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Abstract Aldosterone is the main mineralocorticoid hor-
mone controlling sodium balance, fluid homeostasis, and
blood pressure by regulating sodium reabsorption in the
aldosterone-sensitive distal nephron (ASDN). Germline
loss-of-function mutations of the mineralocorticoid receptor
(MR) in humans and in mice lead to the Brenal^ form of
type 1 pseudohypoaldosteronism (PHA-1), a case of aldo-
sterone resistance characterized by salt wasting, dehydra-
tion, failure to thrive, hyperkalemia, and metabolic acidosis.
To investigate the importance of MR in adult epithelial
cells, we generated nephron-specific MR knockout mice
(MRPax8/LC1) using a doxycycline-inducible system. Under
standard diet, MRPax8/LC1 mice exhibit inability to gain
weight and significant weight loss compared to control

mice. Interestingly, despite failure to thrive, MRPax8/LC1

mice survive but develop a severe PHA-1 phenotype with
higher urinary Na+ levels, decreased plasma Na+,
hyperkalemia, and higher levels of plasma aldosterone.
This phenotype further worsens and becomes lethal under
a sodium-deficient diet. Na+/Cl− co-transporter (NCC) pro-
tein expression and its phosphorylated form are downregu-
lated in the MRPax8/LC1 knockouts, as well as the αENaC
protein expression level, whereas the expression of gluco-
corticoid receptor (GR) is increased. A diet rich in Na+ and
low in K+ does not restore plasma aldosterone to control
levels but is sufficient to restore body weight, plasma, and
urinary electrolytes. In conclusion, MR deletion along the
nephron fully recapitulates the features of severe human
PHA‐1. ENaC protein expression is dependent on MR ac-
tivity. Suppression of NCC under hyperkalemia predomi-
nates in a hypovolemic state.
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Abbreviations
ASDN Aldosterone-sensitive distal nephron
MR Mineralocorticoid receptor
GR Glucocorticoid receptor
ENaC Epithelial sodium channel
NCC Na+/Cl− co-transporter
AQP2 Aquaporin 2
Hsd11b2 11β-Hydroxysteroid dehydrogenase type 2
PHA-1 Type 1 pseudohypoaldosteronism
RAAS Renin-angiotensin-aldosterone system
PCT Proximal convoluted tubule
PST Proximal straight tubule
TAL Thick ascending limb
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DCT Distal convoluted tubule
CNT Connecting tubule
CCD Cortical collecting duct

Introduction

MR is expressed not only in Na+-transporting epithelia such as
the kidney and colon [11, 21] but also in non-epithelial tissues
(e.g., the heart [20], vessels, and brain [15, 16, 19]). Several
inactivating autosomal dominant mutations of the MR gene
(NR3C2) are the principal cause of renal and sporadic type 1
pseudohypoaldosteronism (PHA-1) which is a rare form of min-
eralocorticoid resistance characterized by neonatal renal salt
wasting, failure to thrive, hyponatremia, hyperkalemia, and met-
abolic acidosis, accompanied by extremely high values of plas-
ma renin and aldosterone levels. The severe and systemic form
of PHA-1 is due to recessivemutations in the genes encoding for
the three subunits of the epithelial sodium channel (ENaC)
(MIM 600228; MIM 600760; MIM 600761). Germline miner-
alocorticoid receptor (MR)-deficient mice present a normal pre-
natal development, but die within 8–12 days after birth from a
salt-losing syndrome resembling the human PHA-1. They dis-
play hyponatremia, hyperkalemia, hypovolemia, and activation
of the renin-angiotensin-aldosterone system (RAAS) with a
strong increase in renin, angiotensin II, and aldosterone plasma
concentrations. A strong reduction of the activity of ENaC in the
colon and kidney was also reported [5]. Interestingly, this phe-
notype can be rescued by subcutaneous injections of NaCl, al-
though the animals retain their Na+-losing defect [7]. Inactivation
of MR in the principal cells of the late connecting tubule (CNT)
and of the collecting duct (CD) driven by the aquaporin 2
(AQP2) promoter can be compensated under a standard sodium
diet, but not under a low-sodium diet [23]. This mild phenotype
only partially recapitulates the severe human PHA-1 phenotype
observed under standard salt diet and was explained by long-
term compensatory mechanisms [23]. The same authors used a
tamoxifen-inducible strategy to delete MR partially within the
CNT and cortical collecting ducts (CCD) during adulthood.
Again, only under a low-salt diet and at adult stage, the induced
ablation of MR recapitulates the renal sodium wasting observed
in mice with constitutive early-onset MR ablation, but not
hyperkalemia and/or increased mortality [24]. This was ex-
plained by compensatory mechanisms either by upregulation
of sodium transporters upstream of the CNT, i.e., the distal con-
voluted tubule 2 (DCT2) where ENaC and the Na+/Cl− co-
transporter (NCC) are co-expressed [25] or by upregulation of
ENaC-independent, non-electrogenic sodium chloride trans-
porters expressed along the CD [10]. To address this question,
we developed an inducible renal tubule-specific MR knockout.
Although MRPax8/LC1 mice survive under a standard salt diet,
they present with a severe renal PHA-1 phenotype characterized
by increased weight loss and urinary Na+ excretion,

