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Abstract Regarding the 13 known mammalian aquaporins
(AQPs), their functions in their expressing tissues, effects
of their mutation/polymorphisms in humans, and effects of
knockout of their genes are summarized in this review ar-
ticle. The roles of AQP5, an exocrine gland-type water
channel, in the salivary gland under normal and pathophys-
iological conditions are reviewed in detail. First, the in-
volvement of AQP5 in water secretion from acinar cells
was demonstrated by measuring volume changes of acini/
acinar cells, as well as activation energy (Ea) in
transepithelial water movement by NMR spectrometry,
and a functional linkage between AQP5 and TRPV4 was
suggested. Next, involvement of the parasympathetic ner-
vous system on the AQP5 levels in the acinar cells of the
submandibular and that of a β-adrenergic agonist on those
in the parotid gland are described. That is, chorda tympani
denervation induces autophagy of the submandibular gland,
causing AQP5 degradation/metabolism, whereas isoproterenol,
a β-adrenergic agonist, causes first an increase then decrease in
AQP5 levels in the parotid gland, which action is coupled with
the secretory-restoration cycle of amylase-containing secretory
granules. The PG also responded to endotoxin, a lipopolysac-
charide that activates NF-κB and MAPK pathways. Elevated

NF-κB and AP-1 (c-Fos/c-Jun) form a complex that can bind to
the NF-κB-responsive element on the AQP5 promoter and thus
potentially downregulate AQP5 transcription. Salivary gland
pathologies and conditions involving AQP5 and possible treat-
ments are described as well.
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GFP Green fluorescent protein
IPR Isoproterenol
KO Knockout
LC3B-II Microtubule-associated protein 1 light

chain 3 isoform B-II
LPS Lipopolysaccharide
MDCK Madin-Darby canine kidney
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SMG Submandibular gland
SNP Single nucleotide polymorphism
TRPV4 Transient receptor potential cation

channel, subfamily V, member 4

Introduction

One of the characteristics of cell membranes is their semiper-
meability. Because of this feature, water can move in and out
of the cells. However, in epithelial cells of such tissues as the
mammalian kidney collecting tubules, amphibian skin, and
bladder, the water permeability is much higher compared with
that of other tissues. Therefore, the existence of some other
mechanism(s) had long been anticipated that could allow such
high permeability.

In 1992, P. Agre at The Johns Hopkins University discov-
ered the first water channel, aquaporin 1 (AQP1), which had
been given the initial name of “channel-forming integral
membrane protein of 28 kDa (CHIP 28)” [128]. AQP1 was
shown to participate strongly in water movement across the
cell membrane. In the following year (1993), AQP2, a second
AQP, was cloned from kidney tissue by Sasaki’s group [26].
Thereafter, research in this field developed rapidly, and in
2000, Fujishoshi’s group succeeded in X-ray crystallographic
analysis of the AQP1 molecule, revealing its whole structure
[109]. It is now well known that AQPs exist in many living
organisms from animals and plants to microorganisms [174]
and that one to several molecular species of AQPs are
expressed in individual tissues.

This review will first briefly overview mammalian AQPs
and then focus on salivary gland AQP5 in particular relation to
its physiological regulation and the water transport
mechanism.

Aquaporins

AQPs are water channels constructed by serpentine-type
membrane proteins. The water movement across biological
membranes via AQPs is considered to be facilitated simply
dependent on the osmotic gradient.

These water channels have the following characteris-
tics [49, 55, 61]: (1) The channel protein is a six-
transmembrane protein having a tandem-repeat structure.
(2) It has two Asp-Pro-Ala sequences (NPA motif) in the
molecule that form hemi-channel structures. These two
hemi-channel structures face each other from inside and
outside of the plasma membrane forming a pore through
which water can pass. (3) Within the molecule, there are
phosphorylation target motifs besides glycosylation target
ones, which motifs participate in the regulation of the
water-channel function.

After the discovery of the first AQP, a number was given to
each AQP following the order of discovery, and presently 13
AQPs, AQP0–12, are known to exist in mammals.1 These
AQPs have been divided into four major subfamilies, accord-
ing to the following characteristics: facilitation of permeation
of glycerol besides water, altered sequence of conservative
NPA box, and molecular phylogeny. The first subfamily is
the water-selective AQP one, which includes AQP0, 1, 2, 4,
5, and 6. These AQPs facilitate the movement of water mainly.
The second subfamily is the aquaglyceroporin one, to which
AQP3 [50, 88], AQP7 [71], AQP9 [46, 157], and AQP10 [48]
have been assigned. The third subfamily, named
superaquaporin [51], includes AQP11 and AQP12, which
are unorthodox AQPs because each has a unique NPA box
with a signature cysteine residue and low homology with
AQPs in the two previously mentioned groups (see the
section Super aquaporins (unorthodox aquaporins) and [44,
51]). The remaining AQP, AQP8, is a water-selective AQP
but has an unusual structure with a long N-terminus, short
C-terminus, and high homology with γ-TIP, a plant water
channel [47, 68, 94]. The phylogenic study clearly separate
AQP8 from the group of water-selective AQPs in animals.
Regarding mammalian AQPs, major expressing tissues, func-
tions, physiological roles, and effects of mutation/
polymorphism in human ones are summarized in Table 1.

Water-selective aquaporins

The membrane protein AQP1 was initially found in the eryth-
rocyte, a highly water-permeable cell [128], and AQP2 [26], 3
[50], and 6 [175] were consecutively cloned from the kidney.
AQP4 was cloned from the lung and brain [37, 55], whereas
AQP5, from salivary gland [132]. All of them except AQP3
belong to water-selective subfamily of AQPs (Table 1). AQP4
was found to play important functions in the nervous system,
whereas AQP5 functions in fluid secretion/movement in
many tissues including exocrine glands and lungs. AQP6, on
the other hand, localizes in vesicles inside of kidney cells and
has been suggested to play a role in anion-channel function.

Aquaglyceroporins

The glycerol permeability of AQP3 was recognized when this
water channel was first cloned and characterized [50]. It has an
important role in the skin. A second aquaglyceroporin, AQP7,
was cloned from the rat testis [45] and was shown to be per-
meable to glycerol, water, and urea. On the other hand, an

1 Major intrinsic protein (MIP/MP26/MIP26) of the lens was reported
before the discovery of AQP1 [127], and its function had been unknown.
Since MIP26 afforded permeation of water and was highly homologous
to members of the AQP family, it was later considered to be an AQP
[106]. Thus the protein and gene of MIP26 are referred to as AQP0 [99,
117].
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aquaporin with high homology to rat AQP7 was cloned from
human adipose tissues [71]. Based on similar tissue distribu-
tion, primary sequence, and function, Ishibashi et al. sug-
gested that human aquaglyceroporin cloned from adipocytes
is most likely the human ortholog of rat AQP7 [52]. AQP7
(designated as AQPap by Kishida) was shown to be downreg-
ulated by insulin and elevated by fasting [64, 65]. AQP9, a
human water channel capable of permeation of water and
urea, was first detected in leukocytes [46]. The homolog of
AQP9 was cloned from rat liver, and when expressed in
Xenopus oocytes, it was shown to allow passage of a wide
variety of noncharged solutes including glycerol [157]. In ad-
dition, the liver AQP9 level was shown to be regulated nega-
tively by binding with insulin at the insulin responsive ele-
ment in the promoter of AQP9 [72]. The coordinated regula-
tion of AQP9 and AQP7 by insulin and/or fasting condition
suggested the pathophysiological importance of these two
aquaglyceroporins in glycerol transport between the fat tissue
and liver [72, 76]. As to AQP10, it was cloned from a human
jejunum cDNA library [39]. AQP10 is strongly expressed in
the duodenum and jejunum and supposedly functions mainly
as a water transporter, although its structural homology im-
plies that AQP10 belongs to the aquaglyceroporin subfamily
[39]. Recently, AQP10 was reported to be expressed in the
stratum corneum and adipocytes, in which this water channel
supposedly facilitates the transport of glycerol [56, 73].
Aquaglyceroporins are important for not only the transport
of glycerol between the fat tissue and liver, as mentioned
above, but also for providing moisture to the skin [35, 95,
158]. Further investigation focused on AQP10 is necessary
to better understand its function.

