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Abstract Intestinal epithelial electrolyte secretion is activated
by increase in intracellular cAMP or Ca2+ and opening of
apical Cl− channels. In infants and young animals, but not in
adults, Ca2+-activated chloride channels may cause secretory
diarrhea during rotavirus infection. While detailed knowledge
exists concerning the contribution of cAMP-activated cystic
fibrosis transmembrane conductance regulator (CFTR) chan-
nels, analysis of the role of Ca2+-dependent Cl− channels
became possible through identification of the anoctamin
(TMEM16) family of proteins. We demonstrate expression
of several anoctamin paralogues in mouse small and large
intestines. Using intestinal-specific mouse knockout models

for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a
conventional knockout model for anoctamin 6 (Ano6), we
demonstrate the role of anoctamins for Ca2+-dependent Cl−

secretion induced by the muscarinic agonist carbachol (CCH).
Ano1 is preferentially expressed in the ileum and large intes-
tine, where it supports Ca2+-activated Cl− secretion. In con-
trast, Ano10 is essential for Ca2+-dependent Cl− secretion in
jejunum, where expression of Ano1 was not detected. Al-
though broadly expressed, Ano6 has no role in intestinal
cholinergic Cl− secretion. Ano1 is located in a basolateral
compartment/membrane rather than in the apical membrane,
where it supports CCH-induced Ca2+ increase, while the
essential and possibly only apical Cl− channel is CFTR. These
results define a new role of Ano1 for intestinal Ca2+-depen-
dent Cl− secretion and demonstrate for the first time a contri-
bution of Ano10 to intestinal transport.
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Introduction

Electrolyte secretion in the intestine requires Cl− channels in
the apical membrane of epithelial cells. Electrolyte secretion is
controlled by a number of hormones leading to increase in
either intracellular cAMP or Ca2+, with consecutive activation
of cystic fibrosis transmembrane conductance regulator
(CFTR) and Ca2+-activated Cl− channels (CaCC), respective-
ly [14, 24]. While the contribution of CFTR to intestinal Cl−

secretion is well defined, controversial results have been re-
ported for CaCC, which has been identified recently as
anoctamin 1 (TMEM16A; Ano1) and which was detected in
the basolateral rather than in the apical membrane of adult
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intestinal epithelial cells [6, 16, 22, 38, 44, 55]. The role of
Ano1 for intestinal Cl− secretion, and also whether Ano1 is the
only relevant anoctamin in the intestine, is therefore unclear.

We earlier reported that neonatal mice lacking expression
of Ano1 do not show Ca2+-dependent Cl− secretion in air-
ways, salivary glands, and distal colon (37). However, total
knockout of Ano1 led to severely ill animals, which died
within 3 days after birth. We therefore could not completely
rule out the possibility that lack of colonic Ca2+-dependent Cl−

secretion is caused by secondary effects occurring in these
diseased animals. In the present report, we examined the
effects of tissue-specific knockouts for Ano1 and Ano10 in
intestinal epithelial cells and examined the effects of a con-
ventional Ano6 knockout onmouse Ca2+-dependent intestinal
Cl− secretion. The results establish a clear role of Ano1 for
Ca2+-dependent Cl− secretion in the large intestine, while
Ano10 controls Ca2+-dependent Cl− secretion in the small
intestine. However, the role of Ano1 is to support proper
intracellular Ca2+ signaling rather than acting as a luminal
secretory Cl− channel.

Materials and methods

Generation of knockout models Generation of the Ano1fl

allele Ano1Tm2JRR has been described in a previous publica-
tion [12]. In brief, to produce the Ano1fl allele Ano1Tm2JRR, a
portion of BAC bMQ-379H21 (129S7/SvEv Brd-Hprt b-m2,
AB2.2 embryonic stem (ES) cell DNA) was subcloned. A
LoxP site was inserted 161 bp upstream of exon 12 (the same
exon replaced in Ano1tm1Bdh). A PGK-neo cassette flanked by
FRT sites for positive selection in ES cells was inserted
downstream of exon 12, followed by a second LoxP site.
The construct was linearized and electroporated into 129S6/
SvEvTac ES cells by the Duke University Medical Center
Transgenic Mouse Facility. Correctly targeted clones were
identified by Southern blot and were injected into C57BL/6
blastocysts, which were transferred into the uteri of foster
female mice. Cre transgenic mice containing a Cre-
expression cassette under the control of the epithelial-
specific villin promoter were crossed with Ano1fl/fl animals.

