, i.t.) plus Bay-K8644 (10 μg/site, i.t.).
The mechanical threshold was measured from 0.5 up to 4 h
after administration of the treatments.

Neuropathic pain model

For induction of chronic mononeuropathy, male mice were
first anaesthetized by intraperitoneal injection of 90 mg/kg
of ketamine plus 3 mg/kg of xylazine hydrochloride. Then, a
partial sciatic nerve ligation (PSNL) was made by tying one
third to one half of the dorsal portion of the right sciatic nerve
[36, 46, 78]. In the sham-operated mice, the nerve was ex-
posed without ligation. Seven days after the surgical proce-
dure, the mechanical threshold was measured to confirm the
development of hyperalgesia. The animals that suffered PSNL
and presented mechanical hyperalgesia were selected for the
experiment and either Tx3-5 (30 fmol/site, i.t.) or PBS (5 μl/
site, i.t.) was administered. Mechanical thresholds were mea-
sured at 0.5, 1, 2 and 4 h after treatments.

Cancer-related-pain and morphine tolerance model

B16–BL6 cells, a highly invasive variant of B16 melanoma
derived from the C57BL/6 mouse, were incubated as mono-
layer cultures in Eagle’s minimum essential medium contain-
ing 5 % foetal bovine serum and 1 % penicillin–streptomycin.
The melanoma cells (1×105 cells) were suspended in PBS,
and 20 μl of this suspension was injected subcutaneously into
the plantar region of the unilateral hind paw of C57BL/6 mice;
those that demonstrated mechanical hyperalgesia 2 weeks
postinoculation were selected for the experiment. This proto-
col was performed as previously described [54, 60]. Either
Tx3-5 (30 fmol/site, i.t.) or PBS (5 μl/site, i.t.) was adminis-
tered, and the responses to mechanical stimuli were measured
0.5, 1, 2 and 4 h after treatment.

Another group of animals that received intraplantar inocu-
lation of B16–BL6 cells and those that demonstrated mechan-
ical hyperalgesia after 2 weeks of administration were treated
with morphine (10 mg/kg, s.c.) or saline (10 ml/kg, s.c.), and
the mechanical hyperalgesia was observed from 0.5 up to 2 h
after the injection of saline or morphine. To induce tolerance,
the animals received three injections of morphine per day for
3 days (first day 10, 10 and 15 mg/kg; second day 15, 15 and
20 mg/kg; and third day 20, 20 and 25 mg/kg), according to
Marshall andWeinstock [39], with somemodifications. Saline
injection was used as the control. On the fourth day, we
injected the animals with morphine (10 mg/kg) or saline
(10 ml/kg) and evaluated the development of tolerance to
the antinociceptive effect from 0.5 up to 2 h after injection.
Then, the morphine- and saline-treated groups were treated
with PBS or Tx3-5 (30 fmol/site, i.t.), and the mechanical
hyperalgesia was observed at 0.5, 1, 2 and 4 h after treatment.

Evaluation of adverse effects

To verify and quantify the possible development of behaviour-
al adverse effects induced by Tx3-5 or ω-conotoxin MVIIA,
mice were placed in individual boxes (25×25 cm) for behav-
ioural observations at 0.5, 2 and 24 h after its administration.
We observed the ratio of the number of animals that demon-
strated adverse effects in relation to the number of animals that
did not demonstrate adverse effects, and then quantified the
possible adverse effects caused by Tx3-5 or ω-conotoxin
MVIIA. The adverse effects were rated as nil, mild, moderate
or severe using the following scores: 0, no effect—no adverse
effect; 1, mild effects—Straub’s tail, licking of the back and
the tail, rapid and transient acceleration of respiratory move-
ments; 2, moderate effects—tail serpentine-like movements;
and 3, severe effects—whole-body tremors and ataxia; these
scores are according to Scott et al. [64], with modifications
(adapted to a numerical scale). We determined the dose of
Tx3-5 or ω-conotoxin MVIIA that produces any toxicity in
50 % of animals (TD50) following intrathecal injection. To
determine the TD50 value, the animals received Tx3-5 (30–
10,000 fmol/site, i.t.) or ω-conotoxin MVIIA (10,000–100,
000 fmol/site, i.t., used as a positive control), and the adverse
effects were observed from 0.5 up to 24 h postinjection.