Super aquaporins (unorthodox aquaporins)

Recently, AQP11 and AQP12 were cloned and shown to be
less homologous to the already known AQPs [44]. Although
some water permeability of AQP11 was demonstrated in lipo-
somes and cultured cells [51], its permeability to glycerol is
unknown. AQP11-null mice develop polycystic kidneys fol-
lowing the formation of large intracellular vacuoles in the
proximal tubule, but the function of AQP12 still remains to
be clarified [51].

Aquaporin 8

As described earlier, AQP8 is structurally unusual com-
pared to other members in the AQP family, being rather
close to the plant water channel. Thus, this water channel
has been separated from other classified AQPs in this re-
view. With respect to its function, AQP8 is close to water-
selective AQPs as it is permeable to water and does not
permeate glycerol. Interestingly, it has the unique property
of permeating H2O2 [8].

Functions other than as a water channel

In recent years, it was reported that some molecules in the
AQP family function other than as water channels. For in-
stance, AQP0 functions as an osmometer and thereby enables
normal microcirculation within the lens tissue, preventing
swelling of the lens fiber [16]. Simultaneously, AQP0 is in-
volved in helping each fiber to adhere to its neighbor, resulting
in narrowing of the interfibrous spaces, a feature important for
maintaining lens transparency [16]. Amongmammalian aqua-
glyceroporins (AQP3, 7, 9, and 10), at least AQP7 and AQP9
transport trivalent arsenic ions [85], and AQP3, AQP7, and
AQP9 transport urea [83]. These aquaglyceroporins (AQP3,
7, 9, and 10) as well as AQP8 transport ammonia as well. It is
known also that AQP6 [114, 173], AQP1 [40], and AQP8 [9]
transport ions, CO2/NO, and H2O2, respectively. Furthermore,
some AQPs are reportedly involved in cell adhesion, cell
movement, and cell division [163]. The major characteristics
of mammalian AQPs are summarized in Table 1.

Mutations and polymorphisms of human aquaporin genes

Anumber of mutations and polymorphism/SNP of genes in the
AQP family members were reported to occur in humans. Some
of them cause diseases and pathologic conditions, whereas
others apparently do not have any effect, or if so, only a minor
one. For example, individuals with a mutation in AQP0 [27,
30] andAQP2 [159] develop cataract and nephrogenic diabetes
insipidus, respectively; a mutation in AQP1 apparently has no
phenotypic effect, although affected patients have an impaired
ability to concentrate urine [62, 129]. These cases along with
others are summarized in Table 1.

Aquaporin gene knockout used to reveal new aquaporin
functions

Phenotype analysis of gene-knockout (KO) mice can general-
ly predict the pathophysiological roles of the gene product of
interest in various tissues. Especially important cases would
be those that show unexpected roles of the protein product.
Today, all knockout mice for each AQP gene, except AQP6
and AQP10, has been established (AQP10 in mice has been
shown to be a pseudo-gene [43, 103]). The phenotypes ob-
served for each type ofAQP-KOmouse are summarized in the
literature [162] and in Table 2.

Aquaporin 5 in individual tissue

Tissues expressing aquaporin 5

Water secretion from exocrine glands, such as salivary, lach-
rymal, and sweat glands, and water movement in the lung
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alveoli are two of the most important physiological functions
of these structures. The possible involvement of water-
channel proteins has therefore been implied. Raina et al.
cloned AQP5 mRNA for the first time from the submandibu-
lar gland (SMG), one of the major salivary glands [132]. They
showed that this AQP is expressed in such exocrine glands as
the parotid (PG), sublingual, and lachrymal glands, as well as
in the trachea, eyes, and lungs. Later, it was demonstrated that
AQP5 is also expressed in the stomach [126], Brunner’s
glands in the duodenum [125, 126], pancreas [11], skin, and
sweat glands [116]. Besides AQP5, several other AQPs are
expressed in these tissues simultaneously, and it is recognized
in general that one tissue expresses several members of the

AQP family. On the other hand, most tissues having an exo-
crine function express AQP5. Therefore, a pivotal role is sug-
gested for AQP5 in exocrine function.

Effects of mutation and polymorphism of aquaporin 5

Recently, missense mutations in the AQP5 gene were identi-
fied in patients suffering from autosomal-dominant diffuse
nonepidermolytic palmoplantar keratoderma (referred to as
palmoplantar keratoderma Bothnia type), which was mapped
in Swedish and UK families to chromosomal region 12q11–
12q13 [1, 10]. A variant of AQP5 (c.529A>T; p.Ile177Phe)
was localized in the plasma membrane in the stratum

Table 2 Phenotype analysis of AQP gene knockout mice

AQP family
members

Gene knockout and phenotype analysis Reference

AQP0 Lens transparency is lost by knockout of AQP0. Transgenically expressed AQP1 in the lens fiber cells
of AQP0-KO mouse reduces the severity of lens cataract and prevents dramatic acceleration of
cataractogenesis. Lens fiber cells, however, show deformities and lack of compact cellular architecture,
demonstrating that AQP0 may function in cell-to-cell adhesion.

[142, 160]

AQP1 Urine- concentrating capacity is severely impaired in AQP1-KO mice. Marked suppression of UT-A1
and AQP4, a urea transporter and a basolateral water channel, respectively, is observed in the inner
medullary collecting duct of the kidney in AQP1-KO knockout mice. Osmotic water permeability of the
peritoneal barrier is reduced in them as well. Growth of tumors transplanted in AQP1-KO mice is slower.
The migration speed of endothelial cells obtained from AQP1-KO mice is slower also

[105, 163, 170]

AQP2 An inducible mouse model of AQP2-KO is accompanied with severe polyuria in adult mice. In AQP2-KO
mice, urine osmolality decreases from approximately less than 1/4 after 4–5 days, with urine output
increasing from 2 to 25 ml/day. Urine osmolality does not increase after water deprivation. AQP3 protein
expression in the collecting duct is increased by about 5-fold after AQP2 gene deletion.

[176]

AQP3 AQP3 deletion results in a more than 4-fold reduction in osmotic water permeability and more than a 2-fold
reduction in glycerol permeability in the epidermis. AQP3 deletion also results in a significant reduction in
glycerol content in the stratum corneum and epidermis.

[34, 90, 92]

The growth and phenotype of AQP3 null mice is grossly normal except for polyuria. AQP3 deletion has little
effect on AQP1 or AQP4 protein expression but does cause a decrease in AQP2 protein expression, particularly
in the renal cortex.

AQP4 AQP4 deletion in mice has little or no effect on development, survival, growth or neuromuscular function but
does lead to a small defect in urine- concentrating ability.

[18, 93]

AQP5 Pilocarpine-stimulated saliva production is reduced by more than 60 % in AQP5-KO mice. AQP5 is
responsible for the majority of water transport across the apical membrane of type I alveolar epithelial cells.
Compared to wild-type mice, AQP5-KO mice are hypersensitive to acetyl choline, showing significantly
increased concentration-dependent bronchoconstriction.

[69, 89, 91]

AQP7 In AQP7-KO mice, the water permeability of the proximal straight tubule brush border membrane is
reduced compared with that of wild-type mice. A marked elevation of the urine glycerol level is observed
in AQP7-KO mice, suggesting that glycerol is reabsorbed by a novel pathway in the
proximal straight tubules.