The Ano10 targeting construct (pTMEM16K_targ.) was
designed as follows. The 5.6-kb right flanking region contain-
ing exons 8 and 9 and intronic sequences was PCR-amplified
and subcloned. A 1.0-kb left flanking region containing intron
6 genomic sequences and a 0.3-kb exon 7 genomic region
together with intronic sequences were PCR-amplified and
subcloned. The exon 7 flanking LoxP site was introduced by
PCR. All individual clones were verified by sequencing and
assembled into the final targeting construct (Supplementary
Fig. S1). The pBluescript-based backbone together with the
negative selection marker (thymidine kinase cassette and
diphtheria toxin gene) was added to the left flanking region.

The positive selection marker (neomycin cassette flanked
by two FRT sites and one LoxP site) was cloned as EcoRI
– BamHI DNA fragment between left flanking region and
0.3-kb exon 7 genomic PCR clone. Positively targeted ES
cell clones were analyzed using Southern blots. Positively
targeted ES cells were identified and injected into
B6D2F1 blastocysts and transferred into the uteri of 2.5-
day pseudopregnant CD-1 foster mice. Chimeras were
identified by their agouti coat color contribution. For the
germ line transmission, high-percentage male chimeras
were crossed to the C57BL/6 J female mice and hetero-
zygous offsprings were confirmed by Southern blotting
(Supplementary Fig. S2). All mouse procedures were
performed in compliance with the guidelines for the wel-
fare of experimental animals issued by the Federal Gov-
ernment of Germany. The mouse line was established by
breeding male with female C57Bl/6 J mice to produce
heterozygous mice.

Generation of Ano6 (TMEM16F) knockout mice has been
described earlier [10]. These mice were kindly provided by
Prof. Dr. A. Vortkamp (Department of Developmental Biolo-
gy, University of Essen, Germany). Bleeding tests were per-
formed as described in Elvers et al. [11].

Ussing chamber Mice were killed after exposure to CO2, and
the jejunum, ileum, and proximal and distal colon were re-
moved. Stripped intestinal sections were put into ice-cold
Ringer bath solution (in mM; NaCl 145, KH2PO4 0.4,
K2HPO4 1.6, D-glucose 6, MgCl2 1, Ca-gluconate 1.3,
pH 7.4) containing indomethacin (10 μM). Tissues were
mounted into a micro-perfusedUssing chamber with a circular
aperture of 0.785 mm2. Luminal and basolateral sides of the
epithelium were perfused continuously at a rate of 5 ml/min.
Bath solutions were heated to 37 °C, using a water jacket.
Experiments were carried out under open circuit conditions.
Data were collected continuously using PowerLab (AD In-
struments, Australia). Values for transepithelial voltages (Vte)
were referred to the serosal side of the epithelium.
Transepithelial resistance (Rte) was determined by applying
short (1 s) current pulses (ΔI=0.5 μA). Rte and equivalent
short circuit currents (I′SC) were calculated according to
Ohm’s law (Rte=ΔVte/ΔI, I′SC=Vte/Rte).

RT-PCR Crypts and villi were isolated in Ca2+-free Ringer
solution. Total RNA (2 μg) was reverse-transcribed, and
multiplex reverse transcription PCR (RT-PCR) was performed
using 0.5 μM primers [43].

Western blot of Ano1 Lysates were prepared from isolated
crypts and villi using lysis buffer (50 mM Tris–HCl,
150 mM NaCl, 1 mM EDTA, 100 mM DTT, 1 % NP-40)
and 1 % protease inhibitor cocktail (Roche). Proteins were
separated on 5 or 7.5 % sodium dodecyl sulfate (SDS)
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polyacrylamide gel and transferred to a polyvinylidene
difluoride membrane (GE Healthcare) by wet electroblotting
(BioRad). Membranes were incubated overnight at 4 °C with
a polyclonal rabbit anti-mouse Ano1 antibody (kindly provid-
ed by Dr. B. Harfe, University of Florida, Gainesville, USA).
Proteins were visualized using a horseradish-peroxidase-
conjugated secondary antibody and Super Signal west pico
(Thermo Scientific).

