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Abstract The volume-regulated anion channel (VRAC), also
known as the volume-sensitive outwardly rectifying (VSOR)
anion channel or the volume-sensitive organic osmolyte/anion
channel (VSOAC), is essential for cell volume regulation after
swelling in most vertebrate cell types studied to date. In addi-
tion to its role in cell volume homeostasis, VRAC has been
implicated in numerous other physiological and pathophysio-
logical processes, including cancer, ischemic brain edema, cell
motility, proliferation, angiogenesis, programmed cell death,
and excitotoxic glutamate release. Although VRAC has been
extensively biophysically, pharmacologically, and functional-
ly characterized, its molecular identity was highly controver-
sial until the recent identification of the leucine-rich repeats
containing 8A (LRRC8A) protein as essential for the VRAC
current inmultiple cell types and a likely pore-forming subunit
of VRAC. Members of this distantly pannexin-1-related pro-
tein family form heteromers, and in addition to LRRC8A, at
least another LRRC8 family member is required for the

formation of a functional VRAC. This review summarizes
the biophysical and pharmacological properties of VRAC,
highlights its main physiological functions and pathophysio-
logical implications, and outlines the search for its molecular
identity.
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Introduction

The mechanisms controlling cell volume are essential for nor-
mal cell function. Their importance extends far beyond cell
volume homeostasis, as regulated cell volume changes are
involved in numerous physiological processes, and converse-
ly, cell volume perturbation is associated with a range of path-
ological states. After cell swelling, volume is recovered in the
process of regulatory volume decrease (RVD), a major com-
ponent of which is activation of an anion current. Historically,
the channel mediating this current is known as the volume-
regulated anion channel (VRAC), the volume-sensitive out-
wardly rectifying (VSOR) anion channel, or the volume-
sensitive organic osmolyte/anion channel (VSOAC). For the
sake of consistency with the recently published papers on
LRRC8, we refer in the following to the channel as VRAC.
The recent identification of leucine-rich repeats containing 8A
(LRRC8A) as essential for VRAC currents and likely part of
the channel pore (see review by Jentsch and coworkers else-
where in this volume) opens up for novel understanding of the
regulation and roles of this previously so elusive channel. It is
therefore timely–and the purpose of this review–to recapitu-
late briefly the discovery of VRAC, its biophysical properties,
pharmacology and regulation, and its physiological and
pathophysiological roles.
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The discovery of the VRAC current as an essential
part of the RVD response

The discovery that osmotic swelling increases cellular anion
(and cation) permeability was first made in Ehrlich ascites
tumor cells [1–3] and human lymphocytes [4–6], followed
by electrophysiological recording of an outwardly rectifying
Cl− current after hypotonic swelling of human T lymphocytes
and intestine 407 human epithelial cells [7, 8]. Shortly there-
after, the first comprehensive biophysical analysis of VRAC
was published [9], as further detailed below and in Fig. 1.
Moreover, this current was shown to be necessary for the
RVD response [7, 8].

The search for the molecular identity of VRAC

As discussed elsewhere, several properties of VRAC contrib-
uted to its long resistance to discovery at the molecular level
[11, 12]. The colorful history of the search for VRAC involves
numerous now-discarded molecular candidates (reviewed in
[11–18]). The first proposed candidates were P-glycoprotein
(P-gp, aka multidrug resistance protein-1 (MDR1) or ATP-
binding cassette sub-family B member 1 (ABCB1)) [19],
pICln [20], and ClC-3 [21], which were all later shown to
exhibit biophysical properties incompatible with those of
VRAC and/or to be unnecessary for the VRAC current
[10, 16, 22]. Thus, depletion or inhibition of P-gp had no effect
on VRAC in intestine 407 cells [23] and VRAC current and P-
gp expression do not correlate across cell types [24]; ClC-3
knockout mice exhibit normal VRAC currents [25–27]; and
pICln is a protein involved in spliceosomal snRNP biogenesis
[28, 29]. Furthermore, pICln, when expressed in lipid bilayers,
has been shown to form highly cation-selective channels [30],
although ion selectivity was later proposed to reflect the spe-
cific lipid composition of the bilayer [31]. Additional proteins
proposed as VRAC include band 3, aka the AE1 Cl−/HCO3

