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Abstract Myosin binding protein-C (MyBP-C) was first dis-
covered as an impurity during the purification of myosin from
skeletal muscle. However, soon after its discovery, MyBP-C
was also shown to bind actin. While the unique functional
implications for a protein that could cross-link thick and thin
filaments together were immediately recognized, most early
research nonetheless focused on interactions of MyBP-C with
the thick filament. This was in part because interactions of
MyBP-C with the thick filament could adequately explain
most (but not all) effects of MyBP-C on actomyosin interac-
tions and in part because the specificity of actin binding was
uncertain. However, numerous recent studies have now
established that MyBP-C can indeed bind to actin through
multiple binding sites, some of which are highly specific.
Many of these interactions involve critical regulatory domains
of MyBP-C that are also reported to interact with myosin.
Here we review current evidence supporting MyBP-C inter-
actions with actin and discuss these findings in terms of their
ability to account for the functional effects of MyBP-C. We
conclude that the influence of MyBP-C on muscle contraction
can be explained equally well by interactions with actin as by
interactions withmyosin. However, because data showing that
MyBP-C binds to either myosin or actin has come almost

exclusively from in vitro biochemical studies, the challenge
for future studies is to define which binding partner(s)MyBP-C
interacts with in vivo.
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Introduction

In the 40 years since the discovery of myosin binding protein-
C (MyBP-C) [35], it has become clear that MyBP-C is a key
regulator of muscle contraction that affects interactions be-
tween myosin and actin and that is essential for normal cardiac
muscle contraction (for reviews, see [3, 4, 42]). The impor-
tance ofMyBP-C to muscle contraction is further underscored
by the discovery that mutations in genes encoding MyBP-C
cause myopathies in both skeletal [15, 29] and cardiac [7, 17]
muscles and that MyBP-C is involved in cardiac stress path-
ways during both normal physiologic signaling and in patho-
logical states such as heart failure [42].

What is far less certain and what remains a critical unre-
solved question is the precise mechanism(s) by which MyBP-
C affects muscle contraction. Because of its ability to bind to
myosin through two discrete binding sites, early hypotheses
focused on the idea that interactions ofMyBP-Cwith the thick
filament alone were sufficient to account for the regulatory
effects of MyBP-C [47]. However, other early data [31, 32,
52] and more recent studies provide a compelling case that
MyBP-C can also interact with the thin filament to affect
contraction [43, 49]. The distinction is important not only
for better understanding effects of MyBP-C on contraction
but also for better insight into how sarcomeres function.
Linkage of the thick and thin filaments by MyBP-C could
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represent a previously unrecognized filament system working
in concert with thick filaments, thin filaments, and titin to
impact force development, transmission, sensing, and signal-
ing during striated muscle contraction.

Structure and position of MyBP-C in sarcomeres

MyBP-C is expressed in vertebrate striated muscles where
it occurs as distinct isoforms originating from three sepa-
rate genes: two skeletal genes that correspond to expres-
sion predominantly in slow and fast skeletal muscles [48]
and a third cardiac gene expressed in the heart [9]. All
isoforms consist of a series of immunoglobulin (Ig) and
fibronectin III (Fn-III)-like domains numbered C1 through
C10 (Fig. 1a), whereas cardiac MyBP-C (cMyBP-C) has
an extra N-terminal Ig domain referred to as C0.
Importantly, the cardiac isoform also has additional phos-
phorylation sites within the regulatory motif (also referred
to as the M-domain) which is a linker sequence of ∼100
amino acids located between C1 and C2 that is unique to
MyBP-C proteins.

Within a sarcomere, MyBP-C is localized to a charac-
teristic set of seven to nine discrete stripes (with the exact
number of stripes depending on the type of muscle [26])
that are evenly spaced in the C-zone of the A-band.
Within the C-zone, i.e., the region where the thick and
thin filaments overlap, MyBP-C stripes can be visualized
in negatively stained electron microscopy sections or
using immuno-EM [27] labeling (Fig. 1b). The stripe
spacing (∼43 nm apart) corresponds roughly to every
third crown of myosin heads emerging from the thick
filament backbone. Thus, MyBP-C is present at a limited
stoichiometry but in discrete positions relative to myosin.