hyponatremia, hyperkalemia, high plasma aldosterone levels,
and failure to thrive. Our data clearly show that MR expression
along the nephron and in the collecting duct system during adult-
hood is crucial for Na+ and K+ homeostasis, and its deletion
cannot be compensated neither by sodium transporters including
ENaC nor by glucocorticoid receptor (GR) upregulation, but
solely by a high Na+ and low K+ rescue diet.

Methods

Ethical approval

Animal maintenance and all experimental procedures in mice
were in accordance with the Swiss federal guidelines and were
approved by the veterinarian local authorities (BService de la
consommation et des affaires vétérinaires^) of the Canton de
Vaud, Switzerland. Mice were kept in the animal facility under
animal care regulations of the University of Lausanne. They
were housed in groups of up to five in ventilated cages in a
temperature- (23±1 °C) and 60 % humidity-controlled room
with an automatic 12-h light/dark cycle. All animals had free
access to laboratory chow, and thewater was supplied ad libitum.
Data origin from both male and female animals. Experiments
were performed in 3-week-old animals unless differently stated.

Generation of inducible renal tubule-specific MRPax8/LC1

KO mice

Mice lacking MR all along the nephron and in the collecting
duct system of the kidney were generated by using the Pax8-
rtTA transgenic mouse line. Triple-transgenic conditional
nephron-specific knockouts Nr3c2lox/lox; Pax8-rtTAtg/0;
TRE-LC-1tg/0 (MRPax8/LC1) and control littermates Nr3c2lox/
lox; Pax8-rtTAtg/0 (MRPax8), Nr3c2lox/lox; TRE-LC-1tg/0

(MRLC1); and Nr3c2lox/lox (MRlox) were obtained by breeding
Nr3c2lox/lox; Pax8-rtTAtg/0 with Nr3c2lox/lox; TRE-LC-1tg/0

mice. Nr3c2 deletion was induced in renal tubular cells upon
doxycycline hydrochloride treatment (Sigma, Deisenhofen,
Germany) (2 mg/ml and 2 % sucrose in drinking water) for
15 days in 4-week-old Nr3c2lox/lox; Pax8-rtTAtg/0; TRE-LC-
1tg/0 knockout and Nr3c2lox/lox; Pax8-rtTAtg/0, Nr3c2lox/lox;
TRE-LC-1tg/0 and Nr3c2lox/lox control mice.

Genotyping

DNA was recovered and extracted from mouse biopsies.
Genotyping by PCR analysis was performed using the follow-
ing primers: Pax8-rtTA: ST1 sense (5′-CCATGTCTAGA
CTGGACAAGA-3′); ST2 antisense (5′-CTCCAGGCCACA
TATGATTAG-3′); LC-1: Cre3 sense (5′-TCGCTGCATT
ACCGGTCGATGC-3′); Cre4 antisense (5′-CCATGAGTGA
ACGAACCTGGTCG-3′); myogenin: 50S sense (5′-
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TTACGTCCATCGTGGACAGC-3′); 51S antisense (5′-
TGGGCTGGGTGTTAGTCTTA-3′). Primers for myogenin
served as a control for DNA integrity. The PCR program for
Pax8-rtTA, TRE-LC-1, and myogenin was the following:
37 cycles, each run consisted of 1 min each at 94, 56, and
72 °C. The knockout band corresponding to the recombination
of the floxed Nr3c2 allele and thus MR deletion in the kidney
was detected by PCR on the whole kidney using the following
primers: MR/Nr3c2: MRflox-1 sense (5′-CTCGAGATC
TGAACTCCAGGCT-3′); MRflox-2 antisense (5′-CCTA
GAGTTCCTGAGCTGCTGA-3′); MRflox-3 antisense (5′-
TAGAAACACTTCGTAAAGTAGAGCT-3′). The PCR pro-
gram for MR/Nr3c2 was the following: 35 cycles, each run
consisted of 30 s at 95 °C followed by 1 min at 63 °C and
1 min at 72 °C.