−

exchanger [32]; the FXYD family protein phospholemman
[33–35]; the voltage-dependent mitochondrial anion channel
VDAC [36]; and the intracellular Cl− channel CLIC1 [37, 38].
Evidence against all of these as molecular candidates for
VRAC has later been brought forward (see [10, 13, 15, 16,
22]). In addition to LRRC8A, two other candidates have been
brought forward in recent years. Firstly, TMEM16A [39] was
proposed as a VRAC candidate; however, its Ca2+ sensitivity
clearly distinguishes it from VRAC. Also knockdown of sev-
eral other TMEM16 family members (TMEM16F, −H, and −J)
was found to reduce VRAC [39]. Later studies showed that
TMEM16F does not mediate VRAC, yet it likely contributes
to RVD under conditions with increased free intracellular Ca2+

concentration ([Ca2+]i) [40, 41] (for a discussion of the variable
role of Ca2+ in RVD, see [14]). Notably, TMEM16F is an ATP-
independent phospholipid scramblase, and recent work has

proposed that the ionic current is a nonspecific leak current
resulting from the scramblase activity [42]. On the other hand,
recent evidence suggests that members of the TMEM16 fam-
ily, at least, under some conditions induce VRAC currents and,
moreover, may engage in a functional relationship with
LRRC8A [43, 44].

Finally, bestrophin has been described as the molecular
entity underlying VRAC in Drosophila melanogaster, first
by Chien and Hartzell [45] and later independently verified
in a genome-wide siRNA screen [46]. This suggests, interest-
ingly, a divergence of volume-sensitive Cl− channels between
invertebrates and vertebrates in the course of evolution. The
possible role of bestrophin in mediating VRAC currents in
vertebrates is controversial. VRAC is unaffected in macro-
phages from mBest1/2 double knockout mice [47], and the
biophysical properties of VRAC inmammalian cells are clear-
ly at variance with those of the Drosophila volume-sensitive
Cl− current [46]. On the other hand, a recent report found the
mammalian bestrophin 1 (BEST1) protein to be essential for
RVD in human retinal pigment epithelial cells and to mediate

�Fig. 1 Biophysical properties of VRAC. a Time course of the activation
and deactivation of currents through VRAC in a mouse aorta endothelial
cell (measured at +80 and −80 mV). The solid bar marks the application
of a 25 % hypotonic solution (upper panel). Note the slow activation of
VRAC. Current–voltage (I–V) curves (lower panel) obtained at the time
points indicated by a and b in the upper panel. b Time dependent current–
voltage relationship. The upper panel shows current traces under isotonic
conditions taken at the time indicated by I in panel (a). The lower panel
shows current traces during a hypotonic challenge (indicated by II in
panel (a)). Traces are from a step-voltage protocol (holding potential
0 mV, 2 s steps from −80 to +100 mV, spaced 20 mV). Note the inacti-
vation at positive potentials. c Permeation properties of VRAC: perme-
ability ratios calculated from the shifts in Erev by substitution of Cl

− (asp
aspartate, glu glutamate, gluc gluconate, lact lactate, taur taurine, gly
glycine, HCO3

− bicarbonate, SCN− thiocyanate). Note the permeation
of large anion such as taurine, aspartate, and glutamate. d Stoke’s diam-
eters of the anions used for Cl− substitution plotted against their perme-
ability relative to Cl−. The diameter of the open VRAC pore was estimat-
ed from the excluded volume model (solid line). e Single channel prop-
erties of VRAC. Ensemble-averaged membrane currents in a BC3H1
myoblast cell after a 40 % decrease in extracellular osmolarity, recorded
after voltage steps from −80 to + 120 mV (upper panel, left). Bottom left:
single VRAC currents from an outside-out patch obtained from the same
cell and using the same voltage protocol. Note the clustering of openings
at the beginning of the step indicating a decrease in open probability
during the step. Top right: current-trace (ensemble-averaged current) for
a step from +80 to 100 mV. Note the slow increase in current, reflecting
recovery from inactivation at the positive holding potential. Bottom right:
outside-out patch, single channel recordings from the same cell as above.
Note the delay in the appearance of channel openings, which parallels the
slow increase in the macroscopic inward current. fAmplitude histograms
from single channel openings after cell swelling (outside-out patch pulled
from a swollen cell held at −80 mV and stepped to +120 mV). The
histogram was fitted by four Gaussian functions. Single channel ampli-
tude was 5.0 pA. Plotted below is the entire single channel current–volt-
age relationship from these experiments (BC3H1 cells). Note that the
outward rectification is due to the different slope conductance at positive
and negative potentials. Panels a–f are modified, with permission from
Figures 13–15 in [10]
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currents in these cells with biophysical properties comparable
to those of VRAC [48]. It may however be noted that the
ohmic current–voltage relationship and essentially absent
voltage-dependent inactivation are at variance with those of
VRAC (compare Fig. 4 in [48] with Fig. 1 of this review).
Notably, it was shown in this study that LRRC8A was dis-
pensable for both VRAC and RVD [48].