[145]

AQP8 The emergence of multioocyte follicles is associated with AQP8 deficiency, suggesting the involvement of
AQP8 in follicle formation in the ovary. Knockout experiments suggest its involvement with cytoskeletal
proteins and ammonium transport.

[97, 152]

AQP9 Permeability of urea in hepatocyte basolateral membranes isolated from AQP9 and UT-A1/3 (a urea
transporter) double-KO mice is decreased additively compared with that from either single-KO mice,
suggesting that AQP9 and unidentified UT-A urea channels constitute primary but redundant urea facilitators
in murine hepatocytes.

[54]

AQP10 Pseudogene in mice [43, 103]

AQP11 The AQP11 null mouse has a remarkable phenotype showing polycystic kidneys, which is neonatally fatal.
In a liver-specific AQP11- KO experiment, deletion of AQP11 in the liver results in disrupted RER
homeostasis and increased sensitivity to RER injury upon metabolic challenge with amino acids.

[43, 121, 135]

AQP12 In AQP12-KO mice, pancreatitis induced by a cholecystokinin-8 (CCK-8) analog causes more severe
pathological damage to this organ than it does in wild-type mice.

[120]
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granulosum in affected palmar epidermis, similarly as in nor-
mal subjects, thus indicating that this mutant AQP5 traffics
normally [10]. A year later, another missense mutation of
AQP5 (c.367A>T, p.Asn123Tyr) was identified in a large
three-generation family of Chinese Han ethnicity with
palmoplantar keratoderma of the Bothnia type, and study of
this mutant showed that the mutant channel is leaky and more
sensitive to hypotonic solution than is the wild-type one [13].
Such properties of this mutant AQP5 may account for the
intensive cellular swelling resulting in the phenotype of dif-
fuse nonepidermolytic palmoplantar keratoderma.

Single-nucleotide polymorphism (SNP) has been detected
in humans. An SNP is found in the 3′UTR region of the AQP5
gene in a certain percentage of asthma patients, resulting in
reduced production of the AQP5 protein [70]. These individ-
uals are hypersensit ive toward choline-provoked
bronchoconstriction [69]. Five SNPs in AQP5 were geno-
typed in European Americans with chronic obstructive pul-
monary disease (n=429), and three of them showed signifi-
cant association with the rate of decline in lung function [33].
Also, a positive association between SNPs in AQP5 promoter
and progesterone receptor was reported [59]. Recently, high
expression of AQP5 and polymorphism in the AQP5 promot-
er were suggested to be associated with peritumoral brain
edema in meningioma patients [74].

Aquaporin 5 in the salivary glands

Expression of aquaporin 5 and other aquaporins
in the salivary glands

In the rat SMG, AQP5 is expressed in the apical/lateral and
basal membranes of the acinar cells [4, 112], whereas AQP1 is
detected in the cell membranes of the capillaries within sali-
vary gland tissue [2, 4, 79]. The mRNAs for AQP3 and AQP4
are expressed in the fetal, but not in the adult SMG, whereas
AQP2mRNA cannot be detected in either fetal or adult SMG
[2]. The expression of AQP6 and AQP7 in the human salivary
gland was examined, but the results were obscure, and such
expression was not confirmed [20]. On the other hand, posi-
tive AQP8 labeling was observed in the myoepithelial cells in
the salivary gland (SMG, PG, and sublingual gland), with no
labeling of acinar or ductal epithelial cells [22, 166], whereas
AQP11 transcripts were present in the developing and mature
duct structure of the SMG, and its expression was reduced in
the adults, implying some roles for AQP11 during gland de-
velopment [75].

Effects of aquaporin 5 mutation on the salivary function

Inbred rats having a point mutation at nucleotide 308 (G308A)
in their AQP5 gene and producing a mutant AQP5 protein

were established [111, 112], and this mutant molecule has an
aspartic acid at position 103 in place of glycine (AQP5-
G103D) in the third transmembrane domain of AQP5. This
mutation was initially found as an SNP among SD rats in the
breeder’s colony. The AQP5 protein level in the SMG and
other tissues is strongly reduced in these mutant rats,
though the glandular mRNA level is unchanged compared
with that in wild-type rats, and the Kozack sequence
(GGCACCaugA), which affects the translational efficien-
cy, was not altered in the mutant mRNA [112]. These data
support the hypothesis that the reduced AQP5 protein pro-
duction in the mutant rats is caused by accelerated degra-
dation of the mutant molecule via the protein quality con-
trol system. Actually, structures positive for AQP5 are tak-
en up by lysosomes more in the mutant SMG than in the
wild-type one [58]. The water permeability of the mutant
AQP5 as tested by the Xenopus oocyte expression system
is normal [58]. However, water secretion from the salivary
gland in vivo and in situ is significantly affected [110,
112]. Namely, the initial water secretion from the mutant
SMG upon cholinergic stimulation is reduced compared
with that from the wild-type gland due to its extremely
low expression at the acinar cell membrane. Studies using
AQP5-mutant rats can provide useful information about
the effects of genetic variation of the AQP5 gene in
humans. Also, AQP5-KO mice and AQP5-mutant rats are
useful models for studying the physiological roles of
AQP5 in the water secretion from the exocrine glands.

Effects of aquaporin 5 knockout on salivary gland function

Mice genetically altered by knocking out the AQP5 gene have
been prepared and analyzed [91]. Though the appearance of
the KO mice is normal, both their birth rate and growth rate
are reduced. As compared with that of their wild-type coun-
terpart, the salivary secretion and levels of some tight junction
proteins in the acini are decreased in these AQP5-KO mice
[60, 91], suggesting that AQP5 KO affects salivary flow via
the paracellular route as well (see the section Roles of aqua-
porin 5 in water secretion).

Roles of aquaporin 5 in water secretion

Water is secreted from the terminal portion of exocrine glands
via paracellular and transcellular routes. This secretion takes
place as a result of coupling to ion transport via the ion chan-
nel. In the salivary gland, the first trigger of this process is the
release of Cl− followed by Na+ movement [24, 86, 175]. The
Cl− ions required for this process are co-transported into the
acinar cells along with the Na+ and K+ ions via NKCC1, an
Na+/K+/2Cl− co-transporter, present in the basal membrane.
Evans et al. showed that saliva secretion is reduced by 60% in
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NKCC1 KOmice [23]. Their study directly demonstrated that
Cl− ions are accumulated in the cells by the action of NKCC1
and serve as a driving force for saliva secretion. As for the
other two cations accumulated by NKCC1, Na+ is transported
to the outside of the cells via Na+, K+-ATPase and K+, via K+

channels. Two K+ channels, IK1/SK4 and maxiK/Slo, have
been identified, and KO of either of them does not affect saliva
secretion, whereas double KO of these two K+ channels sig-
nificantly reduces it [5, 136], suggesting that the accumulated
K+ ions are transported to the outside of cells via both chan-
nels. These facts also support the idea that the Cl− efflux from
the cells is indispensable for water secretion.

Ma et al. showed that saliva secretion after the initial 5 min
and 5–10min after pilocarpine stimulation is reduced by more
than 60% in AQP5-KOmice [91]. The extent of the effects on
saliva secretion is similar between AQP5KO and NKCC1KO
animals. In AQP5-G103D mutant rats, only a trace amount of
the mutant molecule is expressed in the SMG acinar cells
[112], and 15 % of that of the wild type in the PG acinar cells
[139]. In these rats, a similar reduction in saliva secretion is
observed during the initial 12–17 min after pilocarpine stim-
ulation in vivo [112]. These data imply consistently that
AQP5 play important roles at least at the initial phase of saliva
secretion. On the other hand, Menon’s group determined wa-
ter transport via the paracellular route by performing an ex-
periment to measure the movement of FITC-dextran [60].
They demonstrated that water transport via this route is de-
creased in AQP5-KOmice also, although the transcellular one
is much more affected by AQP5 KO. Another observation by
these authors is that the levels of claudin-7, claudin-3, and
occludin in the parotid gland are decreased inAQP5-KOmice.
Decreased expression of these tight junction proteins is
thought to be correlated with decreased paracellular perme-
ability because such a phenomenon is actually observed in
Madin-Darby canine kidney (MDCK) type II cells expressing
a low level of claudin-2 in vitro [82].

