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Abstract The electroneutral Na+–K+–Cl− cotransporters
NKCC1 (encoded by the SLC12A2 gene) and NKCC2
(SLC12A1 gene) belong to the Na+-dependent subgroup of
solute carrier 12 (SLC12) family of transporters. They mediate
the electroneutral movement of Na+ and K+, tightly coupled to
the movement of Cl− across cell membranes. As they use the
energy of the ion gradients generated by the Na+/K+-ATPase to
transport Na+, K+, and Cl− from the outside to the inside of a
cell, they are considered secondary active transport mecha-
nisms. NKCC-mediated transport occurs in a 1Na+, 1K+, and
2Cl− ratio, although NKCC1 has been shown to sometimes
mediate partial reactions. Both transporters are blocked by
bumetanide and furosemide, drugs which are commonly used
in clinical medicine. NKCC2 is the molecular target of loop
diuretics as it is expressed on the apical membrane of thick
ascending limb of Henle epithelial cells, where it mediates NaCl
reabsorption. NKCC1, in contrast, is found on the basolateral
membrane of Cl− secretory epithelial cells, as well as in a
variety of non-epithelial cells, where it mediates cell volume
regulation and participates in Cl− homeostasis. Following their
molecular identification two decades ago, much has been
learned about their biophysical properties, their mode of oper-
ation, their regulation by kinases and phosphatases, and their
physiological relevance. However, despite this tremendous
amount of new information, there are still so many gaps in
our knowledge. This review summarizes information that con-
stitutes consensus in the field, but it also discusses current points
of controversy and highlights many unanswered questions.
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Introduction

Evidence for an electrically neutral cotransport of Na+, K+,
and Cl− was first described in 1980 in Ehrlich ascites tumor
cells [50]. This coupled transport of 1Na+, 1K+, and 2Cl− was
shown to be inhibited by furosemide, a diuretic used clinically
to inhibit renal NaCl absorption in a specific part of the kidney
tubule: the thick ascending limb of Henle (TAL) [56]. The
molecular identification of two Na+–K+–2Cl− cotransporters,
NKCC1 and NKCC2, was made in 1994 [28, 47, 62, 132],
and the genes and exon structures were soon thereafter par-
tially characterized [63, 105]. Expression patterns were exam-
ined by Northern blot analyses, in situ hybridization, and
immunofluorescence studies once specific antibodies were
generated against the cotransporters [61, 69, 70, 102, 135].
Effort was also made in generating NKCC1 [27, 37, 94] and
NKCC2 knockout mice [117] to assess the consequence of
eliminating protein expression on the physiology of these
mice. While NKCC1 is ubiquitously expressed in cells and
plays a major role in cell volume regulation and Cl− secretion,
NKCC2 is mainly expressed in the TAL where it mediates
NaCl reabsorption. This review will examine the structure/
function relationship, the physiological functions, and the
regulation of the two Na–K–2Cl cotransporters.

Structure/function of SLC12A1/2 cotransporters

In humans, NKCC1 is encoded by the SLC12A2 gene which
is present on chromosome 5q23, whereas NKCC2 is encoded
by the SLC12A1 gene located on chromosome 15q15-q21.
NKCC1 and NKCC2 form dimers, although each monomer
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has been demonstrated to be fully functional [87, 115].
NKCC1 and NKCC2 monomers share overall 60 % sequence
homology at the protein level (Table 1). NKCC2 is slightly
smaller than NKCC1 with 1,099 amino acids yielding a core
molecular size of 121.3 kDa, compared to 1,212 amino acids
giving a size of 131.4 kDa [28, 47]. The main size difference
results from a larger cytoplasmic N-terminal tail, which is
some 102 amino acids longer in NKCC1. Consequently, the
N-terminal tails are the least conserved portions of the two
cotransporters (22 % amino acid identity). The regulatory
cytoplasmic C-terminal tail and the core are well conserved
between both isoforms with 56 and 79 % amino acid identity,
respectively (see Table 1).