Amajor breakthrough came, as noted above, simultaneous-
ly from two groups in 2014: the Jentsch group [59] and the
Patapoutian group [60], who both identified the LRRC8 fam-
ily as essential for VRAC. This work will be covered else-
where in this volume, and only the major conclusions are
briefly recapitulated here. Functional VRAC currents appear
to require LRRC8A and at least one other LRRC8 isoform.
Further, although the structure-function characterization of the
assumed LRRC8 hexamer (or other multimers) is still very
incomplete and some contradictory evidence is obtained (see
[56]), it was proposed based on mutagenesis studies that
LRRC8A may form part of the pore or be located very close
to it [59, 60]. Specifically, it was suggested that residue T44 of
human LRRC8A, which is predicted to localize in the external
part of TM1, forms part of the channel pore [60]. The recent
report that the subunit composition of the LRRC8 heteromer
determines its permeability properties is also most consistent
with the LRRC8 proteins contributing directly to the pore
[52, 61]. On the other hand, the fact that mutations of charged
amino acids in predicted transmembrane domains have little
effect on the current [60] is surprising if these comprise part of
the pore [56]. Also consistent with its role as VRAC,
LRRC8A is very broadly expressed, localizes to the plasma
membrane, is, like VRAC (see below, and [62–64]),
isovolumetrically activated by reduced intracellular ionic
strength [60], and, finally, its knockdown inhibits RVD
[59, 60]. Finally, an important open question, which can
now begin to be addressed, is whether LRRC8A may in fact
have roles beyond its function as an ion channel or whether
the phenotype of the LRRC8A knockout mouse [65] and that
of a patient with a truncated LRRC8A variant [66] reflects
novel VRAC functions.

VRAC biophysical and permeation properties

Current characteristics

The biophysical characteristics of VRAC have been described
in detail in a wide range of cell types (e.g. [9, 16, 17, 22, 56,
67]; for reviews, see e.g. [10, 11, 17, 22, 49, 56, 68]). The
VRAC current activates slowly when cells are exposed to a
hypotonic challenge. It exhibits a modest outward rectification
which is known to reflect voltage-dependent enhancement of
the single channel conductance [16, 68, 69] (Fig. 1a, b). The
single channel conductance is in the intermediate conductance

range, approximately 50–80 pS at positive, and 10–20 pS at
negative membrane potentials [69–74] (Fig. 1e, f). It may be
noted that the single channel current was initially greatly
underestimated due to incompatibility of the current activation
properties with the assumptions of stationary noise analysis
[70, 71]. Specifically, Jackson and Strange demonstrated that
activation of the current by swelling may involve a sudden
switching of single channels from a closed state, where chan-
nel open probability is zero, to a state, and where open prob-
ability is near unity [70, 71]. The current generally exhibits a
characteristic, but variable, voltage-dependent inactivation at
positive membrane potentials, the time course of which is
sensitive to extracellular concentrations of H+, Mg2+, and
Cl−, as well as on the current magnitude [9, 16, 22, 56, 67,
75] (Fig. 1b). Similar voltage-dependent inactivation is ob-
served at the whole cell and single channel level [69, 75]
(Fig. 1b, e).

Permeability profile

The VRAC permeability sequence has been characterized in
detail and is generally reported as SCN−> I−>NO3

−>Br−>
Cl−>HCO3

−> glycine > F−> taurine > lactate > gluconate >
glutamate>aspartate [9, 10, 16, 22, 76–78] (Fig. 1c). A fit of
the relative permeabilities of these ions to their Stoke’s diam-
eter predicts a pore diameter of about 11 Å (Fig. 1d). The pore
geometry was also more precisely estimated by use of 4 sul-
fonic-calix(n)arene anions as permeation reporters indicating
that calix(4)arene permeates but calix(6)arene blocks the
VRAC pore, indicating an 11 by 17 Å pore [79, 80]. Non-
electrolyte partition studies pointed to a cut-off diameter of the
VRAC pore of 12.6 Å [81].