Since acinar cells have the cholinergic receptor, it is most
possible that cholinergic agonists, via stimulation of acinar
cells, trigger transcellular water transport, leading to the rapid
increase in water permeability. However, extracellular tracer
studies suggest that only a small fraction of water is
transported through the transcellular pathway and that the ma-
jority of water moves through the paracellular pathway [107,
108]. Thus, it is important to study the initial mechanism
governing the opening/closing of the paracellular pathway in
the acinus of salivary glands to elucidate the entire water se-
cretion by the exocrine glands.

Activation energy for water transport

In order to assess the involvement of AQP5 in the
abovementioned water transport by the salivary gland acinar
cells, a research group examined changes in the cell volume

and activation energy (Ea) of diffusive water permeability (Pd)
in isolated parotid acinar cells obtained from AQP5-G103D
mutant rats and their wild-type counterparts (Table 3; Ref.
[139]). In the unstimulated wild-type acinar cells, Ea deter-
mined by NMR spectrometry was shown to be 3.4±
0.6 kcal mol−1, and no detectable change was noted after stim-
ulation with carbachol (CCh), a cholinergic agonist. In the
unstimulated mutant acinar cells, a high Ea value (5.9±
0.1 kcal mol−1) was detected, and it showed a minimal de-
crease after CCh stimulation (5.0±0.3 kcal mol−1). As men-
tioned earlier (see the section Effects of aquaporin 5 mutation
on the salivary function), since the AQP5-G103D (mutant
AQP5) expressed in Xenopus oocytes has a water permeabil-
ity almost the same as that of the normal AQP5 [58], this high
Ea value for the mutant acinar cells may not be due to the
functional disorder of the mutant AQP5 but rather to the fact
that a small number of AQP5 molecules are expressed in the
acinar cell membrane, and therefore, the observed Ea value
was affected by the high Ea for the water transport via the lipid
bilayer (Ea=12–14 kcal mol−1) [130, 133].

Reliability of the Ea value for mutant acini was verified by
calculating its Ea assuming that the Ea for the lipid membrane
per se is 12.75 kcal mol−1 [130, 133] and that the AQP5
fraction relative to the wild-type one is 15 % (based on
Western blot analysis). The apparent Ea value expected from
the simulation curve is Ea=6 kcal mol−1, which value well
agrees with the measured one.

The increase in Ea for water transport would result in a
decrease in osmotic water permeability (Pf) of mutant acinar
cells to 1/3 to 1/4 of that of wild-type rats, although the ap-
parent Pd between the two groups of rats is the same (see
Table 3). These results suggest that AQP5 is essential for
reducing the activation energy for water transport in the acinar
cells and therefore affects their water permeability.

These data consistently support the fact that reduced saliva
secretion in AQP5KOmice, providing there is full deletion of
AQP5 [60, 91], is at least in part due to the decrease in water
transport across the plasma membrane between the two water
transport routes, transcellular and paracellular pathways.

Hypothetical mechanism of water secretion

In vitro shrinkage of exocrine acinar cells upon cholinergic
stimulation has generally been recognized [113, 115, 153]
with exception of SMG C10 cells in culture, which show
transient blebbing of cell membranes instead of cell shrinkage
upon stimulation [3]. The lack of cell shrinkage in the latter
study cannot be explained at present [3]. In the isolated acinus
of the PG from wild-type rats, CCh (1 μM) stimulation in-
duces transient swelling of the acinus, followed by rapid
shrinkage of the acinar cells shortly thereafter. The transient
swelling of acini and rapid shrinkage of acinar cells can ex-
plain the water shift through the transcellular and paracellular
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pathways, respectively [113]. The transient swelling of the
acinus is accompanied by an enlargement of the luminal canal
[113]. In the initial stage of water secretion, Cl− efflux into the
lumen takes place first. A small amount of water is then
shifted into the lumen via AQP5 present in the apical mem-
brane. It is believed that the same amount of water then enters
the cells through the basolateral membrane via AQP5.
Therefore, the acinar cell volume is unchanged, and the lumi-
nal volume is increased. In the next step, rapid acinar cell
shrinkage takes place at 8 s after CCh stimulation [139]. The
volume of the acinar cells is decreased rapidly by 20 % by the
CCh stimulation, and the decreased volume size stays at this
low level as long as the agonist is present [139]. The agonist-
induced shrinkage is explained by the isotonic release of KCl
from the acinar cells [153], and both K+ and Cl− channels are
supposed to be activated by an increase in intracellular Ca2+

[115]. As a result of rapid shrinkage of the acinar cells, the
paracellular space between acinar cells increases. It is likely
therefore that the permeability of the intercellular junctions
between acinar cells would be increased. Indeed, 10 kDa dex-
tran can pass through the paracellular tight junction in the
acinus following CCh stimulation [141]. This increase in per-
meability allows a continuous secretion of saliva via the
paracellular pathway.

Functional linkage between aquaporin 5 and cation
channels

Transient receptor potential cation channel, subfamily V,
member 4 (TRPV4) is an ion channel protein that belongs to
a member of the vanilloid subfamily in the transient receptor
potential (TRP) superfamily of ion channels [81, 151]. It func-
tions to regulate the systemic osmotic pressure in various tis-
sues such as the kidney, liver, heart neurosensory cells, and the
central nervous system [151]. The cDNA encoding vanilloid

receptor-related osmotically activated channels has been
cloned from rat, mouse, human, and chicken [81].

Liu et al. [84] studied a possible linkage between AQP5
and TRPV4 in the salivary gland and found that hypotonic
solution elicits an increase in cell volume and Ca2+ entry,
followed by activation of a regulatory volume decrease
(RVD). Ca2+ entry is associated with ruthenium red-sensitive
nonselective cation current, suggesting the involvement of
TRPV4. Acinar cells from TRPV4-KO or AQP5-KO mice
do not activate the RVD upon their exposure to hypotonic
solution, confirming the requirement of both channel proteins
for RVD activation as well as their functional linkage.
Hypotonicity increases the association and surface expression
of TRPV4 and AQP5 in the salivary gland cells [84], while it
reduces AQP5 abundance in the presence of TRPV4 in mouse
lung epithelial cells [143].

On the other hand, caveolin-1, the main component of the
caveolae plasmamembranes, is suggested to be a critical com-
ponent for salivary gland function [123]. The functional link-
age of AQP5with cation channels suggested above is support-
ed by the fact that loss of caveolin-1 impairs agonist-
stimulated salivary fluid secretion, transient receptor potential
canonical 1-stroma interaction molecule 1 (TRPC1-STIM1)
channel assembly, and altered apical targeting of AQP5.
Further study should disclose the mechanism of regulation
of AQP5 function and involvement of cation channels and/
or other components.

Verification of proposed mechanism of water secretion
by use of acini expressing aquaporin 5-G103D

In mutant acini, when 1 μM CCh is applied, the acinus does
not swell at all, and the agonist-induced shrinkage of acinar
cells is delayed by 8 s [139]. If we suppose that the fluid might
shift via the paracellular pathway, it would be expected that
the acinus should swell transiently even in the mutant rats.