We also evaluated the spontaneous and forced locomotor
activity of animals that received Tx3-5 using the open-field
and the rota-rod tests, respectively, as previously described
[11, 46]. The open-field apparatus consisted of a box measur-
ing 25×25 cmwith a floor that was divided into nine identical
areas. To evaluate the spontaneous locomotor activity of ani-
mals, at 0.5, 2 and 24 h after Tx3-5 (30 fmol/site, i.t.) or PBS
(5 μl/site, i.t.) injection, the animals were transferred to the
apparatus and the number of areas crossed with all paws
(crossings) in 4 min was recorded. For the rota-rod test, the
animals were trained on the rota-rod (3.7 cm in diameter,
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8 rpm) until they could remain on the apparatus for 60 s with-
out falling. On the day of the experiment, the animals were
injected with Tx3-5 (30 fmol/site, i.t.) or PBS and subjected to
the rota-rod test at 0.5, 2 and 24 h later. The number of falls from
the apparatus was recorded for 120 s. Morphine (10 mg/kg, s.c.)
was used as a positive control for both tests.

To assess the immunogenicity of Tx3-5, we also verified
the levels of IL-1β in spinal cord samples by ELISA (TP-
Reader, Thermoplate) using commercial kits according to
the manufacturer’s instructions. Animals received either a sin-
gle or repeated (once a day for 6 days) administration of Tx3-5
(30 fmol/site, i.t.). Twenty-four hours after the last injection,
animals were euthanized and the lumbar (L1 to L6) spinal
cord was collected by mechanical extrusion and homogenized
in appropriate buffer (PBS containing 1 mM EDTA, 0.1 mM
PMSF and BSA 0.5 %, pH 7.4) for IL-1βmeasurements. As a
positive control, we injected lipopolysaccharide (LPS, 10 μg/
site, i.t.) into a separate group of animals [5]. The results were
expressed as picograms of IL-1β/mg protein. The detection
limit of the used kit is 63 pg/ml of IL-1β.

Statistical analyses

The results were expressed as the mean±standard error of the
mean (S.E.M.), with the exception of the inhibitory dose 50 %
(ID50) or the TD50 values (i.e. the Tx3-5 dose that reduces noci-
ceptive responses to 50 % of that of the control value, or that
produced toxicity in 50 % of animals), which were expressed as
geometric means accompanied by their respective 95 % confi-
dence limits. ID50 and TD50 values were determined using non-
linear regression and probit analysis, respectively. Statistical anal-
yses were carried out using GraphPad Prism 5.0 software. The
significance of the differences between groups was evaluated
with a one-way analysis of variance (ANOVA) followed by a
Student–Newman–Keuls’ post hoc test or a two-way ANOVA
(time and treatment as factors, and F values indicate the interac-
tion between these factors) followed byBonferroni’s post hoc test
when appropriate. The data of spontaneous and forced locomotor
activity of animals were analysed by chi-square test. Results were
considered significant when p<0.05. To calculate the TD50 value
and their 95% confidence limits the data were subjected to probit
analysis using SPSS 8.0 software. No statistical methods were
used to predetermine sample sizes, but our sample sizes are sim-
ilar to those reported in previous publications in the field.

Results

Effects of Tx3-5 on the acute thermal nociception
or the mechanical threshold

The administration of Tx3-5 (30 fmol/site, i.t.) or PBS (5 μl/
site, i.t.) did not alter the acute thermal nociception or

mechanical threshold of naïve animals (Fig. 1a, b).
However, morphine (10 mg/kg, s.c., used as positive control)
increased the paw withdrawal latency [F(8,64) = 6.5;
p<0.0001; Fig. 1c], but did not change the mechanical thresh-
old (Fig. 1d) of animals, when compared with animals that
received PBS.

Effects of Tx3-5 on the postoperative pain model

The surgical procedure caused a significant decrease in the
mechanical threshold at all time points measured (0.5 h to
5 days) in PBS-treated mice when compared with the baseline
threshold, which suggests the development of mechanical
hyperalgesia. The treatment with Tx3-5 (30 fmol/site, i.t.) af-
ter the incision promoted an antinociceptive effect [F(5,
60)=12.5; p<0.0001; Fig. 2a] from 0.5 up to 2 h after treat-
ment. Furthermore, the repeated posttreatment with Tx3-5
(30 fmol/site, i.t.) could reduce the observed hyperalgesia of
the animals [F(6,72) = 8.3; p<0.001; Fig. 2b] for 1 up to
4 days postsurgery. In the dose–response curve, Tx3-5 (30
or 300 fmol/site, but not 3 fmol/site, i.t.) was able to reverse
the mechanical hyperalgesia induced by the incision [F(3,
20) = 6.8; p< 0.001; Fig. 2c], with an ID50 value of 16.6
(3.2–87.2) fmol/site, i.t., and a maximum inhibition of 87
±10 % at the dose of 30 fmol/site, i.t.