The permeability of VRAC to organic anions, leading to its
naming also as VSOAC (volume-sensitive osmolyte anion
channel), has been widely studied and whether inorganic
and organic anions permeated the same or different channels
has been subject to major controversy (that may in fact reflect
the involvement of partially different LRRC8 heteromers, see
below); for the earliest evidence of organic anion transport via
VRAC, see [82]; for discussions of this topic, see [14, 83,
84].VRAC has also been proposed to be permeable to the
ATP anion [85–87] yet is inhibited by ATP via open-channel
block under physiological voltage conditions [17, 88].
Furthermore, VRAC was recently found to potentiate the up-
take of the protein synthesis inhibitor blasticidin S [89] and, as
further described below, the chemotherapeutic platinum drugs
cisplatin and carboplatin (but not oxaliplatin) [52] into mam-
malian cells. The discovery that LRRC8 channel subunit com-
position determines its permeability profile [52] suggests that
the permeability to both anions and large organic molecules of
different charge may reflect the expression of VRAC channels
of varying stoichiometry. Thus, the LRRC8A/D heteromer
favors permeation of organic osmolyte over anions and also
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allows uncharged compounds such as platinum drugs to pass
the channel. In contrast, the LRRC8A+B/C/E heteromers fa-
vor anion permeation above taurine permeation (for a discus-
sion, see [52]).

VRAC pharmacology

The pharmacology of VRAC has been extensively described
(see [15, 16, 56]). Although no fully selective VRAC inhibi-
tors are yet available, numerous compounds strongly or par-
tially inhibit the VRAC current. Such compounds that are
w ide ly used inc lude 4 , 4 ′ - d i i s o th iocyano -2 ,2 ′ -
stilbenedisulfonic acid (DIDS), 5-nitro-2-(3-phenylpropyl-
amino) benzoic acid (NPPB), and tamoxifen [15, 16, 56].
The acidic di-aryl-urea NS3728 inhibits VRAC in HEK-293
cells and Ehrlich Lettré (ELA) cells with an IC50 value of
around 0.4 μM [90, 91] and has gained relatively wide use
in recent years. This compound, however, also inhibits Ca2+-
activated Cl− currents [91]. Another apparently specific
VRAC inhibitor is 4-(2-butyl-6,7-dichlor-2-cyclopentyl-
indan-1-on-5-yl)-oxybutyric acid (DCPIB) shown to specifi-
cally inhibit VRAC in the heart and CNS [92–94]. Also sero-
tonin reuptake inhibitors (fluoxetin, i.e., Prozac) [95, 96], anti-
malarials (mefloquin) [97], anti-estrogen (clomiphene,
nafoxidine) [98], and the BT-type Ca2+ channel blocker^
mibefradil [99] exhibit relatively strong inhibitory effects on
VRAC currents. Finally, numerous other compounds, albeit
not specific to VRAC, have been shown to inhibit the VRAC
current, including pyridoxal-phosphate-6-azophenyl-2′,4′-
disulfonate (PPADS) [100], suramin [100], phloretin [101],
and carbenoxolone [102]. Obviously, the high chemical vari-
ability of the VRAC-modulating compounds has impeded the
evaluation of specific functional properties of VRAC.

VRAC regulation

The regulation of VRAC has been extensively studied,
with a particular focus on understanding the signal of ac-
tivation upon cell swelling and how this information is
transmitted to the channel. A complete picture of the mech-
anisms regulating VRAC and their possible interrelation-
ship is still missing, and some of the findings may have
been compromised by the lack of a molecular candidate
and specific pharmacological tools for VRAC. Needless
to say, the identification of LRRC8A opens for the inves-
tigation of this using state-of-the art tools and will un-
doubtedly soon lead to leaps in the understanding of
VRAC regulation. However, in this context, it is useful to
know the major evidence on pathways of VRAC activation
and modulation identified so far, and these are therefore
summarized in the following.