Table 3 Diffusive water permeability (Pd), activation energy (Ea), and osmotic water permeability (Pf) of water transport in acinar cells of wild-type
and AQP5-G103D mutant rats

Pd (cm s−1, at 25 °C) Ea (kcal mol−1) Pf (cm s−1)

Under unstimulated condition Under CCh-stimulated condition

Wild type 1.1×10−3 3.4±0.6 3.6±0.6 5–10×10−3

AQP5-G103D mutant ~1×10−3 5.9±0.1 5.0±0.3 1.6–2.4×10−3

Isolated acinar cells were suspended in KRB solution containing 10mMgadolinium diethylenetriaminepentaacetic acid (Gd-DTPA). NMR spectrometry
was used to measure 1H NMR signals and T1 relaxation of water protons in the suspended cell solution by an inversion-recovery pulse sequence. The
biexponential relaxation was detected, and the pure relaxation rate constant of the slower component (Rs) was obtained. The diffusive water permeability
(Pd) of acinar cells was calculated by equations Rs=Rn+kn andPd=kn×Vn/An , whereRn is the intrinsic 1/T1 of the intracellular water that was determined
by the T1 relaxation of the salivary gland without Gd-DTPA, and Vn/An is the volume/surface area ratio of the acinar cells, which was determined by light
microscopy. The activation energy (Ea) of water transport was calculated from the slope of the Arrhenius plot, loge (kn)=−Ea×(1/T). Osmotic water
permeability (Pf) was estimated as follows: i.e., in the lipid bilayer without water channels, the Pf/Pd ratio is 1. When water flows through the narrow
aqueous pore in the AQP5molecule by single-file transport, it is expected that the Pf/Pd ratio will increase up to around 5 [137]. The Pf value in the table
was calculated on the assumption that the Pf/Pd ratio for AQP5 is 5–10 (data from Satoh et al. [139])
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However, no acinar swelling can be detected at all in the
mutant rat. Therefore, under normal conditions, a transcellular
water shift is thought to take place during this time period
(after CCh), and AQP5 should be involved in such transient
swelling of the acini. Since the amount of AQP5 expressed is
small in mutants, even if Cl− is effluxed into the lumen, water
would not be able to move quickly from the acinar cell. As a
result, no transient swelling would be observed in the acinus
of the mutant rat [139].

The delay in CCh-induced shrinkage of the acinar cells is
also explained by the low expression of the AQP5 in the
acinar cells. As discussed above, due to the higher Ea value
(5.9 kcal mol−1), the Pf value of the mutant rats is decreased to
1/3–1/4 of that of the wild-type rats. This low water perme-
ability may cause a delay in the water efflux from the acinar
cells and may prevent the initial rapid shrinkage of the acinar
cells. In the mutant rat, not only is the CCh-induced shrinkage
of the acinar cells delayed by 8 s but also the decreased cell
volume recovers spontaneously [139]. It is speculated that a
decreased transcellular water shift prevents the Na+ and Cl−

osmosis, resulting in accumulation of Na+ ions in the acinar
cells, and this may cause the spontaneous recovery of acinar
cell size [139].

On the other hand, as described above, the expression
levels of claudin-3 and 7 (in females) or claudin-7 (in males)
in AQP5-KO mice were found to be reduced to 50 % of the
level in wild-type mice (see the section Effects of aquaporin 5
knockout on salivary gland function); and such a reduction
has been described to be closely correlated with a reduction
in paracellular water secretion [60]. Also in the PG of AQP5-
G103D mutant rats, claudin-7 and ZO-1 levels tend to be
lower (72±6 % (P=0.07) and 75±6 % (P=0.16) of wild-
type PG, respectively) than those in wild-type rats. This re-
duction in expression of tight junction proteins may be the
direct cause of the reduced salivary secretion via the
paracellular route in the AQP5-G103D mutant rats.

Autonomic regulation of salivary gland aquaporin 5

The salivary gland is double-innervated by sympathetic and
parasympathetic nerves. Generally, the sympathetic nerve pro-
vokes the release of a small amount of viscous and protein-
rich saliva, whereas parasympathetic nerve action triggers that
of a massive amount of dilute saliva. The sympathetic nerve
originates from the thoracic vertebrae and innervates the three
major salivary glands via the superior cervical ganglion. The
nuclei of parasympathetic nerves, the centers of salivation, are
localized in the superior and inferior salivatory nuclei in the
medulla oblongata. The efferent nerve from the superior
salivatory nucleus is a facial nerve that reaches the SMG and
sublingual gland via the submandibular ganglion. On the other
hand, the efferent nerve from the inferior salivatory nucleus is

a glossopharyngeal nerve, which, via the otic ganglion, inner-
vates the parotid gland. Both efferent nerves are thought to
regulate the salivary gland through muscarinic acetyl choline
receptors. In addition, the chorda timpani parasympathetic
nerve and isoproterenol injection are reported to regulate
AQP5 in the SMG and PG, respectively [2, 15, 79].

Regulation of SMG aquaporin 5 by chorda timpani nerve

Though secretion of saliva from the three major salivary
glands greatly differs according to species and to basal and
stimulated state of the gland [19], among them, the SMG
generally participates to the greatest extent in salivary
secretion.

The possible involvement of the autonomic nervous system
in the regulation of AQP5 was first studied by measuring the
level of this water channel in the SMG membrane fraction
after denervation of the chorda timpani nerve [79]. Chorda
timpani denervation (CTD) causes a continuous reduction in
the AQP5 level in the membrane fraction, reaching 50–60 %
of the control by 4 weeks. The gland weight is decreased,
reaching a minimum (75–80 % of the control) by as early as
1 week after denervation [4, 79].

By immunohistochemistry, the decrease in AQP5 level
elicited by CTD and its recovery by injection of cevimeline,
an M3 muscarinic agonist, was confirmed [4]. AQP5, con-
comitantly with other membrane proteins such as dipeptidyl
peptidase IV (DPPVI) and Na+, K+-ATPase α-subunit are
localized in the SMG. Whereas Na+, K+-ATPase is localized
in the duct cells, DPPVI as well as AQP5 has been shown to
be localized in the cell membrane of the acinar cells, implying
that the DPPVI protein would be an appropriate control when
changes in the AQP5 level are determined. A reduction in the
AQP5 level in the acinar membrane by CTD was confirmed,
with no detectable change in the DPPVI level [4].
Pretreatment with cevimeline prevented the decrease in the
level of AQP5 [4]. These immunohistochemical data are sup-
ported by the results of a Western blotting experiment; i.e.,
CTD reduced the AQP5 level in the membrane fraction, and
cevimeline injection prevented this reduction. No change in
the AQP5 level was observed when pilocarpine, another mus-
carinic agonist, was used.

The reduction in the SMG AQP5 level caused by CTD is
not due to a reduction in its mRNA level. Such a reduction
appears to be due to activation of AQP5 metabolism/
degradation because the AQP5 protein level in MLE-12 cells,
a cultured lung cell line, is reportedly decreased by cAMP and
recovered by chloroquine, a denaturant of lysosomes [144].
These data suggest that SMG AQP5 is metabolized by the
lysosomal system upon CTD. Li et al. showed this to be the
case, i.e., injection with chloroquine prevented the reduction
in SMGAQP5 level caused by CTD [79]. Protein degradation
by the lysosomal system is known as autophagy [100]. This
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process is involved in balancing protein synthesis, degrada-
tion, and regeneration to control the proliferation of normal
cells, development, and homeostasis. Thus, it is probable that
AQP5 metabolism/degradation by CTD is brought about by
lysosomes via autophagy in the SMG. Actually, in the SMG,
microtubule-associated protein 1 light chain 3 isoform B-II
(LC3B-II), a marker protein for autophagosomes, is elevated
immediately and transiently after CTD, peaking at 1 day [4].
Consecutively, lysosome-associated membrane protein 2
(Lamp 2), a lysosomal marker, is elevated and remains at a
high level at 7–10 days after CTD [4]. It has also been con-
firmed by immunohistochemistry that AQP5 is present in
these structures [4]. Thus, it is probable that active
autophagosomes are increased in number first, followed by
elevation of the number of lysosomes upon CTD and that
AQP5 is taken up by these structures (see Fig. 1). These re-
sults well agree with the continuous decrease in the AQP5
level over a 4-week period. Also, the transient increase in
the LC3B-II level, i.e., indicating the onset of autophagy, for
a short period well accords with the fact that the gland weight
decreases by 20–25 % upon CTD [4, 79]. No apoptosis has
been detected by use of the TUNEL assay or bymeasuring the
ratio of the levels of anti-apoptosis and pro-apoptosis proteins
(bcl-2/Bax) [4]. The just-cited study showed also that the sol-
uble fraction of SMG containing the lysosomal enzymes
metabolizes/degrades AQP5 in vitro and that such an activity
is elevated by CTD. All these facts and other reports [57, 78]
imply that this degradation system plays important roles in
regulation and/or control of AQP function.