Quantitative RT-PCR on kidney samples

At the end of the experimentation, mouse kidneys were iso-
lated, frozen in liquid nitrogen, and stored at −80 °C. A tissue-
lyser machine (QIAGEN) was used to homogenize the kidney
tissues. RNA was extracted from the lysed tissues using the
guanidinium thiocyanate-phenol-chloroform extraction meth-
od (QIAzol lysis reagent, QIAGEN), and its concentration and
quality were measured and evaluated by the Nano Drop
(Witec Ag ND-1000 Spectrophotometer). Then, the extracted
RNA was used and cDNA was synthetized by retro-
transcription using the PrimeScript RT reagent Kit (Takara
Bio Inc, Japan). To quantify the relative mRNA expression
of MR, 11β-HSD2 and Ren-1c, a real-time PCR (TaqMan)
was performed using Applied Biosystems 7500 (Foster City,
CA). Primer and probe mix (Mm01241592_mH for MR;
Mm01251104_m1 for 11β-HSD2; Mm02342887_mH for
Ren-1c; 4352341E for β-Actin) and the TaqMan Gene
Expression Master Mix were purchased and used according
to the manufacturers’ instructions (Applied Biosystem, Foster
City, CA). Eachmeasurement was performed in duplicate. For
each mRNA transcript detection and the control β-actin, the
cDNA, the primers, and the probe were mixed and aliquoted
together into the TaqMan Universal PCR Master Mix
(Applied Biosystem). Quantification of fluorescence was nor-
malized to β-actin fluorescence to quantify the relative
mRNA transcript expression in the whole kidney.

Western blot analysis

Freshly isolated kidneys were homogenized by using a
polytron. Homogenates were centrifuged for 10 min at 4 °C
at 11,000 rpm. The supernatant was taken, and protein con-
centration was measured by the Bradford method. Protein
extracts from the whole kidney were subjected toWestern blot
analysis. The proteins were loaded and separated on 10 %
polyacrylamide gels by SDS-PAGE, subjected to a constant

electric current of 25 mA in running buffer 1×. Then, the
proteins were transferred onto a PVDF (Perkin Elmer,
Boston, MA) or nitrocellulose membrane (Amersham
Hybond-ECL, GE Healthcare) applying a constant current of
100 V during 3 h in transfer buffer 1×. Membranes were
subsequently investigated for Nr3c2 (MR), Scnn1a (α-
ENaC), Slc12a3 (NCC), phosphorylated Slc12a3 (pT53-
NCC), Nr3c1 (GR), and β-actin using primary antibodies
Nr3c2 (1:100) [14], Scnn1a (1:500) [26], Slc12a3 (1:500)
(Chemicon), pT53-Slc12a3 (1:1000; Pineda Antibody
Services), Nr3c1 (1:1000; Santa Cruz, Dallas, TX), β-actin
(1:1000; Sigma-Aldrich), anti-rabbit IgG secondary antibody
(1:10,000; Amersham, Burkinghampshire, UK), and anti-
mouse IgG secondary antibody (1:10,000; Jackson Immuno
Research, Baltimore, PA). The secondary antibodies were
coupled with horseradish peroxidase (GE Healthcare,
Millipore) that allows the revelation of the proteins by chemi-
luminescence with ECL reagents (GE Healthcare or Pierce,
Rockford, IL). Thereby, the membranes were exposed on a
photographic film (GE Healthcare, Millipore) during different
times in a cassette (Axon Lab) and developed. The films were
scanned, and the band intensity was measured using Image
Studio Lite software from LI-COR Biosciences.

Immunofluorescence

The kidneys of mice kept under regular salt diet were fixed
with 3 % paraformaldehyde and 0.1 % glutaraldehyde in a
cacodylate-sucrose buffer as described previously [18]. MR
was detected on cryosections by using a primary monoclonal
antibody (mouse anti-rat-MR rMR1-18 [14], 1:40) incubated
overnight at 4 °C and a secondary antibody goat-anti-mouse
HRP (1:50, Jackson ImmunoResearch). The signal was am-
plified by using the Tyramide Signal Amplification (TSA)
System (Perking Elmer). An antigen retrieval treatment was
performed bymicrowave during 10min in 0.1M citrate buffer
(pH 6). Phosphorylated NCC was detected by using a rabbit-
anti-mouse pT53NCC antibody [31] (1:40,000) incubated
overnight at 4 °C and a secondary goat-anti-rabbit-CY3 anti-
body (1:1000, Jackson ImmunoResearch). Staining was per-
formed on 5-μm sections.