The cytosolic N-terminal tail

The N-terminal tail of NKCC1–2 is critical to cotransporter
function. Deletion of the tail results in inactive cotransporters.
However, as mentioned above, the amino terminal tail of
NKCC shows the highest sequence diversity. This diversity
is not only between NKCC1 and NKCC2, but also among the
many NKCC1 orthologs whose sequences are found in
GenBank (Fig. 1a and [45]). How can a domain with such
diversity be so integral to transport function? The answer
comes from two particular subdomains that are highly con-
served within the Na+-dependent cotransporters (NKCC and
NCC). The first subdomain is a binding site for kinases, and
the second subdomain consists of phosphorylation sites locat-
ed near the plasma membrane. Sequences upstream of the
kinase binding site and between the kinase binding site and
the phosphorylation sites seem to be of less importance. We
will discuss in a later section the regulation of NKCC1–2 by
Ste20 (Sterile20) kinases and other regulatory proteins. In this
section, however, we will briefly discuss the properties of
these two highly conserved subdomains of the N termini.
Using a yeast-two-hybrid analysis screen, we found that the
N-terminus of cation–chloride cotransporters interacts with
two specific Ste20 kinases: SPAK and OSR1. The site of
interaction was reduced to nine amino acid residues contain-
ing a core RFXV (or RFXV/I) motif [101]. In fact, the tail of

NKCC1 contains two such motifs, whereas the tail of NKCC2
only contains the first one. It is of interest to note that the
second motif in NKCC1 overlaps with a PP1 binding motif,
raising the possibility that the two proteins compete at that
particular binding site [45]. Deletion mutants and site-directed
mutagenesis studies demonstrated that only one motif was
necessary for cotransporter activation, while the loss of the
two motifs resulted in the absence of cotransporter function
[45]. The presence of a PP1 binding motif in NKCC1 but not
NKCC2 is puzzling. Studies have shown that NKCC1 activity
is modulated by PP1 and mutation of this residue affects
dephosphorylation of the cotransporter [22]. Results from
our laboratory have also shown that binding of PP1 to the
N-terminal tail of NKCC1 not only results in dephosphoryla-
tion of the cotransporter, but also to the dephosphorylation and
inactivation of the Ste20 kinases [41, 46]. Once NKCC2 is
activated by phosphorylation, it also needs to be dephosphor-
ylated for inhibition. At this stage, it is not clear which
phosphatase is involved and how it interacts with the N-
terminal tail of NKCC2 and its phospho-sites. The second
highly conserved subdomain is a peptide of 25–30 amino
acids that contain multiple threonines and/or serine residues,
some of which are targets of the kinases that bind to the
upstream RFXV sites. Figure 1b highlights the information
obtained from mass spectrometry/Edman sequencing analysis
as well as site-directed mutagenesis studies. While several
residues are involved, the most consistent residues are a pair
of threonine residues separated by four amino acids:
R/QT206FGY/HNT211M/I (numbers taken from mouse
NKCC1). There are some interesting functional differences
between the cotransporters at these two sites that are not yet
explained. Indeed, mutation of T206 in NKCC1 completely
abrogates cotransporter function [45], while mutation of the
corresponding residue in NKCC2 reduced function by one
third [55], and mutation in the Na–Cl cotransporter (NCC) has
no functional effect [95]. Similarly, while mutation of T211 in
NKCC1 [23, 45] and the corresponding residue in NCC [95]
abolish cotransporter function, mutation of the corresponding
residue in NKCC2 fails to do so [55]. Finally, note that no
amino acid substitution of single or multiple threonine resi-
dues into either aspartic acid or glutamic acid residues, to
mimic phosphorylation, confers constitutive activity to
NKCC1. Instead, the substitutions disrupt cotransporter func-
tion [23, 45].

The transmembrane core

The core of the NKCC proteins consists of 12 hydrophobic
transmembrane (TM) α-helices and a large extracellular loop
between TM7 and TM8. The cation–chloride cotransporters
belong to a large superfamily of transporters: the amino acid–
polyamine–organocation superfamily, whose basic structure
consists of an inverted repeat of five transmembrane domains