In conclusion, SMGAQP5 is dependent on chorda timpani
parasympathetic innervation, and denervation of this auto-
nomic nerve results in stimulation of autophagy and activation

of the lysosomal system, by which AQP5 is supposedly me-
tabolized (Fig. 1). Further study is needed to disclose the de-
tails of this mechanism.

Function of PKA-target motifs in the aquaporin 5
molecule

Since AQP5 has cAMP-dependent protein kinase target mo-
tifs at the fourth loop and C-terminal tail (Ser156 and Thr259,
respectively), AQP5 function may be controlled by secreta-
gogues [36, 132]. Woo et al. reported that cAMP-dependent
phosphorylation of AQP5 at its Ser156 may not be involved in
the AQP5 membrane expression and trafficking in human
bronchial epithelial cells [167]. Instead, they described the
possibility that AQP5 phosphorylation at this site may affect
cell proliferation through the Ras signaling pathway [168]. In
polarized MDCK cells, AQP5 is localized at the apical mem-
brane [164, 165]. Constructs for chimeric proteins, AQP-GFP
and GFP-AQP5, having normal Thr259 or the T259A muta-
tion, were used to transfect MDCK cells to study the function
of Thr259 in AQP5 trafficking [67]. The results showed that
regardless of whether or not there was a mutation at position
259, AQP-GFP is constitutively expressed at the cell mem-
brane. By contrast, GFP-AQP5 molecules introduced into
MDCK cells remain in the cytoplasm and traffic to the plasma
membrane upon dbcAMP stimulation, regardless of the pres-
ence or absence of the mutation, and such movement is H-89
sensitive. These data are very similar to those seen for AQP2
[31] and suggest that phosphorylation at Thr259 is not neces-
sary for AQP5 trafficking. In human salivary gland (HSG)
cells transfected with AQP5 or an AQP5-T259A mutant con-
struct, these molecules are constitutively localized at the

Fig. 1 Pathway for AQP5
metabolism/degradation in the
acinar cells of the SMG in normal
(untreated) rats and CTD rats
(hypothesis). In acinar cells of the
normal rat SMG, endocytotic
vesicles incorporated inside the
cell from AQP5-bearing apical
membrane by endocytosis move
toward lysosomes via early
endosomes. In CTD rats, in
addition to these pathways,
phagospheres take in early
endosomes to form
autophagosomes, which will then
fuse with lysosomes to become
autolysosomes. AQP5 is
incorporated into these structures
and metabolized
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plasmamembrane under both resting and forskolin-stimulated
conditions [36]. In the SMG and PG, Thr259, a novel phos-
phorylation site of AQP5, is potentially phosphorylated
through cAMP signaling, but not through Ca2+ signaling,
in vivo [36]. These data again suggest that phosphorylation
of Thr259 of AQP5 is not important for AQP5 trafficking in
salivary gland cells in vitro. The precise physiological role of
Thr259-phosphorylated AQP5 is still unknown at present.

IPR-induced dynamic changes in PG aquaporin 5

AQP2, a major water channel in the renal collecting duct, is
known to be regulated by the vasopressin/cAMP signaling
pathway [38]. On the other hand, 8-(4-chlorophenylthio)-
cAMP or the β-adrenergic receptor agonist isoproterenol
(IPR) increases AQP5 mRNA and protein levels in MLE-12
cells, a cultured lung cell line, and induces the translocation of
AQP5 (trafficking) [171]. Also, in the PG, one of the major
salivary glands, amylase, an important mammalian digestive
enzyme, is secreted by the β-agonist, in which secretion pro-
cess in the cAMP signaling is functioning.

These reports imply that the cAMP signaling pathway is
involved in the regulation of AQP5 in the salivary gland and
that β-agonists would possibly be involved in AQP5 regula-
tion in the PG. Chen et al. [15] studied the effects of IPR on
the level of AQP5 in the PG and analyzed its relation to the
secretion-reaccumulation cycle of amylase by IPR as well as
to the dynamic change in secretory granules. The PG secretory
granules containing a large amount of amylase protein secrete
their constituents by exocytosis. During this process, the se-
cretory granules first dock to the plasma membrane and then
fuse to it. It was found that IPR first upregulates the expression
of AQP5 protein in the PG membrane fraction, which expres-
sion is followed by decomposition of this water channel pro-
tein via the calpain pathway [15]. Namely, the IPR treatment
has three obvious effects on AQP5 expression in the PGmem-
brane fraction. Firstly, the AQP5 protein level rapidly rises at
1 h after IPR treatment. Secondly, the level then decreases at
6 h after IPR treatment, reaching its minimum at 12 h. Thirdly,
the protein level of AQP5 begins to increase again at 12 to
24 h after the treatment. The AQP5mRNA level, having grad-
ually risen from 1 h after IPR treatment, reaches its peak in
accordance with the pattern of increase in its protein level.

The elevation of the AQP5 protein level after the IPR in-
jection takes place with the same timing (at 1 h) as the exocy-
totic amylase secretion and continues till 6 h after the injec-
tion. This elevation is thought to be the result of exocytotic
transfer of AQP5 from the granule membrane to the plasma
membrane. Actually, the membrane of secretory granules con-
taining amylase is reported to express the AQP5 protein [98].
Thus, it was assumed that the amount of AQP5 in the plasma
membrane is first increased by the IPR injection and then

decreased by activation of the protease system (see the
section IPR-induced downregulation of PG aquaporin 5).

The level of AQP5 protein in the PG membrane fraction is
reduced by 85 % of the peak level (which is 200 % of the
control level taken as 100 %) at 12 h after IPR treatment (to
30 % of the control level). This result is in good accord with
the report that proteolytic decomposition of AQP2 protein is
induced by dihydrotachysterol in the rat renal inner medullary
collecting duct, although its mRNA level is unaltered [131,
138]. It is possible that IPR reduces the AQP5 protein level by
affecting the posttranslational process, but not the transcrip-
tional one.

On the other hand, the reduction in the AQP5 protein level
after IPR treatment is suppressed by calpain inhibitors, but not
by proteasome inhibitors nor by a lysosomal denaturant, sug-
gesting that AQP5 is a substrate for calpain and that this water
channel protein is metabolized by calpain proteolysis (see the
section IPR-induced downregulation of PG aquaporin 5).

In summary, Chen et al. proposed the following mecha-
nism (ref. [15] and Fig. 2): in accordance with the amylase
secretion 1–3 h after IPR treatment, the granule membrane of
secretory granules (containing amylase) becomes a part of
plasma membrane by docking, resulting in elevation of
AQP5 in the plasma membrane. Thereafter, from around 6 h
after the IPR injection, the AQP5 protein becomes
decomposed or metabolized. This reduction is due to proteo-
lytic degradation by μ-calpain. Lastly, from around 12–24 h
after IPR treatment, new AQP5 biosynthesis becomes obvi-
ous, and then the AQP5 level gradually increases toward its
original one.