Kidney perfusion and microdissection

Mice were anesthetized by a mixture of ketamine/xylazine/
acepromazine (100 mg/kg/ 15 mg/kg /2.5 mg/kg) injected
intraperitoneally. The perfusion was performed under narcosis
into the renal artery by using a catheter. Renal artery perfusion
was made by 10 ml of DMEM F-12 (Dulbecco’s modified
Eagle medium: nutrient mixture F-12) followed by 10 ml
liberase (0.9 mg/ml, Liberase Blendzyme 4, Hoffmann-La
Roche Inc.). Then, the kidneys were microdissected as de-
scribed previously [8]. Two centimeters of each segment
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(PC, PS, TAL, DCT/CNT, and CD) were recovered and proc-
essed for relative protein expression analysis. The microdis-
section was performed on three experimental and control
animals.

Metabolic cage studies

Metabolic balance studies were performed to analyze the renal
sodium, potassium, and water homeostasis under normal sodi-
um, sodium-deficient, and high-sodium and low-potassium res-
cue diets. For time-course analyses, 4- to 6-week-old control and
knockout mice from the same litter were individually placed into
mouse metabolic cages (Tecniplast, Buguggiate, Italy) and fed
with different salt diets for 6 days. During the experimentation,
body weight, urine volume, and water and food consumption
were determined and urine was collected every day at the same
time. Experimental animals had free access to food and water
during the experimentations in metabolic cages.

Regular sodium diet

Twenty-three-day-old control and KO mice were individually
placed into metabolic cages. Mice were fed with a regular salt
diet (0.17 % Na+ in the food, Ssniff Spezialdiäten GmbH)
during the 6 days in the metabolic cages. Doxycycline treat-
ment was started from day 2 (25-day-old) and applied until the
end (day 6) of the metabolic cage study.

Sodium-deficient diet

Twenty-five-day-old mice were placed in normal cages and
treated with doxycycline for 15 days to induce MR deficiency
along the nephron and the collecting duct system. At the end
of the doxycycline treatment, control and KO mice were
placed into metabolic cages and fed with a regular salt diet
(0.17 % Na+ in the food, Ssniff Spezialdiäten GmbH) for
2 days, followed by 3 days of sodium-deficient diet (0.02 %
Na+ in the food, Ssniff Spezialdiäten GmbH).

High-sodium and low-potassium rescue diet

Twenty-five-day-old mice were placed in normal cages and
treated with doxycycline for 15 days to induce MR deficiency
along the nephron and the collecting duct system. During these
15 days of doxycycline treatment, mice were fed with a regular
sodium diet (0.17 % Na+ in the food, Ssniff Spezialdiäten
GmbH) during the first week and received a high-sodium and
low-potassium rescue diet (3.5 % Na+ in the food, Ssniff
Spezialdiäten GmbH, and 0.2%K+ in drinkingwater) through-
out the second week. At the end of the doxycycline treatment,
control and KO mice were placed into metabolic cages and
continued to receive the rescue diet (high Na+ and low K+)
and had free access to tap water supplemented with 0.2 % of

potassium. At the end of the experimentations, blood samples
were collected and mice were sacrificed by decapitation.
Freshly isolated kidneys were snap-frozen in liquid nitrogen
and stored at −80 °C for further molecular analysis.

Urine and plasma analysis

Urine samples (12–24 h) were collected in metabolic cages.
At the end of experiments, blood samples were recovered.
Urinary and plasma sodium and potassium concentrations
were measured using the IL943 Flame Photometer
(Instrumentation Laboratory, UK). Plasma aldosterone levels
were measured according to standard procedure using the
Coat-A-Count RIA kit (Siemens Medical Solutions
Diagnostics, Ballerup, Denmark). Moreover, plasma cortico-
sterone levels were quantified as previously described [30].
The urinary and plasmatic creatinine concentration measure-
ments were performed by enzyme-linked immunosorbent as-
say (ELISA) at the Zurich Integrative Rodent Physiology plat-
form (ZIRP, Zurich, Switzerland) using the UniCel DxC800
system (Beckman Coulter).

Determination of 11β-HSD2 enzyme activity

11β-HSD2 enzyme activity was measured as previously de-
scribed [4].

Statistical analysis

All measurements were analyzed using the unpaired two-
tailed Student’s t test, considering MRPax8/LC1 KO versus con-
trol mice, unless differently stated. Data are presented asmean
±SEM. Values displaying a P value smaller than 0.05 were
considered as statistically significant, *P<0.05; **P<0.01;
***P<0.001; and #P<0.0001.