To assess the preventive effect of Tx3-5, a group of animals
was pretreated with Tx3-5 (30 fmol/site) or vehicle (PBS;
5 μl/site, i.t.) before the surgical procedure and after evalua-
tion of the mechanical paw withdrawal threshold of the ani-
mals (baseline; B). The animals treated with vehicle (prior to
surgery) demonstrated mechanical hyperalgesia from 0.5 up
to 4 h after surgery Conversely, the pretreatment with Tx3-5
prevented the development of mechanical hyperalgesia [F(4,
52)=4.6; p<0.01; Fig. 2d] from 0.5 up to 2 h after surgery
(inhibition of 70±15 % at 2 h), but not at 4 h after surgery.

Reversion of Tx3-5-induced antihyperalgesic effect
by Bay-K8644 in the postoperative pain model

We verified previously that Tx3-5 was able to prevent and
reverse the mechanical hyperalgesia induced by the surgi-
cal procedure. Following from this, we evaluated the ef-
fect of Bay-K8644, an opener of L-type VSCC, on the
antihyperalgesic effect induced by Tx3-5. Firstly, we
found that Bay-K8644 (10 μg/site, i.t.) alone did not sig-
nificantly alter the mechanical threshold of those animals
who underwent surgery. However, the co-administration
o f Bay -K8644 (10 μg / s i t e , i . t . ) r eve r s ed t h e
antihyperalgesic effect induced by Tx3-5 (30 fmol/site,
i.t.) from 0.5 up to 2 h after its administration [F(15,
105) = 3.2; p< 0.001; Fig. 3], with a maximum reversion
of 92 ± 19 % at 1 h posttreatment.
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Effects of Tx3-5 on the neuropathic pain model

Partial ligation of the sciatic nerve produced mechanical
hyperalgesia 7 days after surgery, when compared with the
baseline threshold (Fig. 4). The treatment with Tx3-5
(30 fmol/site, i.t.) had a limited effect (inhibition of 67
±10 %), being able only to partially reduce the mechanical
hyperalgesia produced by nerve injury only at 1 h after treat-
ment [F(5,60)=3.4; p<0.01].

Effects of Tx3-5 on the cancer-related pain model
and morphine tolerance in mice

Fifteen days after the intraplantar inoculation of melanoma
cells in C57BL/6 mice, we observed the development of me-
chanical hyperalgesia. The treatment with Tx3-5 (30 fmol/site,
i.t.) substantially reduced the mechanical hyperalgesia in-
duced by melanoma from 0.5 up to 2 h following i.t. admin-
istration [F(5,60)=30; p<0.0001; Fig. 5a], with a maximum
inhibition of 96±7 % at 1 h. Moreover, morphine (10 mg/kg,
s.c.) also abolished the mechanical hyperalgesia induced by
melanoma from 0.5 up to 1 h following i.t. injection [F(4,
50)=28; p<0.0001; Fig. 5b], with a maximum inhibition of
100 % at 0.5 h, whereas the vehicle control group had no
effect.

The treatment with morphine or vehicle was continued
three times daily for 3 days with increasing doses to induce

tolerance. On the fourth day (and approximately 12 h after the
last injection of morphine), we measured the mechanical
threshold of the animals again. The morphine-pretreated ani-
mals presented a higher degree of mechanical hyperalgesia
when compared to the saline-pretreated group, or with the
same animals before repeated morphine treatment (Fig. 5d;
B2, basal mechanical threshold after tolerance induction).
Thereafter, the mice received a challenge dose of morphine
(10 mg/kg, s.c.) to confirm that morphine tolerance had been
established. This dose of morphine, which previously
abolished the mechanical hyperalgesia induced by melanoma
at 0.5 and 1 h, was not capable of altering hyperalgesia in the
animals that were pretreated with morphine, indicating the
development of tolerance (Fig. 5d). Two hours after the mor-
phine challenge, we administered Tx3-5 (30 fmol/site, i.t.) or
PBS (5 μl/site, i.t.) to assess the effect of the peptide in
morphine-tolerant animals. We observed that Tx3-5
(30 fmol/site, i.t.) was able to completely reverse the mechan-
ical hyperalgesia induced by melanoma in morphine-tolerant
animals [F(6,84)=133; p<0.0001; Fig. 5c] from 0.5 up to 2 h
after Tx3-5 administration (inhibition of 100 % at 0.5 h).