Table 1 Comparison between human NKCC1 and NKCC2

hNKCC1 hNKCC2

Size (number of aa) 1,212 1,099

Size (MW in kDa) 121.3 131.4

Overall aa identity 60 %

N-terminus aa identity 22 %

C-terminus aa identity 56 %

TM core aa identity 79 %

Size of protein is given in number of amino acids and in kilodalton.
Amino acid identity between isoforms is provided by domain
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followed by two additional transmembrane α-helical segments
at their N- and/or C-termini [129]. The Phyre2 protein fold
recognition server (www.sbg.bio.ic.ac.uk/phyre2/) drew a
model (>90 % confidence) of the first 10 transmembrane
domains of NKCC1, which is represented in Fig. 2a. The
model is based on structure similarity with several resolved
structures (Protein Data Bank IDs: 4dji, 3gia, 3lrc, 2jln, and
3dh4). A characteristic of amino acid–polyamine–organocation
transporters is the duplication or repeat of five transmembrane
domains. This 5+5 symmetry can be seen with pairs of
TM1–TM6, TM2–TM7, TM3–TM8, and TM4–TM9 being
in close proximity of each other, whereas TM5 and TM10
being separate (Fig. 2a, b). To further demonstrate the 5+5
symmetry, we aligned the five first TMs with the next five and
significant amino acid conservation is observed (Fig. 2c). Note

the conservation of two pairs of residues between TM2 and
TM7, the SVand MM residues in TM2 having been shown to
participate in cation binding (see below). While the hydropathy
plots of NKCC reported in multiple studies [28, 47, 52, 132]
diverges somewhat from that of LeuTAa, a bacterial homolog of
neurotransmitter sodium symporters belonging to the same
amino acid–polyamine–organocation superfamily, there are
some striking high spots of conservation. For instance, four of
the six residues in TM9 and 7 out of 10 residues in TM12 that
have been shown to promote cotransporter dimerization [134]
are conserved inNKCCs. Glycosylation of the large TM7–TM8
loop increases the molecular size of NKCC1 and NKCC2 by
some 30–40 kDa [90] and is essential for membrane expression,
transport activity, and affinity for loop diuretics [97]. Indeed,
inhibition of glycosylation by tunicamycin drastically reduces
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Fig. 1 Sequence homology and domains of the NH2-terminal tails of
NKCC1 and NKCC2. a Schematic comparison of NKCC1 and NKCC2
amino terminal tails from vertebrates: mammal (Homo sapiens), bird
(Gallus gallus ), reptile (Anolis carolinensis ), amphibian (Xenopus
laevis), bone fish (Oreochromis niloticus), and cartilage fish (Squalus
acanthias). Identical residues are highlighted in red , conserved residues
are highlighted in green , blocks of identical residues are shown in blue,
and nonconserved residues are indicated in white (gaps). Note the pres-
ence of two to three regions of high degree of conservation, correspond-
ing to the SPAK/OSR1 binding motifs, and the phospho-threonines and

phospho-serines. Bars indicate the RFxVmotifs or SPAK/OSR1 binding
site (filled bar), and the VxFxD motif or PP1 binding site (open bar). b
Amino acid alignment of a portion of the N-terminal tail of human and
mouse NCC, NKCC1, and NKCC2. Protein sequences were aligned
using VectorNti (Invitrogen) and a portion of the alignment is displayed.
Threonine and serine residues that are targets of phosphorylation are
highlighted with references. The position of the R5 peptide used to
generate the R5 antibody [38] is indicated. Residues highlighted in yellow
are identical residues, whereas amino acids highlighted in green/blue
represent conserved residues
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the activity of both cotransporters. Site-directed mutagenesis of
the two N-linked glycosylated sites (N442Q, N452Q) of
NKCC2 reduces its membrane expression and activity when
single or double mutants are expressed in the heterologous
Xenopus laevis oocyte system. While cation affinity was
unchanged in mutants versus wild-type NKCC2, Cl− affinity
was increased and binding of the loop diuretic bumetanide was
decreased in the single N442Q and double N442Q/N452Q
mutants. Interestingly, the N442 glycosylated site is conserved
in NKCC1, and its mutation also confers an increase in Cl− and
a decrease in bumetanide binding [97]. This observation sug-
gests that a reduction in the net negative charge at the extracel-
lular surface of both cotransporters, induced by the absence of
glycosylation, increases Cl− affinity but decreases inhibition by
loop diuretics. Moreover, the fact that bumetanide and
Cl− affinity are significantly modified when glycosyla-
tion is prevented, could imply that the loop diuretic and
the Cl− binding sites are located near the N422 residue. Taking
advantage of differences between the living environments of
men and sharks, and consequently of a several fold difference
in ion binding affinities between human NKCC1 and shark
NKCC1, Biff Forbush’s group created chimeras to map the
ion binding domains on the cotransporters [66]. They demon-
strated that the Na+ affinity of NKCC1 was 15 mM in human