Myosin, the first binding partner of MyBP-C

Given its co-purification with and strong binding to myosin, it
is not surprising that early studies investigating the influence
of MyBP-C on actomyosin interactions initially focused on its
connections to myosin. MyBP-C was shown to bind to both
the light meromyosin (LMM) and the S2 subfragment of
myosin [33, 47]. The binding site for LMM was identified in
the C10 domain [30, 36], whereas regions of MyBP-C that
interacted with myosin S2 were identified closer to the N-
terminus of the molecule within domains C1-M-C2 [13, 14].
Binding to S2 was further found to be eliminated by phos-
phorylation of the motif of cMyBP-C, suggesting a role in
mediating the inotropic effects of cMyBP-C [13, 14]. The
corresponding location on S2 where the motif bound was
narrowed down to the proximal 126 amino acids of myosin
S2 (S2Δ) [13]. Ababou et al. [1, 2] demonstrated that C1 and
C2 also bound to the S2Δ segment of myosin, albeit through
much weaker interactions.

Actin, the second binding partner of MyBP-C

Soon after the discovery ofMyBP-C, it was found thatMyBP-
C could also bind to actin. MyBP-C was shown to interact
with F-actin, isolated thin filaments, and the I-bands of sarco-
meres [31, 32, 52]. Importantly, binding appeared specific in
that it could be competed off by myosin S1 heads in the
absence of ATP (i.e., by rigor S1 heads) or thatMyBP-C could
displace S1 heads in the presence of ATP [32].

The finding that MyBP-C could bind thin filaments was
striking in that it marked the discovery of the only myofilament
protein (aside from myosin) that could simultaneously link
thick and thin filaments together within the region of active

Fig. 1 a Schematic
representation of MyBP-C.
Shown are Ig-like domains
(ovals) and Fn-III-like domains
(rectangles). The cardiac isoform
of MyBP-C has an extra domain
at the N-terminus (C0) and
additional phosphorylation sites
in the M-domain between C1
and C2 (asterisks). b Electron
micrograph image demonstrating
the stripes where MyBP-C is
located. Picture from
Luther et al. [27]
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cross-bridge cycling. Functional roles for a protein that could
span the two filament systems were immediately suggested,
such as stabilization of the sarcomere lattice through weak
coupling of filaments in relaxed muscle or that MyBP-C could
make transient contacts with actin such that myosin cross-
bridge kinetics could be affected in contracting muscle [32].
Other possibilities include direct effects of MyBP-C to regulate
thin filament activation and relaxation as well as mechano-
sensing and signaling [20, 43].

Renewed interest in the physiological significance of the
ability of MyBP-C to bind actin came with the discovery that
the same recombinant truncated MyBP-C proteins that were
found to bind myosin S2 could also bind to actin and thin
filaments [43]. Although initially surprising, results were con-
firmed in multiple studies by different labs [34, 51] collective-
ly showing that N-terminal domains of MyBP-C could bind
actin with an affinity similar to binding myosin S2 [43].

Specific sequences that mediate actin binding were next
identified in the C0 [22, 25, 37, 51] and C1 [6, 43] domains,
within the first 17 amino acids of the motif [50] and within the
folded tri-helix structure of the motif [5]. In the tri-helix
bundle, a highly conserved sequence was found that bears
homology to the actin binding sequences of troponin I,
twitchin, and other actin-binding proteins [8, 11, 23].
Missense variants associated with hypertrophic cardiomyop-
athy also affected actin binding, further supporting the idea
that tri-helix bundle mediates actin binding of the motif [5].

The possibility that multiple interaction sites dispersed
throughout multiple N-terminal domains contribute to the
actin binding properties ofMyBP-C is supported by the ability
of C1C2 to cross-link F-actin filaments [34, 43] and by 3-D
reconstructions of actin decorated with N-terminal MyBP-C
domains showing that the recombinant proteins can span
multiple actin monomers [34, 37]. Similar conclusions were
reached through modeling of small-angle X-ray and neutron
scattering data and NMR data [25, 51].