Adverse effects induced by Tx3-5

We first verified the possible action of Tx3-5 (30 and
300 fmol/site, i.t.) on the locomotor activity of animals. At
the dose where it produced antihyperalgesic effect (30 and

Fig. 1 Effects of intrathecal
administration of Tx3-5 or
morphine on acute thermal
nociception or on the mechanical
threshold in mice. a, b Time–
response curves of the treatment
with Tx3-5 (30 fmol/site, i.t.) on
acute thermal nociception (a) or on
the mechanical threshold (b) in
mice. c, d Time–response curve of
the treatment with morphine
(10 mg/kg, s.c.) on acute thermal
nociception (a) or on the
mechanical threshold (d) inmice.B
denotes basal threshold before
treatment with Tx3-5 or PBS. Data
are expressed as the means+
S.E.M. of four to six animals per
group (n=6 to a and b; n=5–6 to
c; n=4 to d). Two asterisks
p<0.001, three asterisks p<0.001
when compared with the PBS
group; two-way ANOVA followed
by Bonferroni’s post hoc test
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300 fmol/site, i.t.), Tx3-5 exhibited no effect on either the
spontaneous or the forced locomotor activity of the animals,
as assessed in the open-field and the rota-rod tests, respective-
ly (Table 1). In contrast, morphine at an analgesic dose
(10 mg/kg, s.c., used as positive control) increased the cross-
ing number in the open-field test, but did not alter the number
of falls in the rota-rod test, when compared with the PBS
group (Table 1).

Next, we tested the possible toxicity of Tx3-5 at doses
higher than used to cause antihyperalgesia. The i.t. adminis-
tration of Tx3-5 at doses of 3000 or 10,000 fmol/site produced
detectable adverse effects at 0.5, 2 and 24 h after injection,
which included Straub’s tail, licking of the back and the tail
and rapid and transient acceleration of respiratory movements
as observed in Table 2. None of the animals demonstrated
adverse effects at doses below 3000 fmol/site. The calculated
50 % toxic dose (TD50) for Tx3-5 was 1568 (1492–
1650) fmol/site, i.t. To compare the toxic effect of Tx3-5 with
a toxin that is clinically used to treat pain, we assessed the
adverse effects produced byω-conotoxin MVIIA. Intrathecal
administration of high doses ofω-conotoxin MVIIA (30,000
and 100,000 fmol/site) produced licking of the back and the

tail, acceleration of respiratory movements and spins around
the body alternating with immobility in all tested animals at
0.5, 2 and 24 h after injection (Table 2). The dose of 10,
000 fmol/site of ω-conotoxin MVIIA did not cause a visible
behavioural change in the animals. The calculated TD50 value
for ω-conotoxin MVIIA was 17,286 (16,976–17,603) fmol/
site.

We also measured the IL-1β levels in the spinal cord of
animals that received Tx3-5. The animals that received Tx3-5
(30 fmol/site, i.t.) only once, or during six consecutive days,
contained cytokine levels below those detectable by the kit.
Conversely, the animals that received a single administration
of LPS (used as a positive control) contained elevated levels of
IL-1β (750±160 pg/mg).