Immunohistochemistry Affinity-purified polyclonal antise-
rum against mouse or human Ano1 was produced in rabbits
immunized with (mouse) NHSPTTHPEAGDGSPVPSYE
(aa957-976, C-terminus) coupled to keyhole limpet hemocy-
anin (Davids Biotechnologie, Regensburg, Germany). Mouse
intestine was fixed by perfusion with 4 % paraformaldehyde
(PFA) and post-fixed in 0.5 mol/l sucrose, 4 % PFA solution.
Cryosections of 5 μmwere incubated in 0.1 % SDS for 5 min,
washed with PBS, and blocked with 5 % bovine serum
albumin (BSA) and 0.04 % Triton X-100 in PBS for 30 min.
Sections were incubated with primary antibodies in 0.5 %
BSA and 0.04 % Triton X-100 overnight at 4 °C and with
Alexa Fluor 488 labeled donkey anti rabbit IgG (Invitrogen).
Sections were counterstained with Hoe33342 (Sigma-
Aldrich). Immunofluorescence was detected using an
Axiovert 200 microscope equipped with ApoTome and Axio-
Vision (Zeiss, Germany).

Intracellular Ca2+ concentrat ions and organoid
cultures Intracellular Ca2+ concentrations have been mea-
sured on isolated colonic crypts using Fura 2 as described
earlier [21]. Mouse intestinal epithelial organoid and measure-
ment of rapid carbachol (CCH)-induced swelling of organoids
has been adopted from Dekkers et al. [8].

Results

Intestinal expression of anoctamins and Ca2+-dependent Cl−

secretion We analyzed expression of all ten anoctamin
paralogues in isolated epithelial cells of mouse small (jejunum
and ileum) and large (proximal and distal colon) intestine
(Fig. 1a). Ano1 was clearly detected in the colon, showed
weak expression in the ileum, and was absent in the jejunum.
Transcripts for a number of other anoctamin paralogues were
detected in the small and large intestines, including Ano6 and
Ano10. Ca2+-dependent ion transport was measured in
stripped intestinal mucosa under open circuit conditions.
Stimulation of basolateral muscarinic receptors with 100 μM
carbachol (CCH) induced transient negative voltage deflec-
tions in all intestinal tissues, and activation of an equivalent
short circuit current in the small and large intestines, which is

due to activation of apical Cl− channels and electrolyte secre-
tion (Fig. 1b, c) [24, 33].

Knockout of Ano1 eliminates intestinal Ca2+-dependent Cl−

secretion Transgenic mice containing a Cre-expression cas-
sette under the control of the epithelial-specific villin promoter
were crossed with floxed Ano1fl/fl animals to eliminate Ex-
on12 (LoxP/LoxP-Crevil) and abolish expression of Ano1
specifically in intestinal epithelial cells (Fig. 2a, b). Immuno-
histochemistry, RT-PCR, and Western blotting indicated suc-
cessful knockdown of Ano1 in LoxP/LoxP-Crevil animals
(Fig. 2c–f). Immunocytochemistry indicated that Ano1 is
primarily expressed in the basolateral compartment and/or
membrane of adult intestinal epithelial cells (Fig. 2c and
Supplementary Fig. S3). Expression of Ano1 is more pro-
nounced in the distal when compared to the proximal colon. In
the distal colon, we find expression particularly in the mid-
crypt region and upper part of the crypts, less in the basal part
(Fig. S3). Using open circuit Ussing chamber recordings, we
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Fig. 1 Expression of anoctamins in intestinal epithelial cells. a RT-PCR
analysis of all ten anoctamins in freshly isolated epithelial cells from
mouse small and large intestine. b Original recordings of the
transepithelial voltage in intestinal mucosa obtained in micro-Ussing
chambers under open circuit conditions. Basolateral application of CCH
(100 μM) induced negative voltage deflections, indicating Ca2+-depen-
dent activation of luminal Cl− channels. c Calculated equivalent short
circuit currents activated by CCH in mouse small and large intestinal
mucosa. Mean±SEM; number of animals is enclosed in parentheses
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examined CCH-induced Cl− secretion in wild-type controls,
which was inhibited by niflumic acid (NFA; 100 μM). The
corresponding transepithelial resistances under control and
after stimulation with CCH are summarized in Supplementary
Table S1. In contrast, Ca2+-activated Cl− secretion and effects
of NFA were almost completely absent in the ileum and
proximal and distal colon of mice lacking intestinal Ano1
expression. These results clearly indicate the role of Ano1
for Ca2+-dependent Cl− secretion in the ileum and large intes-
tine (Fig. 3). In the jejunum, which did not reveal any expres-
sion of Ano1 in intestinal epithelial cells (Fig. 1), no changes
in CCH-induced Cl− secretion was observed in LoxP/LoxP-
Crevil mice (Fig. 3b). It is therefore concluded that Ano1
accounts for most of the Ca2+-induced Cl− secretion in the

large intestine and distal parts of the small intestine, while
other anoctamins may be important for Cl− secretion in the
jejunum.