Results

Generation of inducible nephron-specific MRPax8/LC1

knockout mice

We generated inducible renal tubule-specificMR knockout mice
by using the Nr3c2 floxed allele (Nr3c2lox/lox [6]), the Pax8-rtTA
transgenic mice expressing the reverse tetracycline transactivator
under the control of the Pax8 promoter that is driving the expres-
sion in all proximal and distal tubular cells along the nephron
[32], and the TRE-LC-1 transgenic mice where the expression of
the Cre recombinase and luciferase is under the control of the
tetracycline response element [28]. The reverse tetracycline
transactivator binds and transactivates the tetracycline-
responsive element in the presence of doxycycline, thereby trig-
gering Cre recombinase expression and thus deletion of the
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Fig. 1 Characterization of inducible renal tubule-specific MRPax8/LC1 KO
mice. a Quantification of Nr3c2 mRNA expression relative to β-actin in
the whole kidneys of MRPax8/LC1 KO mice and their control littermates
(n=4 per genotype). bAnalysis of MR protein expression byWestern blot
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(n=4 per genotype). c Quantification of MR protein expression relative
to β-actin of panel b. d Representative analysis of MR protein expression
by Western blot analysis from microdissected renal tubules. PCT proximal
convoluted tubule,PST proximal straight tubule, TAL thick ascending limb,
DCT distal convoluted tubule, CNT connecting tubule, CCD cortical

collecting duct. GR expressed throughout the whole nephron, NKCC2 as
marker of the TAL, NCC solely expressed in the DCTand CNT, and CB28
as a distal marker of the nephron were used to define the different nephron
segments. e Representative analysis of MR protein expression by
immunofluorescence from total kidney under regular sodium diet (n=4
per genotype). f Analysis of MR protein expression by Western blot
analysis in whole liver lysates in KO (n= 5) and control (n= 6) mice. g
Quantification of MR protein expression in the liver relative to β-actin of
panel e
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floxed allele.We treated 4-week-oldMRPax8/LC1 triple transgenic
animals (carrying the Nr3c2lox/lox, Pax8-rtTAtg/0, and TRE-LC-
1tg/0 transgenes and named MRPax8/LC1) and their control litter-
mates (Nr3c2lox/lox; Pax8-rtTAtg/0, Nr3c2lox/lox; TRE-LC-1tg/0,
and Nr3c2lox/lox named MRPax8, MRLC1, and MRlox, respective-
ly) with doxycycline to induce the deletion of the Nr3c2 gene
locus in adult mice. Quantitative mRNA expression measure-
ment of MR revealed an 80 % decrease in MRPax8/LC1 knockout
mice (Fig. 1a), andWestern blot analyses showed a 90 % reduc-
tion of Nr3c2 protein expression upon doxycycline treatment in
the whole kidney (Fig. 1b, c). Western blot analyses of micro-
dissected nephron segments confirmedwild-typeMRexpression

in the distal nephron, namely the thick ascending limb (TAL),
distal convoluted tubule (DCT), connecting tubule (CNT), and in
the cortical collecting ducts (CCD) in control mice and demon-
strated absence of MR protein expression in the corresponding
segments of the MRPax8/LC1 knockout mice (Fig. 1d and
Supplementary Fig. 1). The glucocorticoid receptor GR, the
cotransporter NKCC2, the sodium-chloride symporter NCC,
and the cytoplasmic Ca2+-binding protein calbindin CB28 were
used as markers of the different nephron segments (Fig. 1d). A
strong reduction in MR expression in the MRPax8/LC1 knockout
mice could also be demonstrated by immunofluorescence
(Fig. 1e). Pax8 expression has been described also in the liver
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[32], but we observed no changes of MR protein expression in
this organ (Fig. 1f, g).

Adult nephron-specific MRPax8/LC1 knockout mice
develop a PHA-1 phenotype under a regular sodium diet

We monitored the body weight of MRPax8/LC1 knockout and
control animals fed with a regular salt diet. MRPax8/LC1 knockout
mice rapidly stopped to gain body weight, whereas control ani-
mals kept gaining weight (Fig. 2a) following the doxycycline
induction. To determine urinary and plasma Na+ and K+