Discussion

The venom of the Brazilian armed spider, P. nigriventer, is a
rich source of biologically active peptides. In the present
study, we verified that the intrathecal administration of the
peptide Tx3-5 via the i.t. route produced antinociception in

Fig. 2 Antinociceptive effects produced by the intrathecal injection of
Tx3-5 in the postoperative pain model in mice. a, b, d Time–course
curves of posttreatment (a, b) or pretreatment (d) with Tx3-5 (30 fmol/
site, i.t.) or PBS. c The dose–response curve in mice posttreated with Tx3-
5 (3, 30, or 300 fmol/site, i.t.) or PBS. B denotes baseline threshold before
surgery, while B1 indicates basal mechanical threshold after surgery and
before treatment with Tx3-5 or PBS. Data are expressed as the means +

S.E.M. of five to seven animals per group (n= 7–8 to a; n = 6–8 to b and
d; n= 5–7 to c). Number sign p < 0.01 when compared with the basal
mechanical threshold (b); one asterisk p < 0.05, two asterisks p < 0.01
and three asterisks p < 0.001 when compared with the PBS group (one-
way ANOVA followed by Student–Newman–Keuls’ test to c and two-
way ANOVA followed by Bonferroni’s post hoc test to a, b and d
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postoperative, neuropathic and cancer-related pain models.
Tx3-5 also demonstrated an antihyperalgesic action in a
cancer-related pain model using morphine-tolerant mice.
Furthermore, the antinociceptive effects induced by Tx3-5
were observed at a far lower dose than the dose that induces
adverse effects.

While physiological pain has an important protective func-
tion, some forms of pain occur in pathological conditions and
can be a consequence of debilitating diseases [4, 30, 33]. Thus,

an ideal analgesic drug should only inhibit pathological pain,
without affecting physiological pain. We observed that intrathe-
cal injection of Tx3-5 changed neither the noxious heat sensi-
tivity nor the mechanical threshold, suggesting that this peptide
does not affect physiological pain. However, morphine de-
creased heat nociception but did not alter the mechanical thresh-
old of animals. Our findings agree with those of Scherrer et al.
[62], who demonstrated that μ opioid receptors contribute to
analgesia for thermal pain, but not mechanical pain.

Pain can manifest as hyperalgesia (increased sensitivity to
painful stimuli) [33]. Thus, we investigated the effects of Tx3-
5 in models of pathological and clinically relevant pain by
measuring the degree of hyperalgesia. Initially, we evaluated
the antinociceptive effect of intrathecal Tx3-5 in a postopera-
tive pain model, demonstrating that it was able to prevent the
development of mechanical hyperalgesia induced by a plantar
incision, and reverse the established hyperalgesia produced by
surgery up to 4 days postoperatively, by repeated treatment,
without inducing tolerance to the antihyperalgesic effect or
immunogenicity. Our results are in agreement with other stud-
ies that have demonstrated that L-type VSCC blockers exhibit
antinociceptive action to varying degrees in inflammatory
pain models (the later phase of the formalin test and the acetic
acid test) [7, 43]. Our results also concur with those described
by Wang et al. [79] and Souza et al. [70], whereby intrathecal
ω-conotoxin MVIIAwas able to prevent and reverse the post-
operative mechanical hyperalgesia in rats and mice, with a
similar level of efficacy. However, Tx3-5 is approximately
180 times more potent thanω-conotoxin MVIIA in inducing
antinociception in the postoperative pain model, since the
ID50 for i.t. ω-conotoxin MVIIA was approximately
3000 fmol/site [54]. Moreover, although intrathecal infusion
ofω-conotoxin MVIIA is effective in reducing postoperative

Fig. 3 Effects of the activator of L-
type calcium channels Bay-K8644
(10 μg/site, i.t.), or vehicle, on
antihyperalgesic effect induced by
Tx3-5 (30 fmol/site) in the
postoperative pain model. B
denotes baseline threshold before
surgery, and B1 indicates basal
mechanical threshold after surgery
and before the treatments. Vertical
bars represent the means+S.E.M.
of six to seven animals per group.
Number sign p<0.01 when
compared with the basal
mechanical threshold (B); three
asterisks p<0.001, when compared
with the respective vehicle group;
two-way ANOVA followed by
Bonferroni’s post hoc test

Fig. 4 Time–course curve of the effect of Tx3-5 (30 fmol/site, i.t.) or
PBS treatment on mechanical hyperalgesia after partial sciatic nerve liga-
tion (PSNL) in mice. B denotes baseline threshold before surgery, and B1
indicates basal mechanical threshold after surgery, but before treatment
with Tx3-5 or PBS. Data are expressed as the means + S.E.M. of six to
eight animals per group. Number sign p < 0.01 when compared with the
basal mechanical threshold (B); two asterisks p< 0.01 when compared
with the respective PBS-treated group; two-way ANOVA followed by
Bonferroni’s post hoc test
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pain in patients, it can cause adverse effects at analgesic doses
[2]. Thus, intrathecal injection of Tx3-5 might be a potentially
interesting delivery modality in the development of new drugs
for the management of postoperative pain, because Tx3-5 is
effective in preventing and reversing postoperative
nociception at doses that do not cause adverse effects.