Basolateral Ano1 supports CCH-induced Ca2+ signaling and
secretion via luminal CFTR We asked how basolateral ex-
pression of Ano1 may support Ca2+-dependent Cl− secretion.
To that end, we also applied NFA (and another inhibitor of
anoctamin, tannic acid) also from the basolateral site of the
epithelium and found that both inhibitors potently inhibited
CCH-induced Cl− secretion in the proximal colon of wild-type
(wt) animals but had much less inhibitory effect in the prox-
imal colon of Ano1−/− animals (Fig. 4a). It is entirely possible
that both inhibitors pass the membrane and also inhibit ion
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currents from the cytosolic side of the membrane. We exam-
ined if Ano1 affects CCH-induced intracellular Ca2+ signals,
using Fura-2-loaded isolated crypts from the large intestine
(Fig. 4b). Remarkably, CCH-induced (100 μM) Ca2+ peak
and plateau were significantly reduced in crypts from Ano1−/
− animals (Fig. 4c, d). These data support the concept that
Ano1 expressed in or close to the basolateral membrane
supports Cl− secretion by supporting intracellular Ca2+ in-
crease. Ca2+ is likely to activate basolateral K+ channels and
to augment the driving force for apical Cl− secretion, which
may happen substantially or even exclusively through CFTR.
This has been shown earlier for human intestine [29]. To

further examine the contribution of apical CFTR to CCH-
activated Cl− secretion, we made use of the specific CFTR
inhibitors CFTRinh-172 and GlyH101. However, from earlier
studies, we knew that both inhibitors do not work very well in
naïve intestinal tissues in Ussing chamber experiments. We
therefore adopted the novel intestinal organoid technique,
which allows generation of small intestinal organoids grown
in a matrigel that allow direct measurement of fluid transport
induced by Ca2+ agonists or by increase in intracellular cAMP
(Fig. 4e) [8]. Stimulation with 100 μM carbachol induced
secretion into the lumen of intestinal organoids, which ex-
panded their lumen and increased the luminal area. Thus,
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increase in area can be used as a measure for secretion [8].
Notably, a brief incubation with the inhibitors CFTRinh172
and glyH101 (both 20 μM) completely inhibited secretion and
thus expansion of the area, suggesting that in the mouse large
intestine like in human rectal epithelium, the luminal exit path-
way for Ca2+-activated Cl− secretion is CFTR [29] (Fig. 4f).

Ano6 does not contribute to intestinal Ca2+-dependent Cl−

secretion Ano6 is a broadly expressed anoctamin with rela-
tively high levels of mRNA expression in most mouse tissues
and all mammalian cell lines [23, 43]. We made use of
conventional Ano6 knockout mice that were shown earlier
to have a decreased mineral deposition in skeletal tissues [10].
Ano6 operates as a Ca2+-dependent phospholipid scramblase
that is essential for platelet function and proper blood

coagulation [17]. Ano6 is defective in the rare Scott syn-
drome, which is a bleeding disorder based on defective
Ano6-mediated scrambling of membrane phospholipids
[21]. We analyzed Ano6 mRNA in the small and large intes-
tines and found Ano6 expression throughout the whole intes-
tine of Ano6+/+animals, which was not detectable in Ano6−/
− animals (Fig. 1 and Supplementary Fig. S4a). To obtain
independent evidence for abolished Ano6 function in Ano6−/
− animals, we examined bleeding times and found that they
were significantly enhanced in Ano6−/− when compared to
heterozygous or Ano6+/+animals (Fig. S4b). We examined
CCH-induced Cl− secretion in the ileum and large intestine
and found that it was not different between Ano6+/+and Ano6
−/− animals. It is therefore unlikely that Ano6 contributes to
intestinal Ca2+-dependent Cl− secretion (Fig. 5).
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Ano10 is required for Ca2+-dependent Cl− secretion in
jejunum We recently found evidence that anoctamins other
than Ano1, Ano2, or Ano6 produce Cl− currents through
receptor-mediated increase in intracellular Ca2+ [49]. Because
this was also demonstrated for Ano10, we made use of mice
with a tissue-specific knockdown of Ano10 expression in
intestinal epithelial cells. To that end, Ano10fl/fl animals were
bred with mice containing a Cre-expression cassette under the
control of the epithelial-specific villin promoter Exon12 (lox/
lox-Crevil) (see “Materials and methods” section). Ano10−/−
mice did not express Ano10 mRNA or protein in intestinal
epithelial cells (Fig. 6). Remarkably and in contrast to
wt littermates, Ca2+-induced Cl− secretion was not de-
tectable in the jejunum of Ano10−/− animals, while the
CCH-activated transport was not affected in the large
intestine of Ano10−/− animals (Fig. 6c, d). These re-
sults support the concept of Ano10 being a Ca2+-depen-
dent Cl− channel and demonstrate for the first time a
role of Ano10 for Ca2+-dependent Cl− secretion in the small
intestine.