Additional studies have pointed to other actin binding sites
located in the proline-alanine-rich repeat [46] or domains in
the C-terminal half of the molecule [41]. However, a consen-
sus regarding these sites has yet to emerge from multiple labs.
Importantly, differences between labs, especially with respect
to C1 and the proline-alanine-rich region, are likely to reflect
the existence of species-specific differences in the behavior of
the recombinant proteins (e.g., mouse versus human se-
quences) because the human C1 and proline-alanine regions
are both able to activate motility or force in the absence of
Ca2+, whereas the corresponding mouse domains are not
effective [45]. Differences in experimental conditions are also
likely to contribute to differences between labs because even
modest changes in pH or phosphorylation state had large
effects on the amount of C1-M-C2 bound to actin [43]. The
latter is especially relevant considering the use of different
protein expression systems (e.g., bacterial versus eukaryotic

systems) that result in proteins with varying degrees of phos-
phorylation or other posttranslational modifications [12].

Can interactions with myosin or actin adequately explain
effects of MyBP-C on contraction?

Interactions with myosin Starr and Offer [47] first suggested
an elegant mechanism by which MyBP-C could influence
cross-bridge function solely through MyBP-C interactions
with the thick filament (Fig. 2). According to these authors,
interactions of MyBP-C with myosin S2 could restrict the
outward movement of cross-bridges toward the thin filament.
They further suggested that regulation of this mechanism
could provide a means to regulate the interaction of myosin
heads with actin. Indeed, because phosphorylation of cardiac
MyBP-C abolishes interactions with myosin S2 [14] and
increases the proximity of myosin heads to actin [10], their
model provides a straightforward mechanism to account for
the ability of MyBP-C to limit cross-bridge interactions with
actin. Alternatively, by connecting S2 to the LMM region of
myosin, MyBP-C could act as a drag on slowly cycling cross-
bridges as proposed by Hofmann et al. [19] (Fig. 2). In
addition, by binding to the critical S1/S2 junction, MyBP-C
is in an ideal location to influence interactions with other thick
filament proteins such as RLC [28, 39] or to otherwise affect
myosin S1 head position or head-head interactions.

However, a limitation of thick filament models is that they
cannot account for effects of MyBP-C in ATPase assays
where the thick filament is entirely absent or in assays that
use only the S1 subfragment of myosin where the possibility
of intra-myosin interactions is eliminated [44]. Perhaps even
more difficult to reconcile with a thick filament mechanism
are observations that MyBP-C can activate actin-S1 interac-
tions in the presence of thin filaments (i.e., actin plus troponin
and tropomyosin) even when Ca2+ is absent [18, 40, 44].
Therefore, other mechanisms must exist by which MyBP-C
can directly influence cross-bridge interactions, either in ad-
dition to or in place of mechanisms that rely solely on inhib-
itory interactions with S2.

Interactions with actin On the other hand, the ability of
MyBP-C to both activate and inhibit actomyosin interactions
is readily explained if MyBP-C binds directly to actin or the
thin filament to affect its activation state (Fig. 3a). Structural
evidence in support of this idea comes from reconstructions of
F-actin or thin filaments decorated with recombinant truncated
MyBP-C proteins showing that they bind in positions that
overlap with binding sites of myosin S1 heads and that they
can sterically clash with the position of tropomyosin in the
low-Ca2+ closed state, but not in the high-Ca2+ open position
[34, 51]. Thus, by binding to the thin filament, MyBP-C is in a
position to both inhibit actomyosin interactions by directly
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competing with myosin S1 heads and activate the thin fila-
ment by interfering with the closed state of tropomyosin
(Fig. 3). The ability of MyBP-C to directly activate the thin
filament may be important in shortening contractions where
MyBP-C could offset the tendency of the thin filament to
deactivate during shortening [16]. If so, then the loss of thin
filament-activating effects could explain the abbreviated sys-
tolic ejection phase in mice lacking cMyBP-C [38]. Binding
of MyBP-C to thin filaments can also readily explain the
ability of MyBP-C to slow muscle shortening velocity and
limit power output in cMyBP-C knockout myocytes [21]. In
this scenario, MyBP-C would act as a physical drag by cross-
linking thin and thick filaments together. Lastly, the ability of
MyBP-C to compete with myosin S1 heads and inhibit acto-
myosin interactions [32, 44] could provide an explanation for
the long-standing puzzle that MyBP-C is present at a limited
stoichiometry with respect to myosin: by being present at a
low concentration relative to myosin heads, the activating
effects of MyBP-C on the thin filament may be optimized
while inhibitory competitive effects with myosin cross-
bridges are minimized.

