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Abstract Volume regulation is an essential property of any
living cell and needs to be tightly controlled. While different
types of K+ channels have been found to participate in the
regulation of cell volume, the newly identified volume-
regulated anion channel (VRAC) LRRC8 has been claimed
to be essential for volume regulation. In unbiased genome-
wide small interfering RNA (siRNA) screens, two indepen-
dent studies identified LRRC8A/Swell1 as an essential com-
ponent of VRAC, thus being indispensable for cellular vol-
ume regulation. We reanalyzed the role of LRRC8A for
VRAC and regulatory volume decrease (RVD) in several cell
types and under various conditions. While the role of
LRRC8A for VRAC and its contribution to RVD is con-
firmed, we find that it is not essential for swelling-activated
anion currents or cellular volume regulation, or apoptotic cell
shrinkage. The contribution of LRRC8A is variable and large-
ly depending on the cell type.

Keywords LRRC8A . VRAC . Volume-activated anion
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Introduction

Cells regulate their volume when imbalances exist between
intra- and extracellular osmolarity. Cell swelling is counteracted

by the activation of K+ and Cl− channels or KCl (KCC)
cotransporters, and subsequent release of KCl to the extracellular
space, which is followed by exit of water [5, 13, 15]. A particular
type of Cl− channel, the so called volume-regulated anion chan-
nel (VRAC) is thought to play a central role during volume
regulation, particularly during regulatory volume decrease
(RVD). Recently, LRRC8A has been identified as a ubiquitous
and essential component of VRAC, and LRRC8Awas shown to
be indispensable for cellular volume regulation [20, 28].

Over the past 20 years, many Cl− channels were suggested
to contribute to volume regulation, such as ClC-3, VDAC,
p64, CLIC1, CFTR, TMEM16, and bestrophin [9, 18, 16].
However, while the contributions of some channels to volume
regulation (e.g., Bestrophin 1, CFTR and TMEM16) have
been examined also in naïve cells and original tissues [2, 4,
25], almost all other studies examined VRAC/RVD in cul-
tured cells [5, 18]. Also for LRRC8A, the general physiolog-
ical relevance is currently unclear. We therefore reexamined in
a number of cell types, including those used for the identifi-
cation of LRRC8A, whether LRRC8A is essential for VRAC
and cellular volume regulation. While LRRC8A clearly deter-
mines the magnitude of VRAC, we could still activate VRAC
in the absence of LRRC8A. The impact of LRRC8A on vol-
ume regulation was even less obvious. Thus swelling-
activated Cl− currents, RVD and apoptotic cell shrinkage were
still detected in the absence of LRRC8A.

Experimental procedures

Cells, cDNA, RT-PCR

HEK293 were grown in DMEM-F12 (GIBCO, Karlsruhe,
Germany) supplemented with 10 % fetal bovine serum at
37 °C in the absence of antibiotics in a humidified atmosphere
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with 5 % CO2. HeLa and HCT116 [20, 28] cells were grown
as described earlier [20, 28]. HCT-wt (LRRC8A+/+) and
HCT-LRRC8A−/− cells were kindly provided by Dr. F.
Voss/Prof. Dr. T. Jentsch (FMP, Berlin). BHY cells were
grown in Opti-MEM (Gibco) supplemented with 10 % (v/v)
heat-inactivated fetal bovine serum (FBS, Gibco) at 5 % CO2

and 37 °C. Human LRRC8A (IRAUp969D03104D, Source
BioScience GmbH, Berlin, Germany) was subcloned into
pcDNA31 by PCR using KAPAHiFi HotStart DNA Polymer-
ase (KAPA Biosystems, Boston, MA, USA). The construct
LRRC8AΔLRRwas generated by PCR (KAPAHiFi HotStart
DNA Polymerase) inducing a stop codon at position D367.
pIRES2 LRRC8A-T44C was a generous gift from Zhaozhu
Qiu [20]. CD8MicroBeads were used to identify overexpress-
ing cells. For semiquantitative RT-PCR total RNA (1 μg) was
isolated from HeLa and HEK293B cells, reverse-transcribed
using a random primer and M-MLV reverse transcriptase
(Promega, Mannheim, Germany). The RT-PCR reaction
contained sense and antisense primers for LRRC8A, KCC,
cation chloride cotransporter (CCC), and GAPDH (0.5 μM;
Table 1), 0.5 μl cDNA, and GoTaq polymerase (Promega).
After 2 min at 95 °C, cDNA was amplified in 30 cycles for
30 s at 95 °C, 30 s at 56 °C, and 1 min at 72 °C and visualized
by loading on ethidium bromide-containing agarose gels.