Discussion

Anoctamins Molecular insight into Ca2+-dependent Cl− secre-
tion has become possible after identification of Ano1

(TMEM16A) as Ca2+-activated Cl− channel [6, 44, 55]. Sub-
sequent reports identified the closest relative of Ano1, Ano2,
also as Ca2+-activated Cl− channel, with a lower affinity for
Ca2+ [5, 39, 47]. Analysis of the other anoctamin family
members showed that they all produce Ca2+-activated
whole-cell Cl− and cation currents, when coexpressed with
G-protein-coupled receptors (P2Y2) in HEK293 cells, includ-
ing Ano10 [49].

Ano6 (TMEM16F) is probably the most broadly expressed
anoctamin. Compared to the other nine anoctamin paralogues,
it shows relatively high transcript levels in mouse tissues [43].
Ano6 has attracted large attention due to its properties as a
Ca2+-activated phospholipid scramblase and Ca2+-activated
Cl− channel (for review see Kunzelmann et al. [26]). Despite
earlier controversies arguing against the role of Ano6 as a Cl−

permeable ion channel [54], it has now been clearly shown by
several independent groups, to produce a large conductance
Cl− permeable channel activated by strong (≥10 μM) increase
in intracellular Ca2+ [15, 21, 30, 31, 46, 49]. Moreover, Ano6
has been shown to be activated during cellular volume regu-
lation and apoptotic cell death [1, 20, 21, 31]. In contrast to
Ano1 and Ano6, little is known about the role of Ano10
(TMEM16K), apart from its association with cerebellar ataxia
[7, 32, 41, 50]. However, previous work suggested that also
Ano10 is able to produce Ca2+-activated Cl− currents [43, 49,
51]. The present data indicate expression of a number of
anoctamin paralogues in mouse intestine, with Ano1 and
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Ano6 being upregulated in Ano10−/− intestine (Supplemen-
tary Fig. S5).

Role of Ano1 for intestinal Cl− secretion Ca2+-dependent Cl−

secretion was detected in rat and mouse naïve colonic epithe-
lium, in contrast to the human large intestine, which does not
express anoctamin 1 [18, 24, 29, 40]. It is noteworthy that
analysis of anoctamin expression and Ca2+-dependent trans-
port should take place in naïve intestinal mucosa rather than in
cultured epithelial cells, since cultured cells behave different-
ly, even when grown under polarized conditions [24]. At any
rate, expression and localization in apical or basolateral mem-
branes of Ano1 appear to be age dependent, with more apical
expression in the colon of mice aging 14 days and younger,
while expression is shifted to the basolateral membrane in
older animals, which have also been examined in the present
study [27, 38]. Basolateral expression of Ano1 has also been
found in adult guinea pig colon [16]. We demonstrated earlier
that Ca2+-mediated Cl− secretion is absent in the colon of
Ano1−/− pups [37]. Moreover, in the present study, selective
knockout of Ano1 in intestinal epithelial cells also abolished
Ca2+-activated Cl− secretion in the adult (8 weeks and older)
mouse colon and ileum.

However, according to the present data, Ano1 does not
form an apical secretory Cl− channel but rather a basolateral

channel, which may also be localized in the endoplasmic
reticulum close to the basolateral membrane. The data suggest
that Ano1 controls intracellular Ca2+ signaling triggered by
stimulation of Gq-coupled receptors such as muscarinic M3
receptors.