Downregulation of aquaporin 5 in the salivary glands

LPS-induced downregulation of PG aquaporin 5

Endotoxin or lipopolysaccharide (LPS) is a major component
of the cell wall of Gram-negative bacteria, and it activates
many types of cells in patients suffering from septic shock.
LPS induces inflammatory proteins such as cytokines and
defensins through TLR4, an important molecule in the innate
immune system. The LPS/TLR4 signal transduction system
has been well described [154]. Briefly, binding of ligands to
the extracellular domains of TLR4 drives complex signaling
systems and eventually activates NF-κB, through which num-
bers of inflammation-inducing proteins are elicited. In addi-
tion to the NF-κB pathway, the MAPK pathway is also acti-
vated during LPS signaling and is considered to be involved in
the induction of proliferation, apoptosis, cytokine biosynthe-
sis, and cytoskeletal reorganization. In the downstream of
MAKK, there are the growth factor/chemical inducer-
activated ERK1/2 pathway and the cytokine-inducible JNK
and p38 pathways.
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The transcription of salivary gland AQP5 and AQP1 genes
is inhibited by LPS, and the mechanism underlying this inhi-
bition was studied by using an in vitro organ culture system
and inhibitors of signaling pathways [172]. Inhibitors of
NF-κB and MAPK pathways did not suppress transcriptional

inhibition of AQP1 by LPS. One of the reasons for this result
would be that there is no NF-κB-responsive element in the
AQP1 promoter. However, the transcriptional inhibition of
AQP5 by LPS is completely suppressed by PDTC or
MG132, an I-κB kinase inhibitor or proteasome inhibitor,

Fig. 2 Hypothetical model of
AQP5 dynamics coupled to the
secretory-restoration cycle of
amylase in acinar cells of the
parotid gland. In accordance with
amylase secretion, the number of
AQP5 molecules in the plasma
membrane is increased at 1–3 h
after IPR as the granule
membrane has become a part of
the plasma membrane. AQP5 in
the membrane is then degraded/
metabolized from around 6 h after
IPR, when the amylase level in
the gland has been recovering.
This reduction in AQP5 is due to
proteolysis by μ-calpain. New
AQP5 biosynthesis gradually
increases at 12–48 h after IPR to
return its level to the original
state. AM, apical membrane; LM,
lateral membrane; BM, basal
membrane (from Chen et al. [15])
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respectively. In the presence of either of these inhibitors, it is
conceivable that I-κB would accumulate and that the forma-
tion of free NF-κBwould be suppressed. Furthermore,MAPK
inhibitors, AG126 and SP600125 (inhibitors of ERK1/2 and
JNK, respectively), also suppress the transcriptional inhibition
of AQP5 by LPS. Namely, it has become clear that both
NF-κB and MAPK pathways are involved in the suppression
of transcriptional inhibition of AQP5 by LPS.

Another fact revealed from this experiment is that when the
formation of any one of the three molecules p-c-Jun, p-c-Fos,
(phosphorylated c-Jun and phosphorylated c-Fos formed by
JNK and ERK1/2, respectively) or NF-κB is inhibited, then
transcriptional inhibition of AQP5 by LPS is completely sup-
pressed, meaning that transcriptional inhibition of AQP5 re-
quires all three of these molecules. For confirmation of this
interpretation, immunoprecipitation experiments using anti-
bodies against the above transcription factors were performed,
assuming that p-c-Jun, p-c-Fos, and NF-κB become associat-
ed to make a complex that suppresses the transcription of the
AQP5 gene. PG extracts prepared 3 h after the LPS injection
were reacted with Sepharose gels bearing antibodies specific
for NF-κB (p65), p-c-Jun, or p-c-Fos (Fig. 3). Proteins
absorbed to the gels were eluted and subjected to Western
blotting and probed with anti p-c-Jun antibody. p-c-Jun was
detected in the eluates from all three gels. In eluates from the
anti-p-c-Jun and anti-p-c-Fos gels reacted with extracts of the
PG from animals before LPS stimulation, only a small amount
of p-c-Jun was detected. However, p-c-Jun was not detected at
all in the eluate from the anti-NF-κB (p65) gel reacted with
extracts of the PG from animals not stimulated with LPS.
These results suggest that very little or no NF-κB (p65) was
present in the unstimulated PG but that certain levels of p-c-

Jun and p-c-Fos were present and that a complex of the three
transcription factors had been formed by LPS stimulation.

Two NF-κB-responsive elements and two AP-1 binding
sequences are found in the promoter of the AQP5 gene. The
results of an electrophoretic mobility shift assay (EMSA) per-
formed with 2 NF-κB probes confirmed that the binding ac-
tivity toward sequences for these 2 NF-κB-responsive ele-
ments is elevated in the extract obtained from the LPS-
injected mice. However, the binding activity toward the AP-
1 binding sequences is not elevated in extracts prepared after
the LPS injection. It is possible that most of the p-c-Jun and p-
c-Fos elevated by LPS forms a complex with NF-κB, which
complex then binds preferentially to the NF-κB-responsive
element, not to the AP-1 binding sequences. Also, phosphor-
ylation of ERK1/2 (p-ERK1/2 is known to activate c-Fos by
phosphorylation) and c-Jun are activated by LPS, and this
activation is inhibited by their respective inhibitors, AG126
and SP600125. Furthermore, nuclear translocation of p65 and
p50, which are subunits of NF-κB, is activated by LPS,
whereas such activation is inhibited by PDTC and MG132,
confirming that the pathways to activate the above transcrip-
tion factors are functioning in the PG.

Schüle et al. reported that transcription of the osteocalcin
gene in ROS17/2.8 cells (rat osteoblastic cell line) transfected
with c-fos and c-jun genes for Jun/Fos expression is inhibited
under both vitamin-stimulated and nonstimulated conditions.
These authors termed such a phenomenon as “cross coupling”
[139]. By performing a CAT reporter assay, Stein et al. [146]
examined the LTR promoter activity of HIV-1, which contains
NF-κB-responsive sequences, and found that co-transfection
of HeLa cells with this reporter gene and c-fos and c-jun genes
results in a potentiation of the transcriptional activity of LTR
(introduction of a mutation in the NF-κB responsive sequence
disables the transcriptional activation). Thus, NF-κB and AP-
1 family transcription factors p-c-Fos/p-c-Jun were proved to
be physically associated to increase DNA binding capacity as
well as biological activity, resulting in synergism of these two
classes of transcription factors.

This section has given the PG as an example showing that
NF-κB and AP-1 form a complex as a result of LPS signaling
in the salivary glands and that such a complex actually poten-
tiates transcriptional regulation (transcriptional inhibition) in
this tissue [172]. In this example, the MAPK pathway is
thought to generate p-c-Fos/p-c-Jun (AP-1), which then binds
to NF-κB that has simultaneously been activated and thus
potentiating its function. On the other hand, saliva secretion
is supposedly reduced by LPS since the AQP5 transcription is
strongly suppressed by the endotoxin action. A similar phe-
nomenon is observed in the lungs where the transcription of
AQP5 mRNA is suppressed by TNF-α via the NF-κB path-
way, causing lung edema, but the MAPK pathway is not in-
volved in this case [155]. Thus, potentiation of NF-κB func-
tion by AP-1 or p-c-Fos/p-c-Jun has an important

Fig. 3 Association of p-c-Jun with NF-κB subunit p65 and p-c-Fos in
consequence of the LPS signaling (hypothesis). LPS injection has been
shown to elevate the levels of transcription factors NF-κB, p-c-Jun, and p-
c-Fos in the mouse PG in vivo [172]. The results of immunoprecipitation
experiments using Sepharose gel bearing immobilized anti-NF-κB
antibody, anti-p-c-Jun antibody, and anti-p-c-Fos antibody, and probed
with anti-p-c-Jun, have shown that elevated p-c-Jun can bind anti-NF-
κB antibody gel and anti-p-c-Fos antibody gel, suggesting that all three
transcription factors form a complex. The complex of p-c-Jun, NF-κB,
and p-c-Fos supposedly binds to the NF-κB-responsive element present
in the promoter of AQP5. Though CREB is also elevated by LPS, its
function in the transcriptional regulation of the AQP5 gene is not yet clear
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physiological meaning for the proinflammatory action of LPS.
The physiological function of negative regulation of AQP5 by
LPS needs to be determined further.