VRAC activation

As its name implies, VRAC is regulated by cell swelling.
However, as recently discussed in detail [11], VRAC is likely
activated not by the change in cell volume per se – an exten-
sive thermodynamic parameter–but by the accompanying de-
crease in intracellular ionic strength–an intensive thermody-
namic parameter. Indeed, a reduction of ionic strength under
isosmotic conditions does not cause a change in cell volume
but results in activation of VRAC and vice versa; an increased
intracellular ionic strength, in the form of a hypertonic intra-
cellular solution, causes a volume increase but inhibits VRAC
activation [62, 64]. It has been proposed, in part, based on
pioneering experiments in erythrocytes [103], that the relative
activities of channels/transporters mediating the swelling-
activated efflux of organic and inorganic osmolytes may be
determined by the extent of ionic strength change during cell
swelling [104, 105]. It is emphasized that ionic strength is
clearly not the only mechanism capable of activating VRAC.
In addition to its activation by reduced intracellular ionic
strength [62–64], VRAC is isovolumetrically activated by in-
tracellular GTPγS [106, 107]. VRAC was also shown to be
activated isovolumetrically by purinergic signaling [54, 108],
at least in part involving Ca2+-signaling and protein phosphor-
ylation events [109] and via activation of bradykinin (BK)
receptors and metabotropic glutamate receptors (mGluR), in
a manner involving reactive oxygen species (ROS) and again
Ca2+ signaling [54–56, 58]. ROS were shown to directly in-
duce VRAC activation in a manner independent of cell swell-
ing [53, 110, 111] and to be involved in activation of VRAC
by epidermal growth factor (EGF) signaling [111] and by
inducers of apoptosis [53]. Swelling-induced VRAC activa-
tion was furthermore shown to involve a swelling-induced
interaction between α-actinin-4 (ACTN4) and a cytosolic
ABC transporter family member, ABCF2, which prevented
the inhibitory action of ABCF2 on VRAC [112]. The inflam-
matorymediator Sphingosine-1-phosphate (S1P) acting via its
G-protein-coupled receptor S1PR1 was also recently reported
to activate VRAC isovolumetrically. S1P is generated by
sphingosine kinase, which is activated by multiple stimuli,
including bacterial lipopolysaccharide (LPS), platelet-
derived growth factor (PDGF), tumor necrosis factor alpha
(TNFα), thrombin, IgE-bound antigen, and ATP [86, 113].

Intracellular signaling pathways in VRAC activation
and modulation

The activation of VRAC by intracellular GTPγS suggests that
GTP is part of the activation pathway, possibly via small GTP-
binding proteins [107]. This is consistent with the finding that
Rho and Rho kinase (ROCK) are required for VRAC activa-
tion but cannot itself activate the channel (hence denoted per-
missive pathways) in several cell types [114–117]. Other
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signaling pathways implicated in VRAC activation or modu-
lation have been reviewed elsewhere [14, 22, 49, 56] and will
only briefly be outlined here. They include bona fide signaling
molecules such as phosphatidyl-inositol-3-kinase (PI3K)
[118] and tyrosine kinases [107, 119–122], membrane lipids
including cholesterol, various lipid-derived signaling mole-
cules, the actin cytoskeleton [114, 123, 124], and other struc-
tural proteins including annexin-II [125] and caveolin-1
[126, 127].

VRAC physiology and pathophysiology

By far the most widely described function of VRAC is its
essential role in RVD and hence cell volume homeostasis, in
most cell types studied [14, 128, 129]. In addition, however,
VRAC has been assigned a wide range of other important
physiological functions. These include, but are not limited
to, roles in electrogenesis, cell proliferation, angiogenesis, cell
motility, and apoptosis (summarized in Fig. 2). These func-
tions have been widely reviewed, and only a brief overview of
pertinent aspects will be given below. It should be kept in
mind that because of the hitherto elusive molecular identity
of VRAC, conclusions on its function and dysfunction have
drawn heavily on pharmacology, and it will be important to
validate the proposed roles using specific molecular tools.