concentrations, we placed control and knockout animals into
metabolic cages and performed measurements every 12 h to
evaluate the cyclicity of sodium, potassium, and water excretion.
MRPax8/LC1 knockout mice exhibited increased urine volume
output and urinary Na+ excretion under a standard salt diet
(Fig. 2b, c), while the urinary K+ excretion did not change
(Fig. 2d). Interestingly, these differences are obvious only during
the activity period (night) (Fig. 2b, c). The fractional excretion of
K+ did not vary between the two groups as well as the absolute
K+ excretion (controls 0.023±0.003 mmol/24 h/g, n=6 and
knockouts 0.022 ± 0.0021 mmol/24 h/g, n= 6), while the
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fractional excretion of Na+ was significantly increased in the
knockouts (Fig. 2e, f), confirming that the increase in urinary
sodium excretion reported in Fig. 2c is not transient but sustained
upon regular sodium diet several weeks after MR deletion in
renal tubules. MRPax8/LC1 knockout animals also presented with
significantly lower natremia but still within the physiological
range (135–145 mmol/l) and hyperkalemia (Fig. 3a, b). We ob-
served no difference in food intake (Supplementary Table 1) and
in plasma corticosterone levels (Fig. 3c). Urine creatinine con-
centration did not vary among the two groups (Supplementary
Fig. 2A); however, plasma creatinine concentration was signifi-
cantly higher (Supplementary Fig. 2B) and the creatinine

clearance significantly reduced (Supplementary Fig. 2C) in the
knockout animals indicating that kidney function is affected by
the loss of MR in renal tubules. Moreover, plasma aldosterone
levels markedly increased in the MRPax8/LC1 knockouts
(Fig. 3d), mimicking a severe PHA-1 phenotype.

The PHA-1 phenotype becomes lethal
under a sodium-deficient diet

The shift to a diet deficient in Na+ caused a further severe
decrease in the body weight of the knockout animals (Fig. 4a)
after 3 days of diet shift (n=9, MRPax8/LC1 knockouts). Water
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and food consumption did not change (Supplementary
Table 1); however, urine volume and urinary Na+ excretion
were increased and urinary K+ excretion was significantly re-
duced in the MRPax8/LC1 knockout animals (Fig. 4b–d) which
also presented with hyponatremia and hyperkalemia (Fig. 5a,
b). Plasma corticosterone levels in the knockout animals

increased following the shift from a regular Na+ diet to a
Na+-deficient diet (Fig. 5c). Plasma aldosterone further in-
creased in the MRPax8/LC1 knockout mice under a sodium-
deficient diet (Fig. 5d) to reach extraordinarily high levels
(40 nM), a concentration that should occupy 100 % of MR
and a significant proportion (about 20 %) of GR [12].
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High-Na+ and low-K+ diet restores body weight
and electrolyte balance in MRPax8/LC1 knockout mice

To counterbalance for Na+ loss and reduced K+ excretion,
nephron-specific MRPax8/LC1 knockout mice were subjected
to a diet rich in Na+ and low in K+ during 2 weeks. Indeed,
the knockout animals restored body weight gain compared to
controls following high-Na+ and low-K+ treatment (Fig. 6a).
Food and water intake (Supplementary Table 1), urinary and
plasma Na+ and K+ concentrations, and urine volume were
indistinguishable between the two groups (Fig. 6b–d and
Fig. 7a, b), but plasma aldosterone levels of MRPax8/LC1

knockout animals remained significantly higher following
high-Na+ and low-K+ diet (Fig. 7c). Thus, solely a diet rich
in Na+ and low in K+ allows the MRPax8/LC1 knockout mice to
develop normally and to restore urine and plasma electrolytes.

IncreasedGR expression in theMRPax8/LC1 knockoutmice

Being both expressed in the ASDN, GR and MR have been
proposed to have opposing effects, suggesting that activated
GR can partially but not completely compensate for the loss of
MR function [5, 23, 27, 29]. We thus analyzed GR protein ex-
pression in the kidneys ofMRPax8/LC1 knockout mice byWestern
blot analyses.We found amoderate but significant increase in the
protein expression of GR under normal Na+ diet (Fig. 8a, b). This
increase was less obvious at the cellular level, as revealed by
immunofluorescence analyses, and may be restricted to specific
cell types (data not shown). Under Na+-deficient diet, GR protein
expression was about four times significantly increased in the
knockouts (Fig. 8c, d) indicating that MR deletion leads to in-
creased renal expression of GR. This increase is absent following
the rescue (high Na+/low K+) diet (Fig. 8e, f). Furthermore,
mRNA levels of the 11β-hydroxysteroid dehydrogenase

(Hsd11b2) and renin (Ren-1c) were significantly increased in
the kidney of MRPax8/LC1 knockout mice under both normal
and Na+-deficient diets (Supplementary Fig. 3A-D); however,
the activity of the enzyme 11β-hydroxysteroid dehydrogenase
type 2 (Hsd11b2) did not vary (Supplementary Fig. 3E).