versus 109 mM in shark. The sequence of shark NKCC1 TM2
differs from human NKCC1 TM2 at the two pairs of residues
highlighted in Fig. 2c (AL residues instead of SV and GT
residues instead of MM). Substitution of these pairs of resi-
dues in the shark sequence by their human counterparts sig-
nificantly decreased the affinity for both Na+ and K+ ions [66].
It is worth noting that similar to TM2, TM7 is also involved in
cation binding [65], which is consistent with the symmetry
model (Fig. 2a or b). As NKCC1 is inhibited by bumetanide,
the chimeric approach was also used to map residues
affecting bumetanide binding. It was shown that multiple
transmembrane domains (TM2, 11, and M12) participate in
bumetanide binding [65]. Recently, cysteine- and tryptophan-
scanning mutagenesis experiments have shown that
TM3 also plays a major role in ion translocation and bind-
ing of loop diuretics [114]. Additional studies are required
to specify the role of each transmembrane domain and identify
amino acids involved in ion and loop diuretics binding in both
cotransporters.

The chimeric approach was also used to decipher the
molecular basis for the high osmolarity/volume sensitivity of
NKCC1 versus low osmolarity/volume response of NKCC2.
The Na–K–2Cl cotransporter has been known for many de-
cades to be activated by hypertonicity or cell shrinkage (for an
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Fig. 2 Structure of the core of
human NKCC1. a Structure of the
transmembrane domains and other
alpha helices was modeled using
the Phyre2 protein fold recognition
server [72]. The PDB file was
viewed using the Visual Molecular
Dynamics software (University of
Illinois) and the image was
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early review, see [49]). We noticed, however, a significant
difference in the level of activation from 3- to 4-fold increase
in K+ influx for NKCC1 versus 1.5-fold increase for NKCC2
[40]. While the activation requires phosphorylation of the N-
terminal tail (see above), we demonstrated that swapping the
tails of the cotransporters did not affect their level of activa-
tion. In contrast, we showed that portions of the protein that
includes the second transmembrane domain (TM2) along with
the first intracellular loop (IL1) and the second extracellular
loop (EL2) “encode” for the high sensitivity of NKCC1. It is
of significance that not only the transmembrane domain but
also the loops are involved in the fold activation [40].

With the exception of the squid axon NKCC1, whose stoi-
chiometry of transport was shown to be 2Na+:1K+:3Cl− [109],
the typical stoichiometry for both NKCC1 and NKCC2 is
1Na+:1K+:2Cl− [50]. However, when we measured unidirec-
tional K+ and Cl− influxes in NKCC1-injected oocytes exposed
to hypertonicity, we observed identical ion fluxes [40]. This was
interpreted as NKCC1 functioning partially in K+/K+ exchange
mode. Two kinetics models have been described for NKCC1
[26, 81]. The first complete model of ion binding to NKCC1
came from studies performed in duck red cells [81, 85]. It was
shown that the free transporter binds Na+ first, followed by Cl−,
then K+ and the second Cl− (Fig. 3a). Interestingly, it was
postulated that the order of ion release on the other side is
reversed so the first ion attached to the cotransporter would
come off first. This postulate gave rise to a gliding model,
conceptually different than the symmetrical model [81]. Note
that K+/K+ exchange in this model can be explained if, close to
the end of the cycle, the partially unloaded transporter picks a
K+ ion and reverses its orientation (Fig. 3a, red arrows). This
model has remained unchallenged until we observed kinetic
behavior better compatible with a model where the transporter
binds Cl− first, followed by Na+, the second Cl− and then K+

(Fig. 3b). In this model, K+/K+ exchange can still occur when
partially loaded carriers reverse their orientation and re-load K+

ions. Note that an unusual NKCC1 stoichiometry has also been
measured in neonatal neurons [9].