siRNA, solutions, materials, and statistical analysis

Small interfering RNA (siRNA) sequence was 5′-CCA
AGCUCAUCGUCCUCAA-3′ (LRRC8A), (Silencer Select,
Life Technologies, Darmstadt, Germany), respectively. Exper-
iments were performed 48 h after transfection of 2×105 cells
using Lipofectamin 3000. For most experiments, cells were
kept initially in Ringer solution (mM): NaCl 145, KH2PO4

0.4, K2HPO4 1.6, D-glucose 5, MgCl2 1, and calcium gluco-
nate 1.3, pH 7.4. Ringer solution was then replaced by an
isotonic solution (Iso) containing (mmol/l) NaCl 95.5,
KH2PO4 0.4, K2HPO4 1.6, D-glucose 5, MgCl21, Ca-
gluconate 1.3, and mannitol 100, pH 7.4. To induce cell swell-
ing, a hypotonic solution (200 mosmol/l; 33 % Hypo) was
produced by the removal of mannitol. Alternatively, Ringer
solution was directly replaced by hypotonic solution. NS3728
was from Neurosearch (Hellerup, Denmak); RDIOA,
CaCCinhAO1, staurosporine, ionomycin, BAPTA, Ba2+,
TEA+, and Cs+ were from SIGMA. Osmolarity was measured
using an osmometer. Data are presented as mean±SEM. For
statistical analysis, paired or unpaired t test or ANOVAwere
used where appropriate. A p value of <0.05 was accepted as
significant.

Western blotting

Cells were collected and lysed in 0.5 % NonidetP40 lysis
buffer. Proteins (50 μg) were separated by 8.5 % SDS-
PAGE and transferred into PVDF membrane. Membrane
was blocked with 5 % nonfat milk (NFM)/Tris-buffered saline
and Tween 20 (TBS-T) or 5 % NFM/phosphate-buffered sa-
line and Tween 20 (PBS-T) for 1 h at room temperature and
incubated overnight at 4 °C with rabbit anti-LRRC8A (diluted
1:1000 in 1 % BSA/TBS-T; Sigma, Taufkirchen, Germany).
Mouse anti β-actin (sc-47778) and anti-GAPDH were from
Santa Cruz Biotech (Heidelberg, Germany). The membrane
was incubated with horseradish peroxidase (HRP)-conjugated
goat anti-rabbit IgG (diluted 1:10,000 in 1 % NFM/TBS-T)
for 2 h at room temperature. Subsequently, the immunoreac-
tive signals were detected using a SuperSignal West Pico
chemiluminescence substrate (Pierce, Waltham, USA).

Stauro Caspase assay in HeLa cells

A total of 8 × 104 HeLa cells were seeded on fibronectin-
coated glass coverslips. Cells were treated with 1 μM
Staurosporine and non-fluorescent caspase-3 substrate
DEVD-NucView488 (Biotium) for 6 h at 37 °C. Fluores-
cence intensity from enzymatic cleavage was detected by
fluorescence microscopy at 488-nm excitation and 520-nm
emission.

Flow cytometry

Cells were washed and re-dissolved in 10 ml Ringer, isotonic
or hypotonic solution as described above. Cells were analyzed
at 37 °C/pH 7.4 using a CASY flow cytometer (Roche Diag-
nostics, Mannheim, Germany). Cells were analyzed at a den-
sity of 106 cells/ml. Cell swelling and RVDwere observed for
up to 9 min after applying hypotonic bath solution. Data were
fitted by an exponential fit (y= y0+A

(R0x)) and time required

Table 1 Primers used for semiquantitative RT-PCR

target Sequenz Size (bp)