We also evaluated the antinociceptive effect of the Tx3-5 in
a cancer-related pain model. Pain is the most disruptive influ-
ence on the quality of life of cancer patients, and intrathecal
infusion of ziconotide has been used as an analgesic in these
patients [38, 73]. Moreover, literature data demonstrate that
besides N-type VSCC blockers, L-type VSCC blockers are
capable of inducing analgesia, and potentiate the analgesia
of morphine, thus reducing the consumption of morphine in
cancer patients [18, 59]. In the present study, we demonstrated
that the intrathecal administration of Tx3-5 was able to reverse
the mechanical hyperalgesia induced by intraplantar melano-
ma cells with an efficacy similar to that of systemically ad-
ministered morphine. This result is relevant because morphine
therapy is the most widely used therapy, and is the most ef-
fective, in controlling pain associated with cancer, according
to the World Health Organization [48]. However, the chronic
use of morphine and other opioids is limited by the

development of analgesic tolerance [3, 8, 51]. Therefore, a
search for new analgesic drugs and analgesic interventions
to reduce the pain of cancer patients, including the patients
who are refractory to conventional analgesics, is necessary.
Unfortunately, there are no pre-clinical models to investigate
the analgesic potential of new drugs which can be used for the
treatment of cancer pain in patients who are refractory to
opioids.

Additionally, we designed a protocol to evaluate the possi-
ble antinociception produced by Tx3-5 in animals that were
tolerant to morphine that were submitted to a cancer-related
pain model. As previously demonstrated [20, 60], the repeated
injection of morphine produced tolerance to the analgesic ef-
fects in mice with melanoma 4 days after the treatment began.
Moreover, we observed that the mechanical hyperalgesia
4 days after the repeated administration with morphine was
more intense than after the repeated administration of the ve-
hicle in mice with melanoma. The animals presented a more
intense mechanical hyperalgesia than the hyperalgesia ob-
served before the induction of morphine tolerance. This effect
appears to be opioid-induced hyperalgesia and may compli-
cate the clinical course of pain treatment in a patient receiving
opioids [66]. However, intrathecal treatment with Tx3-5 was

Fig. 5 Antinociceptive effect of Tx3-5 (30 fmol/site, i.t.) or morphine
(10 mg/kg, s.c.) at different time points in a cancer pain model (a, b) and
in a cancer pain model in mice that have developed tolerance to morphine
(c, d). Vertical bars represent the means + S.E.M. of six to seven animals
per group (n= 6 to a and b; n= 6–7 to c and n= 7 to d). Number sign
p< 0.01 when compared with the basal mechanical threshold (B, basal

before injection of melanoma); tau symbol p< 0.01 when compared with
the mechanical threshold before repeated morphine treatment (B1) or
when compared with the respective saline-pretreated group; three asterisks
p<0.001 when compared with the respective saline or PBS group; two-
way ANOVA followed by Bonferroni’s post hoc test. B2 (c, d) indicates
basal mechanical threshold after tolerance induction
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able to fully reverse the mechanical hyperalgesia induced by
melanoma cell inoculation in morphine-tolerant mice. Theω-
conotoxin MVIIA (ziconotide) is often used to treat patients
with cancer pain who are refractory to opioid treatment [42].
Several studies have demonstrated that L-type VSCC blockers
enhanced the analgesia and blocked the development of toler-
ance caused by opioids in experimental animals, both with
and without cancer [1, 12, 28, 76], as well as in humans with
cancer [58, 59]. Our results are accordant with those described
by Rigo et al. [54], where intrathecal injection of the spider
peptide Phα1β or ziconotide was able to reverse cancer-
related hyperalgesia in mice with a similar efficacy. Thus,
our model seems to be useful for assessing potential analgesic
drugs that can treat cancer-related pain refractory to morphine.