Roles of VRAC in electrogenesis

Studies in vascular endothelial cells have demonstrated that
VRAC plays a central role in electrogenesis and hence is im-
portant for offsetting and regulating the driving forces for
other ion channels and transporters [22].While mainly studied
in endothelial cells, obviously, VRAC inhibition will in gen-
eral hyperpolarize cells with a depolarized membrane poten-
tial (Vm), and its activation will depolarize cells with a more
negative membrane potential. As discussed in [22], the resting

Vm of at least some endothelial cell types has been shown to
exhibit a bimodal distribution, with one population with a
resting Vm of −70 to −60 mV which is dominated by a K+

conductance, and another in which the Cl− conductance is
dominating, and which consequently exhibits a resting Vm of
−40 to −10 mV. In macrovascular bovine pulmonary aortic
endothelial cells (BAEC), resting membrane currents are
dominated by a combination of an inwardly rectifying K+

(IRK) current and a VRAC Cl− current (Fig. 3a–c), and inhi-
bition of VRAC by mibefradil elicits hyperpolarization be-
cause the IRK current is now dominating (Fig. 3d; for details
see [10, 22, 72]). Similarly, in calf pulmonary artery endothe-
lial (CPAE) cells, mibefradil induces rapid hyperpolarization
[99]. In general, however, the electrogenic effects of VRAC
are understudied given their likely physiological importance
and should be addressed in further detail and in a wider range
of cell types.

Roles of VRAC in apoptotic cell death and chemotherapy
resistance

A role for VRAC in apoptotic cell death has been demonstrat-
ed in multiple studies in a variety of cell types. Apoptosis
following activation of the intrinsic apoptotic pathway (e.g.,
by staurosporine, STS) or of the extrinsic pathway [by death
receptor ligands, e.g., Fas ligand (FasL) or TNFα (Fig. 4 up-
per scheme)] is causatively associated with persistent cell
shrinkage [133]. This normotonic shrinkage has been denoted
apoptotic volume decrease (AVD) [51, 134]. Thus, VRAC is
activated by apoptotic stimuli, although intracellular ionic
strength is increasing during apoptotic stress. One signal that
can lead to VRAC activation under these conditions is ROS
[53]. The AVD process is accompanied by efflux of KCl and
osmotically obliged water [134] and involves VRAC activa-
tion [53, 135]. Additionally, pharmacological inhibition of
VRAC inhibits apoptosis induced by STS [51, 136], FasL
[51], TNFα [51], cisplatin [50], ROS [53, 137], and
ischemia-reperfusion [138]. Conversely, isovolumetric cell
shrinkage is sufficient to induce apoptosis [134, 139, 140]. It
is therefore interesting to note that VRAC is downregulated in
several drug-resistant cancer cell types, resulting in a de-
creased propensity for apoptosis [141–143]. Notably, in hu-
man ovarian cancer cells, cisplatin resistance was found to
correlate with reduced swelling-activated taurine efflux and
reduced expression of LRRC8A [143]. Recent findings from
the Jentsch laboratory based on The Cancer Genome Atlas
(TCGA) data suggested that while LRRC8A expression levels
had no effect on survival of ovarian cancer patients treated
with platinum drugs, reduced expression of LRRC8D corre-
lated with reduced survival, consistent with the important role
of this subunit in cellular cisplatin uptake [52, 61]. Collective-
ly, the findings above show that VRAC is important for the
cellular response to apoptotic stimuli. The recent

Fig. 2 Physiological and pathophysiological roles of VRAC. The figure
illustrates the main proposed roles of VRAC in physiological and
pathophysiological processes. See text for details. AVD apoptotic
volume decrease, NVI necrotic volume increase
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Fig. 3 Roles of VRAC in endothelial cell electrogenesis. The figure
illustrates aspects of electrogenesis in non-stimulated bovine aortic pul-
monary endothelial cells (BPAEC). a Current–voltage relationships from
linear voltage ramps (from −150 to +100 mV), (1) under control condi-
tions, (2) in the presence of 1 mM Ba2+ to inhibit the inwardly rectifying
potassium (IRK) current, and after osmotic shrinkage (100 mMmannitol)
to inhibit VRAC, still in the presence of Ba2+ (3). The remaining current
is a nonselective cation (NSC) current. b The difference current between

conditions 1 and 2 is IRK, mediated through Kir2.1 [130, 131]. c The
VRAC current is the difference current between conditions 2 and 3. d The
resting Vm reflects the respective contributions of the three conductances.
Upon inhibition of VRAC by Mibefradil (10 μM), the K+ conductance
becomes dominant and the membrane hyperpolarizes. The figure is mod-
ified from [22], with permission, and is based on data from [132] (panels
a-c) and [72] (panel d)