KCC1 s: 5′-CTTCTGGGAAAGCTCGTCAG 486
as: 5′-CGTGTCATGAGCACCCGATG

KCC2 s: 5′-GACCAGCACCGACACAGAGAAGG 544
as: 5′-CATGGCTGGGAAGAGGTAAG

KCC3 s: 5′-CGAAATGCTTATCTCAATAATTC 658
as: 5′-GGGCTGCTCTATGTGTTTGG

KCC4 s: 5′-GAGGACGAGGAGAGCCGG 689
as: 5′-GAGTTGTTGTGGATGCCGTAG

CCC6 s: 5′-CCTCATTCCTCACATTCCTGC 495
as: 5′-CTGAGAGCGCTGTGGCATAG

CCC9 s: 5′-GGGCTGCTCTATGTGTTTGG 599
as: 5′-GCCAGGGACGAGATGTATAAG

LRRC8A s: 5′-CGCAGATAGCAGAGCCATCC 603
as: 5′-CATCTTGCTGAAGGCCGGC

GAPDH s: 5′-GTATTGGGCGCCTGGTCAC 200
as: 5′-CTCCTGGAAGATGGTGATGG
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for 50 % reduction of cell volume during RVD was
determined.

Patch clamping

Fast whole-cell patch-clamp recordings were performed on
cells grown on fibronectin-coated glass coverslips. If not in-
dicated otherwise, patch pipettes were filled with a cytosolic-
like solution containing KCl 30, K -gluconate 95, NaH2PO4

1.2, Na2HPO4 4.8, EGTA 1, Ca-gluconate 0.758, MgCl2 1.03,
D-glucose 5, ATP 3, pH 7.2. The Ca2+ activity was 0.1 μM.
We choose this solution because it enabled swelling/shrinkage
behavior under physiological ion concentrations and allowed
for direct comparison of the results from patch clamping and
volume measurements. Additional pipette/bath solutions were
used in which K+ was replaced by NMDG+. Hypotonic cell
swelling was induced by (1) changing extracellular Ringer
solution to an isotonic solution in which NaCl was partially
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Fig. 1 Expression of LRRC8A, KCC, and CCC in various human cell
lines. a RT-PCR analysis of the LRRC8A expression in retinal pigment
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Fig. 2 Role of LRRC8A for VRAC in HeLa cells. a Hypotonicity-
dependent activation of VRAC measured by I− quenching. Quenching,
i.e., the activation of VRAC was more pronounced at 37 °C when
compared to 20 °C. b Inhibition of VRAC activation (iodide quenching)
by siRNA-knockdown of LRRC8A. c, d Inhibition of iodide quenching by

increasing concentrations of extracellular K+, suggesting a K+-dependent
Cl− transport by KCC or CCC transporter. e Inhibition of K+ channels by
Ba2+ and TEA+ only marginally inhibits quenching. Mean ± SEM,
(number of experiments). #Significant difference when compared to
20 °C (a), scrambled (b; c), and 1 mM K+ (d)
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(33 %) replaced by mannitol and then (2) removing mannitol
from the solution thereby generating a hypotonic solution.
Alternative protocols were applied as indicated. Coverslips
were mounted in a perfused bath chamber on the stage of an
invertedmicroscope (IM35, Zeiss) and kept at 37 °C. The bath
was perfused continuously with Ringer solution at a rate of
8 ml/min. Patch pipettes had an input resistance of 2–4 MΩ
when filled with the cytosolic-like (physiological) solution.
Currents were corrected for serial resistance. The access con-
ductance was measured continuously and was 60–140 nS.
Currents (voltage clamp) and voltages (current clamp) were
recorded using a patch-clamp amplifier (EPC 7, List Medical
Electronics, Darmstadt, Germany), the LIH1600 interface and
PULSE software (HEKA, Lambrecht, Germany) as well as
Chart software (AD Instruments, Spechbach, Germany). Data
were stored continuously on a computer hard disc and

analyzed using PULSE software. In regular intervals, mem-
brane voltage (Vc) was clamped in steps of 20 mV from −100
to +100 mV from a holding voltage of −100 mV. Current
density was calculated by dividing whole cell currents by cell
capacitance.