Thus, Ano1 supports apical Ca2+-dependent Cl− secretion
by maintaining the driving force due to activation of
basolateral Ca2+-activated K+ channels. How does Ano1 sup-
port Ca2+ signaling? Several mechanisms are possible: (i)
Ano1 may be ER-localized and facilitate Ca2+ release by IP3
receptors by operating as a counter ion channel. This concept
has been demonstrated earlier for bestrophin 1 [3, 35, 48]. (ii)
Ano1 could tether basolateral ER to the plasmamembrane and
thereby facilitate activation of basolateral Ca2+-activated
KCNN4 K+ channels. Remarkably, the yeast homologue of
Ano1, Ist2, recruits the endoplasmic reticulum to the plasma
membrane [53]. (iii) Also, Ca2+ influx may be controlled by
Ano1 either indirectly by supporting Ca2+ store emptying or
again, as Cl− bypass channel (Fig. 7). A bypass channel
function has been described for Ano1 in renal proximal tubu-
lar cells, where electrogenic transport by the proton pump (V-
ATPase) is supported by Cl− transport through Ano1 [12].

CFTR and anoctamins Ano1 has also gained importance
through its role in rotaviral diarrhea. Although the cAMP-
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regulated Cl− channel cystic fibrosis transmembrane conduc-
tance regulator (CFTR) is central to bacterial diarrhea [52],
Ca2+-activated Cl− channels seem to play a central role during
rotaviral diarrhea [2, 9, 22, 38]. Secretory diarrhea is a major
health problem worldwide with rotavirus being the most com-
mon cause for severe secretory diarrhea in infants and young
children [22]. We reported earlier the expression of Ano1 in
both apical and basolateral membranes of colonic epithelial
cells of young mice [38]. Evidence was further provided for a
role of Ano1 in secretory diarrhea induced by the rotavirus
toxin NSP4, which acts through increase in intracellular Ca2+.
As mice grow older, expression of Ano1 appears to shift from
the luminal toward the basolateral membrane, and cholinergic
Ca2+-dependent Cl− secretion was found to be reduced in the
older animals [27]. A recent report analyzed rotavirus-induced
diarrhea in vivo and in vitro and nicely demonstrates inhibi-
tion of Cl− secretion and diarrhea by different blockers of
anoctamins [22]. These studies demonstrate the large medical
relevance of intestinal anoctamins and may trigger subsequent
clinical trials.

Cl− secretion though anoctamins and CFTR The available
data clearly indicate the role of anoctamins for intestinal
Ca2+-dependent Cl− secretion and rotavirus-induced diarrhea
in younger animals [22, 27, 38]. It was suggested from exper-
iments in Xenopus oocytes coexpressing CFTR and P2Y2

receptors, and also from measurements in human airway
epithelial cells, that Ca2+-dependent Cl− secretion elicited
through stimulation of purinergic P2Y receptors is due to
activation of CFTR rather than anoctamin 1 [13, 34, 42]. Thus,

during Ca2+-dependent stimulation, a substantial portion of
Cl−may actually move through CFTR rather than anoctamins.
Our present data fully support this concept as CFTR inhibitors
completely blocked CCH-induced secretion in intestinal
organoids (Fig. 4). Moreover, despite the presence of two
seemingly independent anion conductances that are selective-
ly activated by cAMP or Ca2+, a considerable overlap exists
between both intracellular pathways, as discussed recently in
several reports. Thus, intracellular Ca2+ signals not only stim-
ulate basolateral K+ channels and supply additional driving
force for apical Cl− secretion but also activate CFTR through
inhibition of phosphatases and increase of protein kinase C
activity (Fig. 7) [4, 25, 28, 42]. Furthermore, a recent report
demonstrates that CFTR and Ano1 are separate but function-
ally related Cl− channels [36]. It will be crucial to determine in
future the fractions of Cl− that move through anoctamins and
CFTR during Ca2+-dependent stimulation of airway epithelial
cells.

A n o c t am i n s a s c om p e n s a t o r y c h a n n e l s f o r
CFTR Understanding the correlation between CFTR and
anoctamins is essential because pharmacological stimulation
of Ca2+-activated Cl− conductance in human airways has been
proposed as a therapeutic strategy to compensate for the
defective CFTR function. This, however, only has a chance
to succeed if CFTR is not a substantial fraction of the Ca2+-
activated Cl− current. Although CaCC appears slightly en-
hanced in cystic fibrosis, it is nevertheless not able to com-
pensate for defective CFTR in mice. Notably, Ca2+-stimulated
HCO3

− secretion is also largely reduced in the intestine of
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Ca2+-activated KCNN4 K+

channels

Pflugers Arch - Eur J Physiol (2015) 467:1203–1213 1211



mice lacking CFTR expression cftr null mice [19, 45]. Thus, it
will be important to determine the amount of Cl− ions truly
moving through apical anoctamin channels in human airway
cells.
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