Decreased NCC activity in the MRPax8/LC1 knockout mice
despite severe salt-losing syndrome

To study whether the absence of MR in adult kidneys might
regulate the expression and function of sodium-transporting pro-
teins, we analyzed NCC and ENaC protein expression following
induction of MR deficiency under standard, Na+-deficient and
rescue (high Na+/low K+) diets. MRPax8/LC1 knockout mice pre-
sented with a significant decrease in the levels of total and phos-
phorylated NCC, and this decrease was even more pronounced
under a Na+-deficient diet (Fig. 9a–d), but less important under
the rescue diet (Fig. 9e, f). Immunofluorescence staining of per-
fused kidneys also revealed a decreased phospho-NCC expres-
sion in MRPax8/LC1 knockout mice under a standard salt diet
(Fig. 9g). The protein expression of the α subunit of ENaC
was also significantly reduced in the knockout animals
(Fig. 9a–f). Altogether, these data indicate that the absence of
MR in the nephron leads to NCC downregulation despite the
increased sodium loss.

Discussion

We focused our study on the acute deletion of MR along the
entire nephron and the collecting ducts of adult animals by
using the Pax8-rtTA; TRE-LC-1 double transgenic mice [32].
MRPax8/LC1 knockout mice present failure to thrive as a result of
increased renal loss of sodium and water. The mutant mice also
show highly increased plasma aldosterone levels on both stan-
dard and Na+-deficient diets, developing a severe pseudo-
hypoaldosteronism syndrome with rapid weight loss, distur-
bance of plasma Na+ and K+ concentrations, and significantly
increased urinary Na+ loss and decreased K+ excretion (Figs. 2,
3, 4, and 5). The phenotype observed in the MRPax8/LC1 knock-
out mice is more severe than that observed in mice deficient for
MR in renal principal cells in which inactivation of MR in CD
and late CNT does not affect Na+ balance under standard con-
ditions [23, 24]. The results presented in this article clearly
demonstrate that MR deficiency in the nephron during adult-
hood cannot be compensated by sodium transporting proteins
upstream of late CNT (NCC [13]) or downstream along the CD
(electroneutral sodium chloride reabsorption [10]), and thatMR
expression either in the TAL, DCT, or intercalated cells is cru-
cial to maintain Na+ and K+ homeostasis.

Both MR and GR are expressed in the distal renal tubular
cells [1] and can bind and be activated by the mineralocorticoid
aldosterone and the glucocorticoid cortisol (corticosterone in

�Fig. 9 Downregulation of NCC and α-ENaC protein expression. a
Representative Western blot analysis for total NCC, phosphorylated
pT53-NCC, and α-ENaC in kidney lysates from mice kept under
regular sodium diet. β-Actin was used as loading control (n = 6 per
genotype). b Graphs show quantification of Western blots for NCC,
pT53-NCC, and α-ENaC from two independent experiments and
normalized to β-actin (n = 7 per genotype). KO and control animals
were kept upon regular sodium diet, and proteins were extracted from
the whole kidney. cWestern blot analyses for total NCC, phosphorylated
pT53-NCC, andα-ENaC in kidney lysates frommice kept under sodium-
deficient diet during 3 days. β-Actin was used as loading control (n = 4
per genotype). d Graphs show quantification of Western blots for NCC,
pT53-NCC, and α-ENaC from two independent experiments and
normalized to β-actin (n = 7 per genotype). KO and control animals
were kept upon sodium-deficient diet, and proteins were extracted from
the whole kidney. eWestern blot analysis for total NCC, phosphorylated
pT53-NCC, and α-ENaC in kidney lysates from mice kept under high-
Na+/low-K+ rescue diet. β-Actin was used as loading control (n ≥ 5 per
genotype). fGraphs show quantification ofWestern blots in e. gAnalysis
of phospho-NCC protein expression by immunofluorescence from total
kidney (n= 4 per genotype) upon regular sodium diet
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mice and rats), respectively [12, 17]. However, GR can also be
bound and activated by aldosterone [12], which is a relatively
weak GR agonist with a Ki of 140 nM [22]. Aldosterone stim-
ulates also the transcriptional activity of GR at high concentra-
tions [22]. Yet, in the MRPax8/LC1 knockouts, plasma aldoste-
rone rises to a maximum of 40 nM (Figs. 3d and 5d). MR can
also be bound and activated by cortisol (corticosterone in mice
and rats), but since physiological glucocorticoids circulate in
the blood at 100–1000 higher concentration than aldosterone,
rapid conversion of cortisol to cortisone by the enzyme 11β-
hydroxysteroid dehydrogenase type 2 (11βHSD2) allows aldo-
sterone to selectively activate MR in epithelial tissues. In vitro
and in vivo experimental models show that GR might play a
role in renal sodium transport [3] being implicated in compen-
satory [5] or cooperative [12] mechanisms along with MR, and
we thus hypothesized that GR in MRPax8/LC1 knockout mice
might compensate at least partially for the loss of MR. We
found however no compensatory action of GR on MR in the
context of renal salt transport, that could not be confirmed by
immunochemistry under a regular salt diet (data not shown).
This occurred despite an overall increased GR protein expres-
sion in the kidney of theMRPax8/LC1 knockout mice (Fig. 8a, b)
and the increased plasma corticosterone levels of the knockouts
following the shift to a Na+-deficient diet (Fig. 5c).