Hypotonicity-induced YFP quenching

Hypotonicity-induced anion (VRAC) conductance was
assessed in HeLa cells stably expressing halide-sensitive
YFP-H148Q/I152L (kindly provided by Prof. Dr. M. Amaral,
University of Lisbon, Portugal) [3]. Cells were exposed to
hypotonic bath solutions as described above. Twenty millimo-
lar I− was added either simultaneously with hypotonic bath
solution or was added after pre-stimulation with Hypo.
Quenching was more pronounced when I− and Hypo were
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Fig. 3 LRRC8A has little impact on RVD in HeLa cells. a YFP
fluorescence quenching by application of 20 mM I− in hypotonic buffer
(Hypo; 200 mosmol/l). b Quenching in isotonic and hypotonic solution in
mock and LRRC8A-overexpressing cells. c Volume regulation (RVD)
upon application of hypotonic buffer (Hypo) in mock and LRRC8A-
overexpressing cells, detected by flow cytometry. d Knockdown of
LRRC8A-expression by siRNA. e, f Volume regulation assessed by two
different methods. Curve fitting by exponential equation (c.f. Methods) and
assessment of time for half maximal recovery (T50 %) from hypotonic
swelling. g Effect of dihydroindenyl)oxy]alkanoic acid (DIOA; 50 μM),
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inhibitor NS3728 (10 μM), the KCC blocker RDIOA (50 μM), the
TRPM7-inhibitor NS8593 (10 μM), the TRPC inhibitor SK&F96365
(10 μM), and the VRAC and anoctamin inhibitors tamoxifen (10 μM)
and CaCCinhAO1 (10 μM). Mean± SEM; #significant difference when
compared to mock or scrambled RNA (scrbld). §Significant difference
when compared Iso (ANOVA). (number of cells or flow cytometry assays)

808 Pflugers Arch - Eur J Physiol (2016) 468:805–816



a b

Fig. 4 Effects of hypotonic bath solution at variable baseline Cl−

conductances. a If cellular baseline Cl− conductance is low, replacement of
Ringer solution by isotonic solution (partial replacement of Cl− (and Na+) by
mannitol (M) will not affect cell volume, subsequent swelling by hypotonic
bath solution and regulatory volume decrease (RVD). If cellular baseline

conductance is high, a change from Ringer solution to isotonic solution will
shrink the cells and this will affect subsequent swelling by hypotonic bath
solution and RVD. b Direct change from Ringer to hypotonic bath solution
will lead to immediate water influx, swelling, and subsequent
uncompromised RVD, independent of baseline conductances
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Hypo. Whole-cell currents did not inactivate as cells under whole-cell
patch-clamp conditions demonstrate continues osmotic water influx and
activation of VRAC [13]. b In contrast, VRAC, when measured by I−

quenching, inactivated under continuous exposure to Hypo and with
ongoing cellular RVD. c VRAC (measured by I− quenching) 3 min and

12min after onset of Hypo. Inhibition of VRAC by siRNAknockdown of
LRRC8A was detectable 3 min but not 12 min after Hypo, indicating
inactivation of VRAC. d Activation of VRAC (I− quenching) in the
presence and absence of extracellular Ca2+. e Transient cell shrinkage
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by 100 μMATP assessed by flow cytometry in the presence or absence of
LRRC8A.Mean ± SEM, (number of experiments). #significant difference
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applied simultaneously, as VRAC rapidly inactivated due to
RVD (Supplement 2B). All experiments were performed at
the physiological temperature of 37 °C, where activation of
VRACwas faster andmore pronounced. VRACwas activated
dose-dependently by exposing cells to variable hypotonicity
(10–45 % hypotonicity). Both absolute fluorescence
quenching (in arbitrary units) and rate of quenching (au/s)
was determined.

Results and discussion

Contribution of LRRC8A to VRAC and RVD in HeLa
cells

HeLa cells express LRRC8A along with a number of other
Cl−-transporting proteins, known to regulate cell volume like
KCl (KCC) and cation chloride cotransporter (CCC) (Fig. 1).
This cell line has been used to identify LRRC8A as essential
VRAC component [20, 28]. Indeed LRRC8A is expressed in
HeLa cells and in every other cell line examined, probably at

very different expression levels according to RT-PCR
(Fig. 1a). Similar to previous studies [20, 28], we made use
of yellow fluorescence protein (YFP) quenching to examine
the role of LRRC8A for VRAC. HeLa cells stably expressing
YFP were exposed to 20 mmol/l iodide, which induced fluo-
rescence quenching by iodide influx upon exposure to hypo-
tonic bath solution (Hypo). Importantly, we performed all ex-
periments at the physiological temperature of 37 °C. In fact,
we found a much larger VRAC at 37 °C when compared to
20 °C (Figs. 2a, 7i, j) [22]. Hypo-induced I− quenching was
significantly reduced by the siRNA-knockdown of LRRC8A
(Figs. 2b and 3d). Quenching was also inhibited by high ex-
tracellular K+ concentrations (Fig. 2c, d), but was otherwise
little affected by the inhibition of K+ channels with Ba2+/
TEA+ (Fig. 2e), suggesting a significant contribution of I−

transport by KCC and possibly CCC.
Overexpression of LRRC8A enhanced basal I− quenching,

while Hypo-induced quenching was not affected. RVD was
even slightly inhibited by overexpression of LRRC8A
(Fig. 3a-c). Inhibition of LRRC8A-expression by siRNA only
slightly attenuated RVD (Fig. 3d-h). As knockdown or