Both NKCC1 and NKCC2 are capable of transporting
alternative ions as substitute for K+ and Cl−. For instance,
rubidium (Rb+) is often used in its radioactive form (86Rb) as a
tracer for K+ because the isotope half-life is far more conve-
nient than isotopes of K+, and the cotransporter affinity for
Rb+ is similar to that of K+ (discussed in [26]). Thallium (Tl+)
has been recently used in combination with intracellular fluo-
rescent dyes to assess the function of NKCC1 and NKCC2
[17, 25, 51]. To date, how Tl+ affinity compared to that of K+

is unknown. NH4
+ can also substitute for K+ and be inwardly

transported by both cotransporters. Fast accumulation of
NH4

+ within the cell results in acidification of the intracellular
pH, which in turn, inhibits the activity of the cotransporters
[7]. Note that, as it will be described below, NKCC2 in the
kidney and NKCC1 in the intestine regulate acid–base balance

by promoting NH4
+ transport. As far as the anions are

concerned, Br− substitutes quite well for Cl− on NKCC1,
whereas I− is a poor substitute for Cl− (see Fig. 4). Note,
however, that the cotransporter is able to mediate some K+

movement in the presence of iodide, as we were able to
measure a small but significant bumetanide-sensitive K+ influx
in the presence of this anion.

The cytosolic C-terminal tail

The C-terminal tails of NKCC1 and NKCC2 are important for
maturation, dimerization, and protein trafficking to the plasma
membrane. While no splicing events involving the C-terminal
tail of NKCC2 have been reported, there is one isoform of
NKCC1 that has a different carboxyl-terminus. The alterna-
tively spliced isoform involves a cassette exon (exon 21 which
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is 48-bp-long and encodes 16 amino acids) which is omitted in
some tissues [105, 122]. Although the 3′ end of the exon creates
a PKA consensus site when present, there is no evidence that
protein kinase A modulates NKCC1 function at that locus. In
contrast, the 16 amino acids fragment was shown to contain a
di-leucine motif as a basolateral sorting motif, therefore
targeting NKCC1 to the basolateral membrane of epithelia
[13]. This sequence is absent in both the NKCC1 isoform
lacking exon 21 and NKCC2. Absence of the basolateral
targeting sequence explains the apical localization of NKCC2
in the thick ascending limb of Henle. When we identified the
alternatively spliced isoform of NKCC1 in 1997, we found it to
be abundant in the brain. Whether or not the apical localization
of NKCC1 in choroid plexus [102, 131] is due to the absence of
exon 21 is unknown. The C-terminal tail of NKCC1 has been
shown to facilitate di- and tetramerization of the cotransporter.
This was shown using a yeast-two-hybrid method [111] and
fluorescence resonance energy transfer (FRET) analysis [86].

Physiological functions of the SLC12A1/2 cotransporters
and relation to human diseases

NKCC2

NKCC2 is expressed on the apical membrane of the epithelial
cells of the thick ascending limb of Henle (TAL) which
reabsorbs about 20–30 % of the NaCl filtered by the glomer-
ulus ([4], Fig. 5a, Table 2). Note that the main function of the
TAL is to reabsorb large amount of NaCl while reabsorbing no
water, which leads to dilution of the forming urine in the

tubule lumen [6, 82]. Loss-of-function mutations in SLC12A1
gene result in Bartter’s syndrome, an autosomal recessive
disease characterized by plasma volume reduction, polyuria,
hyponatremia, hypotension, hypochloremia, hypokalemia,
magnesuria, metabolic alkalosis, and hypercalciuria [11,
112]. These multiple characteristics can be explained as fol-
lows: a decrease in Na+ reabsorption in the TAL results in an
increased delivery of Na+ in the collecting duct, where its
reabsorption is mediated by the epithelial Na+ channel, ENaC.
Increased ENaC activity results in an increased K+ secretion
by the channel ROMK [78], leading to hypokalemia and
gives rise to an increased H+ secretion by intercalated cells

)rh/etycoo/selo
mn(

xulfni
K

+

16

4

20

0

12

8

control

Chloride Bromide Iodide

bumetanide
16799

182114

206133

Cl Cl-

Br Br -

I I-

Fig. 4 NKCC1 transport of Cl−, Br−, and I−. K+ influx was measured in
NKCC1-injected Xenopus laevis oocytes in a hyperosmotic solution
containing 96 mMNaCl, 4 mMKNO3, 2 mM Ca(NO3)2, 1 mMMgSO4,
60 mM sucrose, and 1 mM ouabain in the presence or absence of 20 μM
bumetanide (pH 7.4, osmolality 260 mOsM). For halide substitution,
NaCl was replaced with NaBr, or NaI. Fluxes are expressed in nanomoles
K+ per oocyte per hour. Bars represent means±SEM (n=20–25 oocytes).
Values in inset represent sizes (radius) of atoms and their ions in pm