MyBP-C binding interactions in vivo

While there is considerable evidence to conclude that MyBP-
C can bind to both myosin S2 and the thin filament, at present
there is no direct evidence that MyBP-C interacts with either
myosin S2 or actin filaments in sarcomeres. It is possible that
the densities attributed to MyBP-C in reconstructions of the

cardiac thick filament [53] are due to binding of MyBP-C N-
terminal domains to S2 (rather than the C-terminal domains
thought to interact with the thick filament backbone), but this
possibility has yet to be critically tested. Perhaps the most
detailed visualization of whole MyBP-C in sarcomeres to date
has come from Luther and colleagues [27] who used electron
microscope tomography to reveal that MyBP-C extends out
away from the thick filament at sufficient distance to interact
with the thin filament. These results are in excellent agreement
with previous conclusions from X-ray diffraction data that
MyBP-C extends radially outward from the thick filament
supporting the idea that MyBP-C interacts with the thin fila-
ment in sarcomeres [46].

Resolution of the central question of whether MyBP-C
binds to actin or myosin S2 to affect contraction will thus
ultimately require innovations in structural methods that allow
more precise visualization of the position(s) ofMyBP-C in the
sarcomere. Of course, it is possible thatMyBP-C binds to both
myosin S2 and the actin filament to affect contraction. The
essential questions then become whether binding interactions
are simultaneous, competitive, or sequential. For example, it is
an intriguing possibility that MyBP-C regulates the relaxed
state of the thick filament by binding to myosin S2 and that
phosphorylation or other changes in the environment then
release MyBP-C so that it can influence the activation state
of the thin filament by binding to actin or to other thin filament
regulatory proteins. Dynamic changes in binding to the thick
versus thin filament could be signaled through additional
regulatory partners such as Ca2+/calmodulin binding to the
regulatory M-domain [24] or by forced extension of the M-
domain to reveal cryptic ligand binding sites [5, 20]. Time-

Fig. 3 Thin filament regulation of contraction by MyBP-C. a Direct
activation of the thin filament by displacement of tropomyosin by
MyBP-C, enabling cross-bridge formation during low-Ca2+ condi-
tions. b Blocking of S1 binding sites on actin by MyBP-C, inhibiting

cross-bridge formation despite the open state of tropomyosin. Opti-
mization of the activating effects of MyBP-C (a) while limiting
competition with myosin (b) may explain the limited localization of
MyBP-C in sarcomeres

Fig. 2 Thick filament model of regulation by MyBP-C. MyBP-C (gray)
can cross-link myosin heads to the rod portion of the same (a) or adjacent
(b) myosin molecules (black). By doing so, MyBP-C can prevent myosin

heads from moving toward the actin filament, as proposed by Starr and
Offer [47], or MyBP-C could form a physical drag on long-lived cross-
bridges, as suggested by Hofman et al. [19]
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resolved methods such as FRETand X-ray diffraction that can
differentiate dynamic changes in binding to the thick and thin
filaments will thus be essential in further defining the mech-
anism(s) by which MyBP-C affects contraction. These ap-
proaches combined with genetic methods to enhance the actin
binding affinity of MyBP-C in vivo should prove insightful in
probing the significance of MyBP-C interactions with actin in
sarcomeres. These experiments are underway.
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