Sodium reabsorption in the aldosterone-responsive distal
tubular segments is mediated by the amiloride-sensitive epi-
thelial sodium channel ENaC expressed in the principal cells
of the CD and CNT, together with the thiazide-sensitive sodi-
um-chloride co-transporter NCC in the DCT [25]. Described
as the Baldosterone paradox,^ aldosterone can either trigger
Na+ reabsorption in the DCT via the Na+/Cl− co-transporter
NCC and ENaC in DCT2, CNT, and CD following a hypo-
volemic challenge or increase NaCl delivery by inhibiting
NCC activity in DCT responding to an hyperkalemic chal-
lenge. This results in differential regulation of Na+ and K+

transport between the DCT and the ASDN [2]. Aldosterone
can activate ENaC through MR by inhibiting Nedd4-2 via
phosphorylation by serum- and glucocorticoid-induced kinase
1 (Sgk1) [9], but aldosterone-activated MR can also bind to
the promoter region of the gene encoding the α subunit of
ENaC leading to de novo synthesis of this channel [33]. We
found a reduction in the expression of the αENaC protein in
MRPax8/LC1-deficient mice under normal, low-Na+, and high-
Na+/low-K+ rescue diets, showing that ENaC expression is
under direct control of MR (Fig. 9). As the knockout animals
suffer fromNa+ wasting, they could be in a hypovolemic state,
and thus, both hypovolemia and hyperkalemia may be present
in the mutant animals. Aldosterone, which is highly increased
in the knockouts, should activate NCC, but NCC is signifi-
cantly less expressed and phosphorylated in the MRPax8/LC1

mice (Fig. 9). This finding is surprising, as the MRPax8/LC1

mice suffer from hyponatremia accompanied by high plasma
aldosterone levels, and is consistent with the notion that the

hyperkalemic challenge dominates the hypovolemic stimulus
in the context of the aldosterone paradox. We also found,
surprisingly, no decreased K+ excretion under a standard diet
(Fig. 2f) linked with hyperkalemia. This result was confirmed
in three independent series of experiments (data not shown)
and bymeasurements of urinary K+ fractional excretion (Fig. 2f).
One possible explanation could be a reduced but still sufficient
ENaC activity to allow normal urinary K+ excretion. However,
this unchanged urinary K+ excretion in theMRPax8/LC1 knockout
mice is not sufficient to avoid the establishment of the
hyperkalemic status.

Targeted inactivation of MR in the whole nephron and the
collecting duct system with the exception of the glomeruli can-
not be compensated on a standard diet by activation of the
RAAS, which is reflected by upregulation of Ren-1c expression
in the kidney and the increased aldosterone levels in the blood
of theMRPax8/LC1 knockout mice (Suppl. Fig. 2 and Figs. 2 and
5). The decrease of NCC expression and phosphorylation
(Fig. 9) might be induced in an attempt to increase the Na+

delivery to the CNT and CD where ENaC is normally highly
expressed, allowing the exchange of Na+ against K+. Thus,
apical electrogenic ENaC-mediated transepithelial Na+ reab-
sorption allows the excretion of K+ from principal cells to the
primary urine. However, inward Na+ and outward K+ transcel-
lular fluxes are impaired in the MRPax8/LC1 knockout mice.
Indeed, increased plasma aldosterone levels cannot activate
MR in the MRPax8/LC1 knockouts, and thus, aldosterone cannot
trigger de novo synthesis of ENaC and ensure the channel
stability at the apical membrane via the Sgk1 pathway.

In conclusion, the MRPax8/LC1 knockout mice fully repro-
duce the human PHA-1 phenotype, ENaC expression is de-
pendent on MR activity, and hyperkalemia is probably the
main complication to be avoided even at the expense of in-
creased Na+ excretion.
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