Opioid tolerance and neuropathic pain have several com-
mon characteristics, such as changes in the expression of re-
ceptors and alterations of the properties of neuronal circuits [8,
80]. Therefore, we evaluated the antinociceptive effect of Tx3-

5 on a neuropathic pain model. Chronic neuropathy, which is a
debilitating condition that frequently results from partial inju-
ry to a peripheral nerve, resulting in the development of
hyperalgesia, is often resistant to common therapeutic inter-
ventions [36, 80, 81]. In common with several other animal
toxins, such asω-conotoxin MVIIA or the P. nigriventer pep-
tides Tx3-6 and Tx3-3, which demonstrate antihyperalgesic
effects in neuropathic pain models [11, 54, 71, 72], we ob-
served that Tx3-5 partially reversed the mechanical
hyperalgesia induced by partial sciatic nerve ligation.
Compared to the other very efficacious toxins, Tx3-5 had a
limited efficacy to reverse the neuropathic hyperalgesia. In
fact, several studies demonstrated that L-type VSCC is not
as relevant to the maintenance of neuropathic pain as other
types of VSCC, such as P/Q, N or R-type calcium channels
[34, 40, 41]. Possibly, the mild antinociceptive effect present-
ed by Tx3-5 in neuropathic pain is related to its selectivity for
the subtypes of L-type channel, since L-type VSCC in the

Table 1 Assessment of
spontaneous and forced
locomotor activity in mice treated
with Tx3-5 (30 or 300 fmol/site,
i.t.) or morphine (10 mg/kg, s.c.)
in the open-field and rota-rod
tests, respectively

Drug Time after drug (h) Open field (crossing number) Rota-rod (fall number)

PBS (5 μl/site) 0.5 32± 4 1.5 ± 0.5

2 15± 5 0.7 ± 0.2

24 28± 5 1.0 ± 0.5

Tx3-5 (30 fmol/site) 0.5 31± 4 1.0 ± 0.3

2 13± 2 0.3 ± 0.3

24 36± 8 0.16 ± 0.16

Tx3-5 (300 fmol/site) 0.5 31± 4 2.3 ± 0.5

2 12± 2 1.6 ± 0.8

24 33± 6 1.2 ± 0.5

Morphine (10 mg/kg, s.c.) 0.5 106 ± 13*** 0.8 ± 0.4

2 50± 12** 1.0 ± 0.5

24 40± 3 1.0 ± 0.4

Data are expressed as the means + S.E.M. of six animals per group. *p< 0.05 and ***p < 0.001 when compared
with the PBS group in the respective time; two-way ANOVA followed by Bonferroni’s post hoc test

Table 2 Adverse effects
observed in mice after intrathecal
administration of Tx3-5 (30–
10,000 fmol/site, i.t.) or MVIIA
(10,000–100,000 fmol/site, i.t.)

Drug Dose (fmol/site, i.t.) Number of animals presenting/number of animals not presenting
adverse effects

0.5 h after injection 2 h after injection 24 h after injection

PBS (5 μl/site) 0/6 0/6 0/6

Tx3-5 30 0/6 0/6 0/6

300 0/6 0/6 0/6

1000 0/4 0/4 0/4

3000 6/0** 6/0** 6/0**

10,000 2/0* 2/0* 2/0*

ω-Conotoxin
MVIIA

10,000 0/4 0/4 0/4

30,000 6/0** 6/0** 6/0**

100,000 2/0* 2/0* 2/0*

*p< 0.05 and **p< 0.01 when compared with the PBS group in the respective time (chi-square test)
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spinal dorsal horn plays an important role in pain processing,
and that the maintenance of chronic neuropathic pain depends
specifically on channels comprising L-type VSCC subtype
CaV1.2 [14, 19]. Further, the effects of L-type VSCC blockers
on nociception differ depending on the drug, dosage, route of
administration and algesic test used [50]. However, the
antihyperalgesic effect of Tx3-5 on partial sciatic nerve liga-
tion is an important finding because the available analgesic
drugs often have a limited therapeutic value in the manage-
ment of neuropathic pain, due to their frequently observed
adverse effects and low therapeutic index [81], whereas
Tx3-5 has a lower efficacy but a much greater therapeutic
index. Therefore, it is important to find new drugs that are
more effective, and exhibit fewer adverse effects, than the
current treatment modalities.