-2

0

2

4

6

8

10

I (
nA

)

Vc (mV)
+100

(10)

con

Hypo

Hypo
Ba/TEA

-2

0

2

4

6

8

10

I (
nA

)

Vc (mV)

-100

+100

Ba/TEA

(7)

0.5s

con Hypo

Ba/TEA

4n
A

con Hypo

Hypo
Ba/TEA

-2

0

2

4

6

8

10

I (
nA

)

Vc (mV)

-100

+100

Ba/TEA

(6)

Ba/TEA

con Hypo

siLRRC8Ascrbld

#
#

##

# §

§
§

§§

-2

0

2

4

6

8

10

100

-100

V(mV)* * *

*

*

*

*
*

*

2 
nA

0.5 s

-2

0

2

4

6

8

10

100

-100

V(mV)

*

*
*

* *
*

-2

0

2

4

6

8

10

100

-100

V(mV)

*

*
*

* * *

* * * *
* * *

con

Hypo

I (
nA

)

I (
nA

)

I (
nA

)

Hypo Hypo

con

Hypo

mock LRRC8A LRRLRRC8A

-100

con con

LR
R

C
8A

LR
R

C
8A

LR
R

a b

c

Fig. 6 VRAC can be activated in
HeLa cells lacking expression of
LRRC8A. aCurrent/voltage (I/V)
relationships and original
recordings of whole-cell currents
activated by Hypo in mock
transfected, LRRC8A, and
LRRC8AΔLRR expressing cells.
b Membrane localization of
overexpressed GFP-LRRC8A but
not GFP- LRRC8AΔLRR. c
Activation of VRAC in the
absence or presence of K+

channel inhibitors Ba2+/TEA+

(5 mM/10 mM). siRNA-
knockdown of LRRC8A reduced
but not abolished swelling
activated Cl− currents. Mean
± SEM. *Significant increase of
whole cell currents by Hypo
(paired t test). #Significant
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overexpression of LRRC8A affected baseline conductances
(Fig. 3b), the assessment of RVD might be compromised
when using the standard protocol (Ringer→ Iso→Hypo;
c.f. Methods) (Fig. 3e). We therefore also used a modified
protocol and exchanged Ringer solution directly by hypotonic
solution, which, however, showed similar results (Figs. 3f, g
and 4). Values for half maximal RVD (T50 %) were determined
and an exponential function was fitted (R0) to describe RVD
more accurately (Fig. 3f, h). The data confirm earlier reports in
that knockdown of LRRC8A attenuates RVD [20, 28]. Nev-
ertheless, RVD is still clearly detectable in the absence of
LRRC8A (Fig. 3f). Moreover, the VRAC inhibitor NS3728
only slightly reduced RVD, in contrast to the inhibition of KCl
cotransport by RDIOAwhich strongly delayed RVD (Fig. 3g).

Simultaneous inhibition of VRAC and KCl cotransport prac-
tically abolished RVD. T50 % and R0 values illustrate the mar-
ginal contribution of LRRC8A to volume regulation in HeLa
cells (Fig. 3h).

Under the present experimental conditions (37 °C), current
activation was very fast and volume regulation (RVD) was
maximal already 3 min after exposure to Hypo (Fig. 5a). Both
VRAC currents and volume regulation were attenuated at
20 °C (Fig. 2a). VRAC (measured by whole-cell patch
clamping) did not inactivate, as the cytosolic compartment
stays hypertonic relative to the bath solution throughout the
time during Hypo exposure, thus confirming earlier findings
by the Nilius team [14] (Fig. 5a). In contrast, when VRAC
time dependence was assessed by YFP quenching (by
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applying I− at variable time points during Hypo), the inactiva-
tion of VRAC is clearly detectable (Fig. 5b). Notably, the
effect of LRRC8A-knockdown on I− quenching could not be
detected when I− was applied only 12 min after the onset of
Hypo, confirming transient activation of VRAC/LRRC8A
(Fig. 5c) [14]. Moreover, quenching was almost abolished
by the removal of extracellular Ca2+, confirming Ca2+ depen-
dence of VRAC activation as described earlier (Fig. 5d) [1, 13,
22]. Notably, a transient and small Ca2+-induced shrinkage
due to activation of purinergic receptors with ATP was also
attenuated in the absence of LRRC8A, suggesting a role of
LRRC8A for receptor-mediated cell shrinkage (Fig. 5e).