Fig. 4 Roles of VRAC in AVD and NVI.Upper scheme: roles of VRAC
activity in the AVD in response to STS, FasL/TNFα, ischemia-
reperfusion, and cisplatin. Under these conditions, VRAC is
normotonically activated, resulting in a cell shrinkage that is necessary
for the ensuing apoptotic cell death. In addition, VRAC serves as an
uptake pathway for cisplatin. Lower scheme: roles of VRAC activity in
NVI in response to glutamate-induced excitotoxicity and in glial gluta-
mate release in response to glutamate-, BK-, and ATP-induced activation
of mGluR, BKR, and P2YR, respectively. VRAC-mediated glutamate
release further enhances, in a positive feedback manner, the release of
glutamate via activation of mGluR in glial cells. Under these conditions,
cell swelling induced by NaCl uptake further enhances neuronal VRAC
activity but elicits Cl− inflow rather than efflux due to the extensive
depolarization resulting from iGluR activation. One of important

characteristics of necrosis is the release of harmful or inflammatory fac-
tors to surrounding cells and tissues from the dying cells due to cell
rupture. It must however be noted that numerous cell signaling mecha-
nisms are involved in the processes between NVI, cell rupture and necro-
sis, as well as between AVD and cell fragmentation. AVD apoptotic vol-
ume decrease, BK bradykinin, BKR BK receptor, FasL Fas ligand, iGluR
ionotropic glutamate receptor cation channel, mGluR metabotropic glu-
tamate receptor, Nav voltage-gated Na+ channel, NVI necrotic volume
increase, P2YR purinergic type 2Y receptor, ROS reactive oxygen spe-
cies, STS staurosporine, TNFα tumor necrosis factor; VRAC(d) LRRC8
heteromer containing LRRC8D. The figure is modified from [49], with
permission, and is based on data from [50–53] (upper scheme) and
[54–58] (lower scheme)
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demonstration that VRAC heteromers containing LRRC8D
represent an important uptake mechanism for cisplatin and
carboplatin shows that this at least in part reflects that VRAC
is important for the cellular uptake of these compounds. On
the other hand, the VRAC dependence of cell death in re-
sponse to STS- or FasL treatment, ROS, or isotonic Cl− efflux
[51, 139, 144, 145] confirms the role of VRAC in the cell
death process per se, as these stimuli are unlikely to be depen-
dent on VRAC-mediated drug uptake (Fig. 4 upper scheme).
While the broader relevance of VRAC in cancer clearly needs
to be defined, it is interesting to note that a recent study of
genes essential to net growth of human CML and Burkitt’s
lymphoma cell lines identified LRRC8A, C, D, and E as non-
essential for this process ([146], Suppl. Tables 1–2). This is in
congruence with the possibility that there may be other mo-
lecular candidates for VRAC than the LRRC8 family. How-
ever, it is equally consistent with the known roles of other
types of Cl− currents than VRAC (e.g., Ca2+-activated Cl−

currents, see above) in RVD as well as in growth in some cell
types and with the contributions of other transporters, e.g.,
KCl cotransporters, to these processes (see [14]).

Roles of VRAC in CNS function and necrotic cell death
under excitotoxicity

As discussed in further detail by Mongin and coworkers else-
where in this volume, VRAC is functionally expressed in
brain neurons, astrocytes, andmicroglia (see [56]). In neurons,
activation of voltage-gated Na+ channels and ionotropic glu-
tamate receptor cation channels (iGluR) leads to cell swelling,
thereby activating VRAC (Fig. 4 lower scheme). Whereas the
role of VRAC after cell swelling associated with physiological
neuronal firing activity remains incompletely understood, its
role in neuronal RVD has been widely studied (see [56]). As
noted above, in addition to Cl−, VRAC carries amino acids
such as taurine, glutamate, and aspartate [92, 147–151]. This
has important pathophysiological consequences because
VRAC activation during, e.g., ischemic insults such as stroke
causes swelling-induced neurotransmitter release from glia
cells, contributing to excitotoxic damage [92, 148–154]
(Fig. 4 lower scheme).