In addition to peptides that display antinociceptive
properties, P. nigriventer venom has a diversity of potent
toxins that cause neurotoxicity. Some of these toxins can
be found in the fraction PhTx3 [9, 11, 21, 55, 72]. Similar
to observations from previous experiments with Tx3-3 and
Tx3-6 from P. nigriventer, and ω-conotoxins from the
Conus genus [11, 37, 70, 72], intrathecal injection of
Tx3-5 produced detectable adverse effects at high doses,
but displayed a greater therapeutic index (80) than ω-
conotoxin MVIIA, Tx3-3 or Tx3-6 (therapeutic indices of
approximately 4, 10 or 16, respectively). From these re-
sults, it appears that Tx3-5 has a great advantage over the
other toxins tested because Tx3-5 has antinociceptive ef-
fects at doses much lower than the doses that induce ad-
verse effects. Moreover, Tx3-5 is about 300, 1000 and
7000 times more potent than ω-conotoxin MVIIA, Tx3-3
or Tx3-6, respectively, in relation to the analgesic effects
observed in animal models. Additionally, Tx3-5 promoted
its antinociceptive effects without producing detectable ad-
verse effects, while morphine, used as a positive control,
increased spontaneous locomotor activity. In contrast to the
findings of Cordeiro et al. [9], who observed adverse ef-
fects such as paralysis in the posterior limbs, gradual de-
creases in movement and aggressive behaviour during 24 h
of observation following Tx3-5 administration to mice by
the intracerebroventricular (i.c.v.) route, our present study
adverse effects displayed no similar neurological adverse
effects at the therapeutic dose. It is probable that these
discrepancies occurred because they used a dose of Tx3-5
33,000-fold higher (5 μg/mice) than that used in our study
(30 fmol/site), and a different administration route (i.c.v.)
to that used in our experiments (i.t.). Furthermore, we also
verified that intrathecal administration of Tx3-5 did not
cause immunogenicity, in contrast to the lipopolysaccha-
ride positive control, which elevated the levels of interleu-
kin-1β. This agrees with the results reported by Song et al.
[69]. It is possible that the Tx3-5 did not trigger an immune
response because the amount of this toxin used in the

experiment was insufficient to do so. In order to assess
the immunogenicity of the Tx3-5, a significant amount of
this toxin would be required; this is very difficult to
achieve because the Tx3-5 is the toxin with the lowest
relative concentration in the venom of P. nigriventer [9].

The analgesic and toxic effects of the previously studied
fraction PhTx3 purified peptides, or of ω-conotoxin MVIIA,
appear to be mediated by a blockade of VSCC, such as P/Q
and R-type calcium channel in the case of Tx3-3, or N-type
calcium channel in the case of Tx3-6 and ω-conotoxin
MVIIA [11, 31, 72, 77]. In contrast to Tx3-3 and Tx3-6, which
are non-selective VSCC blockers, Tx3-5 is a selective and po-
tent blocker of L-type VSCC in vitro [31, 32]. Assessing this
mechanism in vivo, we verified that the L-type calcium channel
activator Bay-K8644 was able to prevent the antihyperalgesic
effect induced by Tx3-5, indicating that Tx3-5 exerts its effects,
at least in part, on L-type calcium channels. Accordingly, previ-
ously published data showed that some blockers of the L-type
VSCC exhibit antinociceptive effects inmodels of inflammatory
and neuropathic pain in rodents [19, 22]. Conversely, Bay-
K8644 was not able to alter postoperative hyperalgesia when
administered alone, which is in accordance with other studies
that demonstrated that intrathecal administration of Bay-K8644
was not capable of altering the nociception caused by formalin
or acetic acid in mice [23, 25, 52], but it was able to prevent the
antinociceptive effect of L-type VSCC blockers [27]. Since
Bay-K8644 can also interact with molecular targets other than
L-type calcium channels (i.e. TRPA1 channels) [16], we cannot
discard a role of non-L calcium channels in the antihyperalgesic
action of Tx3-5, a possibility that warrants further study.
Notably, L-type calcium channel blockers have been considered
important future potential agents to treat cardiovascular, psychi-
atric and neurological disease [82].

In conclusion, the peptide Tx3-5 demonstrated
antinociceptive effects in clinically relevant pain models,
which was complimented by a wide therapeutic index. It also
displayed efficacy in opioid-tolerant animals. Together, these
results demonstrate that the peptide Tx3-5 has characteristics
that make it a potential candidate for the development of new
analgesics for the treatment of both acute and chronic patho-
logical pain conditions.
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