IPR-induced downregulation of PG aquaporin 5

Purified μ-calpain cleaves AQP0 protein at 4 positions
in vitro, and these cleavage sites correspond to 4 of the 21
positions that are cleaved with age in vivo [87]. Further,
calpain can degrade AQP2 expressed in the inner medullary
collecting duct of the kidney [131]. As described above,
AQP5 is also considered to be a substrate for calpain in the
IPR-treated PG. Actually, purified calpain decomposes AQP5
in the membrane fraction of the SMG [15]. It has been sug-
gested that μ-calpain is involved in the IPR-mediated regula-
tion of the AQP5 level since calpain is a calcium (Ca2+)-de-
pendent cysteine protease and the level of cytosolic Ca2+ ions
is elevated by IPR [41].

The reduction in the AQP5 protein level by IPR is sup-
pressed by two calpain inhibitors, ALLM and calpeptin, but
not by MG132 or lactacystin (both proteasome inhibitors) nor
by CQ (a lysosomal denaturant; ref. 15). These data confirmed
that AQP5 is a substrate for calpain and that IPR stimulation
induces calpain proteolysis to metabolize/decompose AQP5
in the PG. Under normal condition (untreated or without IPR),
on the other hand, treatment of mice with MG132, CQ,
ALLM, or calpeptin in vivo increases the AQP5 protein level
in the PG [15]. This fact implies that ubiquitin-proteasome and
lysosomal proteases, the two major proteolytic systems, are
functioning in the PG under the normal condition. These re-
sults are supported by the report that AQP2 is degraded by
proteasomal and lysosomal pathways soon after its synthesis
[38].

Aquaporin 5 and salivary gland malfunction
under pathological conditions

Impaired saliva secretion takes place under several patholog-
ical conditions such as those in patients suffering from
Sjögren’s syndrome, those who received irradiation therapy
for head and neck cancers, or in patients with sialoadenitis
which is caused by various types of pathogenesis.

In patients with Sjögren’s syndrome, abnormal distribution
of AQP5 in acinar cells of the salivary gland and lachrymal
gland was reported, based on an experiment in which affinity-
purified anti-human AQP5 was utilized to localize the antigen
by immunohistochemical staining [148, 156]. These studies
showed that localization of AQP5 in the apical membrane of
acinar cells is minimum while that in the basal membrane is
positive, and defective AQP5 trafficking was suggested as the
cause of the abnormal distribution of AQP5, which would
have resulted in impaired salivary secretion. However,

contrary reports have appeared, indicating that AQP5 in
Sjögren’s patient remain in the apical membrane and that there
is no difference in subcellular localization between Sjögren’s
patients and normal subjects ([6] and letter to editor in [29]).
These authors used anti-rat AQP5 antibodies and confirmed
antibody specificity by preabsorption with the human peptide.
Such discrepancies may have been caused by the use of dif-
ferent antibodies in the staining techniques (letter to editor and
authors’ reply in [149]). Regarding this issue, however, no
conclusion has yet been reached because AQP5 staining at
apical membrane is observed in Sjögren’s syndrome patients
even when antibody specific for human AQP5 is used [28].

On the other hand, production of autoantibodies against
the cell-surface muscarinic cholinergic receptor (M3) is
observed in the sera from Sjögren’s syndrome patients.
Mouse SMG cells treated with anti-M3 antibody fail to
translocate AQP5 to the plasma membrane upon musca-
rinic agonist stimulation in vitro [118]. Further, the sera
from Sjögren’s syndrome patients, but not from those of
normal subjects, block the carbachol-induced AQP5 traf-
ficking in HSG cells transfected with GFP-tagged human
AQP5 [77]. These studies suggest that defective AQP5
trafficking toward the apical membrane in Sjögren’s syn-
drome patients may be due to the production of autoanti-
bodies against M3 receptors.

Sjögren’s patients have been given infliximab (anti-TNFα)
therapy under the assumption that tumor necrosis factor-α
(TNF-α) would be involved as an immunopathogen in the
development of this autoimmune disease. The results showed
that this antibody therapy increases the unstimulated salivary
flow and trafficking of AQP5 to the apical membrane in the
acinar cells of the labial gland [147, 150]. It is noteworthy that
TNF-α downregulates AQP5 expression in mouse lung epi-
thelial cells via the NF-κB pathway [155] and that activation
of this pathway in the mouse parotid gland downregulate
AQP5 expression also [172] (see the section LPS-induced
downregulation of PG aquaporin 5). These facts support the
possibility that medication with anti-TNF-α/infliximab or
even inhibitors of the NF-κB pathway is a candidate therapy
for a successful treatment to recover from the patients’
symptoms.

Care for head and neck cancer requires surgical removal of
the tumor, followed by X-ray irradiation. The negative side
effects of radiotherapy will be extended to adjacent normal
tissues, which include increased apoptosis and marked de-
creases in the expression levels of AQP5 and TGF-β in the
salivary gland [17]. The basic mechanism underlying such
effects and possible treatments to protect the glands from the
radiotherapy are being studied [32, 101, 102]. Morgan-Bathke
et al. [102] used Atg5f/f;Aqp5-Cre mice, which harbor a con-
ditional KO of Atg5, in their salivary acinar cells and are
deficient in autophagy. These autophagy-deficient mice have
increased radiosensitivity, indicating them to be useful
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controls to investigate the effects of radiation and/or radiation
plus medication on the physiological function of the salivary
gland. These researchers found that pretreatment with IGF-1
increases autophagosome formation in normal mice, but not in
their Atg5 KO counterparts. The same group showed also that
the rapalogue CCI-779 significantly improves the physiolog-
ical function of the salivary gland diminished by radiation, as
measured by determination of the saliva flow rate [101]. Han
et al. [32] reported that pretreatment with phenylephrine, an
α1 adrenergic agonist, completely protect against the reduc-
tion in AQP5 protein levels by irradiation in the rat SMG,
although the mechanism is unclear.

Conclusions

AQP5 is involved in the water secretion from the salivary
gland acinar cells in both paracellular and transcellular routes,
which involvement is supported by the fact that water perme-
ability is actually decreased in AQP5-KO mice and in rats
expressing diminished levels of AQP5. Evidence is accumu-
lating that indicates that TRPV4, which regulates the systemic
osmotic pressure, is functionally linked to AQP5 in the sali-
vary gland. Physiologically, the AQP5 level is controlled via
parasympathetic nerves in the SMG and sympathetic agonists
in the PG, and autophagy and lysosome-mediated degrada-
tion, as well as calpain proteolysis, are involved in regulating
it. Under the pathophysiological condition of an LPS chal-
lenge to the PG, NF-κB/MAPK pathways are activated, lead-
ing to the activation of the transcriptional factors NF-κB and
AP-1 (c-Fos/c-Jun), which form a complex that binds to the
NF-κB-responsive element to downregulate potentially the
transcription of AQP5 mRNA. Further study is required to
establish the actual molecular mechanisms by which AQP5
acts in water secretion from the salivary glands and other
exocrine glands. Pathophysiological studies on AQP5 will
aid in elucidating the biological significance of this channel
protein in the exocrine glands.
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