As reported initially [28], we also found that VRAC was
reduced by overexpression of LRRC8A. Moreover, overex-
pression of a LRRC8Amutant, lacking the leucine-rich repeat
(LRRC8AΔLRR) also attenuatedVRAC (Fig. 6a). In contrast
to LRRC8A-wt, LRRC8AΔLRR was not expressed in the
cell membrane (Fig. 6b). In HeLa cells, a substantial portion
of the swelling-induced whole cell current is carried by K+, as
demonstrated by the K+ channel inhibitors Ba2+/TEA+

(Fig. 6c). Even in the presence of Ba2+/TEA+, siRNA-
knockdown of LRRC8A was unable to abolish completely
swelling-activated Cl− currents, suggesting that LRRC8A de-
termines the magnitude of VRAC but is not essential for its
activation in HeLa cells (Fig. 6c).

Contribution of LRRC8A to VRAC and RVD in HCT116
cells

Stable knockout of LRRC8A in HCT116 cells has been reported
by Voss et al. [28]. Voss and collaborators (FMP, Berlin)
generously supplied us with HCT116 parental (LRRC8A+/+)
and knockout (LRRC8A−/−) cell lines. We measured
slightly enhanced basal currents in HCT-LRRC8A−/− cells,
while swelling-activated whole-cell currents were reduced
(Fig. 7a, c). In the presence of the K+ channel inhibitors Ba2+

and TEA+, VRAC was clearly reduced in HCT-LRRC8A−/−
compared to HCT-LRRC8A+/+ cells, albeit a residual VRAC
was still detected in KO cells (Fig. 7b, d). The enhanced basal
currents in both LRRC8A+/+ and LRRC8A−/− cells were due to
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enhanced Cl− permeability, as demonstrated by extracellular Cl−

replacement (Fig. 7e, f).
Further characterization of VRAC in LRRC8A+/+

and LRRC8A−/− cells using NMDG+Cl− in bath and
patch pipette indicated that (i) extracellular Cl− removal
inhibited VRAC in both cell lines (Fig. 7g), (ii) the
anion selectivity was I−>Cl− for VRAC in both cell
lines, (iii) VRAC in both cell lines was inhibited by
the VRAC and anoctamin inhibitors NS3728 and
CaCCinhAO1 (Fig. 7h), (iv) the VRAC whole-cell cur-
rents were outwardly rectifying in both cell lines. (v)
Time-dependent inactivation for VRAC was typically
not observed (at 37 °C). However, when measured at
20 °C, VRAC in LRRC8A+/+ cells was significantly
reduced and demonstrated the “typical” time-dependent
inactivation (Fig. 7i). vi) Moreover, the inhibition of
phospholipase A2 (PLA2) by ACA also largely inhibited
VRAC and induced time-dependent inactivation, as ob-
served recently in other cell types [22]. These results
suggest that VRAC is largely reduced in LRRC8A−/−
cells, but has otherwise similar properties.

Putative pore formation by LRRC8A

A change in the halide permeability sequence was reported for
the putative pore mutant LRRC8A-T44C (kindly provided by
Dr. Zhaozhu Qiu, The Scripps Research Institute, La Jolla,
USA) [20]. When overexpressed in LRRC8A−/− cells, we
also observed a shift in the Cl−/I− permeability for
LRRC8A-T44C, albeit the shift was marginal (Fig. 8b, d).
Importantly, VRAC currents generated by LRRC8A-T44C
were largely reduced (Fig. 8a, c). While these results confirm
a possible pore formation by LRRC8A [20], the data need to
be interpreted with caution as LRRC8A-independent anion
background currents may be relatively enhanced in
LRRC8A−/− cells. Finally, we analyzed regulatory volume
decrease after hypotonic cell swelling by flow cytometry and
found that although attenuated in LRRC8A−/− cells, RVD
was still clearly detectable in cells lacking LRRC8A expres-
sion (Fig. 8e, f). The data clearly confirm the role of LRRC8A
for VRAC and hypotonic volume regulation, but do not sup-
port the concept of LRRC8A being an indispensable subunit.