Necrotic cell death occurs in parallel with a marked
normotonic cell swelling which has been denoted necrotic
volume increase (NVI) [134, 155]. Neurotoxicity caused by
prolonged exposure to excessive glutamate released from glial
cells is termed excitotoxicity [156] and is associated with
stroke, cerebral ischemia, brain trauma, and some neurode-
generative disorders, including epilepsy and Alzheimer’s,
Huntington’s, and Parkinson’s diseases [157]. Under
excitotoxic conditions, neuronal swelling is induced by water
inflow driven by Na+ influx via iGluR and Cl− influx via
GABAA receptor anion channels, in turn, leading to activation
of VRAC as described above (Fig. 4 lower scheme).

Glutamate also activates mGluR, which enhance VRAC ac-
tivity in a G-protein-dependent manner [56] (Fig. 4 lower
scheme). In addition, ATP (acting as a neuro- and
gliotransmitter) and BK (acting as an inflammatory mediator)
also activate VRAC via G-protein-coupled receptors in a man-
ner independent of cell swelling [54, 55, 58]. Once activated
under these conditions, VRAC serves as a pathway not for
volume-regulatory Cl− efflux but for swelling-exacerbating
Cl− inflow because of the prominent Vm depolarization pro-
duced by iGluR activation (Fig. 4 lower scheme). This
Breverse-mode^ operation of VRAC leads to NVI and necrot-
ic cell death in neurons [57].

VRAC in cell cycle progression and proliferation

VRAC currents are differentially regulated through the cell
cycle, and inhibition of VRAC has been shown to inhibit
proliferation in a wide range of cell types [111, 158–161].
Specifically, in SiHa human cervical cancer cells, VRAC in-
hibition resulted in G0/G1 arrest and delayed G1-S transition
[160]. The precise cell cycle phase affected may differ be-
tween species: In nasopharyngeal carcinoma cells, VRAC ac-
tivity was found to be downregulated in S phase compared to
G1 andM [162]. In contrast, in SiHa cells, VRAC activity was
reported to be increased in S compared to G0 and G1 [160],
and a similar pattern was found in ELA cells [91]; for a review,
see [163]. Also in congruence with a role of VRAC in control
of proliferation status, downregulation of the VRAC current
has been shown to be required for muscle cell differentiation
[164].While these studies need to be revisited at the molecular
level given the unspecific nature of VRAC inhibitors, these
data point to the importance of VRAC for cell cycle progres-
sion. The precise mechanism(s) remain to be elucidated, but
several can be envisaged: The importance of Vm changes in
proliferation have long been known, and the role of VRAC is
paralleled by an important role of K+ channels in cell prolif-
eration [165]. Additionally, specific cell volume changes have
been assigned important roles in cell cycle progression
[166–170]. Interestingly, it was recently suggested that G1/S
progression may involve a size-discriminatory process in G1,
such that cells exit G1 with similar sizes [166].

VRAC in cell migration and angiogenesis

Another important physiological role of VRAC is the regula-
tion of cell migration, which in several cell types is inhibited
by VRAC inhibitors [171–174], presumably at least in part
reflecting the involvement of local cell volume changes in cell
motility (see [175]). Notably, a wide array of VRAC inhibitors
attenuate the formation of new blood vessel in several model
systems, e.g., matrigel-tube formation assay (in vitro), fibrin
gel assay, and chorioallantoic membrane (CAM) assay (in
ovo) [176, 177]. While inhibition of migration and/or
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proliferation could contribute to the observed effects of VRAC
in angiogenesis, this may render VRAC inhibitors interesting
in the context of angiogenesis inhibition in, e.g., cancer.

Concluding remarks

This review has provided an overview of the current knowl-
edge on VRAC biophysical properties, pharmacology, regu-
lation, physiology, and pathophysiology–the great majority
obtained before the recent breakthrough in the understanding
of the molecular identity of VRAC. These studies can now be
used as an important starting point for novel discoveries and
structure-function understanding, based on the identification
of LRRC8A as an essential component of VRAC. Centrally
open questions include the precise identity of the VRAC pore;
whether other molecular entities than the LRRC8 proteins
contribute to VRAC, perhaps via interactions with the LRRC8
proteins; the mechanisms through which VRAC is activated
by cell volume perturbations and other stimuli; and, of course,
the molecular validation of the multiple roles of VRAC regu-
lation and dysregulation in human physiology and pathophys-
iology that have so far relied on pharmacological tools. The
coming years will surely see a surge of new replace
Bimportant^ with Bpivotal^ (to avoid two times Bimportant^
in the same sentence) discoveries about the functions of this
ubiquitously important channel.
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