We also analyzed the role of LRRC8A for VRAC and
volume regulation in the head and neck cancer cell line
BHY. The expression of LRRC8A was strongly suppressed
by siRNA (Fig. 9a). Hypo-induced VRAC was almost
abolished in BHY cells lacking the expression of LRRC8A
(Fig. 9b, c). Moreover, regulatory volume decrease, particu-
larly the fast initial component of RVD, was clearly attenuated
in the BHY cells lacking the expression of LRRC8A (Fig. 9d,
e). The data confirm the variable, cell type-dependent input of
LRRC8A on VRAC and volume regulation and support our

earlier finding that VRAC and RVD are possible in the virtual
absence of LRRC8A [12].

LRRC8A is not essential for apoptosis of HeLa cells

VRAC (VSOR, VSOAC) has been claimed to be in charge for
apoptotic cell death [11]. Recent reports point out the role of
LRRC8 proteins in cancer drug resistance and apoptosis as
well as cisplatin and taurine transport [8, 19]. We therefore
examined the impact of LRRC8A on HeLa cell growth and
staurosporine-induced apoptotic cell death. siRNA-
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knockdown of LRRC8A did not affect cell proliferation, in
contrast to knockdown of the papilloma virus product E6/E7
[6] (Fig. 10a). Incubation with staurosporine induced cell
shrinkage within 6 h and increased caspase-3 activity
(Fig. 10b-e). Cells were shrunken and hypotonic swelling/
volume regulation was compromised after incubation with
staurosporine (Fig. 10b, c). We found that apoptotic shrinkage
was not inhibited by knockdown of LRRC8A or ANO10, and
was not affected by the VRAC blocker NS37128. Also, cas-
pase activity was not affected by these maneuvers (Fig. 10e).
In contrast, knockdown of ANO6 and inhibition of KCl
cotransporters by RDIOA blocked apoptotic shrinkage and
caspase activity. Taken together, LRRC8A has a variable im-
pact onVRAC and volume regulation andmay be a necessary,
but not an indispensable component of VRAC.

The major findings of the present study concern the vari-
able and cell-dependent impact of LRRC8A on VRAC and
volume regulation. Despite the strong attenuation of VRAC
and impairment of RVD in some cell types lacking LRRC8A
expression, both VRAC and RVD are still detectable in these

cells. Particularly, volume regulation is only partially compro-
mised by knockdown of LRRC8A. The present data
correspond to our recent report indicating that LRRC8A has
little effects on VRAC in mouse sperm and human retinal
pigment epithelium. Bestrophin1 was detected as the
volume-regulated anion channel in these cells [12]. Disruption
of mouse Best1−/− leads to a severe subfertility phenotype
due to reduced motility and abnormal sperm morphology,
which might be explained by a compromised RVD [12].
Mouse retinal pigment epithelial cells (RPE) does not express
Best1, and human RPE cells rely on BEST1 for volume
regulation.

Although a detailed analysis of the molecular counterparts
of VRAC in naïve tissues is currently not provided, it is likely
that highly differentiated tissues provide individual mecha-
nisms for controlling their cell volume. While bestrophin is
essential in human RPE cells, CFTR is required in the intesti-
nal epithelium and respiratory tract. Knockout of CFTR has
been shown to compromise volume regulation in intestinal
crypt and tracheal epithelial cells [24–27]. Possibly,
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anoctamin 1 might be relevant for volume regulation in exo-
crine glands and the choroid plexus [7, 17, 23]. Individuals
carrying LRRC8A mutations and LRRC8A knockout mice
demonstrate defects in the lymphatic system, and we therefore
may expect LRRC8A being important for VRAC and volume
regulation in lymphocytes [10, 21].

The temperature dependence of VRAC and RVD detected
here may provide an explanation for our findings. As reported
recently, we found that Ca2+ is essential for proper activation
and VRAC [22]. Time-dependent inactivation of VRAC cur-
rents was only detected at 20 °C but not at 37 °C, where
currents are larger and activated more rapidly. Although other
studies are typically performed at 20 °C, we believe that only
at 37 °C, both currents and volume regulation are readily
detected. Thus, VRAC and RVD are more pronounced in
the present report when compared to earlier studies [20, 28].
Our data suggest a crucial role of temperature-sensitive PLA2

for both VRAC and RVD, which possibly may facilitate fa-
cilitates the access of Ca2+ to VRAC [22].
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