T A LHICK SCENDING IMB

Reabsorption

2Cl

Na

K

+

+

-
Na+

K
+NKCC2

Cl
-

Ca , Mg2+ 2+
+ -

ROMK ClCK

Na Pump+~

S , L , IALIVARY UNG NTESTINE

Secretion

2Cl
Na

K

+

+

-

Na+

K
+

NKCC1

Cl
-

CFTR
Na Pump+

~

bloodlumen

+-

a

b

Fig. 5 Na–K–2Cl cotransport in two types of epithelial cells. a Thick
ascending limb epithelial cell model showing apical NKCC2 localization.
The driving force for NaCl reabsorption is provided by the basolateral
Na+/K+ pump. Apical K+ channel (ROMK) delivers K+ in the lumen for
NKCC2 function and creates an electropositive lumen. ClCK(A and B) on
the basolateral membrane creates a path for Cl−movement and participate
in the electronegative blood side. The electrical field generated by the
epithelial cells favors the paracellular reabsorption of divalent cations. b
Model of a Cl− secreting epithelial cell with localization of NKCC1 on the
basolateral membrane. The cotransporter replenishes Cl− as the anion is
transported across the apical through CFTR or other Cl− channels. K+,
which enters through the pump and NKCC1, leaves the cell through
apical and basolateral K+ channels (not shown). Note that this model
can be used for stria vascularis marginal cells (K+ secreting cell) with
CFTR substituted for KCNQ1

96 Pflugers Arch - Eur J Physiol (2014) 466:91–105



H+-ATPase, leading to metabolic alkalosis [124]. Further-
more, the decrease in plasma volume associated with the
defect in TAL Na+ reabsorption stimulates the renin–angio-
tensin–aldosterone system leading to an increased production
of angiotensin II and aldosterone which respectively stimu-
lates proximal Na+/H+ exchanger and distal ENaC, thereby
leading to a further secretion of H+ and K+ [74]. This pheno-
type has been mostly reproduced in a mouse model [117]. The
homozygous NKCC2 knockout mice exhibit a severe de-
crease in plasma volume, high plasma renin, hypokalemia,
and metabolic alkalosis, while heterozygous knockout mice
did not show any physiological difference when compared
with wild-type mice. Reversely, enhanced activity of NKCC2
has been linked to hypertension and hypertensive disorders in
rodents and in humans [12, 15, 118].

NKCC2 is also present in the apical membrane of the
macula densa, which is located in the juxtaglomerular appara-
tus and is strategically in contact with the distal tubule and the
extraglomerular mesangium close to the afferent arteriole [70].
The macula densa cells are NaCl sensors able to adjust the
glomerular filtration by vasodilatation or vasoconstriction of
the afferent arteriole. While a decrease in tubular NaCl concen-
tration results in vasodilation of the afferent arteriole and in
renin release by the granular cells, an increase in NaCl concen-
tration induces a vasoconstriction of the afferent arteriole and
thereby a decrease in glomerular filtration. This latter mecha-
nism is known as the tubuloglomerular feedback and NKCC2
has been shown to play a pivotal role in the sensing of this high
tubular NaCl concentration ([100, 110], Table 2). Note that
NKCC1 is also highly expressed in the afferent arteriole
renin-positive cells and in juxtaglomerular mesangium [69],
possibly also related to tubuloglomerular feedback.

Alternative splicing of the exon 4 of the SLC12A1 gene
gives rise to three NKCC2 variants [61, 98]. These variants have
different transport characteristics and different localizations

along the TAL and the macula densa (Fig. 6). NKCC2F, which
is the most abundant variant, is exclusively expressed in the
medullary TAL, while NKCC2A is detected in both medullary
and cortical TAL and NKCC2B is present in the cortical TAL.
Macula densa express both NKCC2A and NKCC2B. Note that
in human, NKCC2A is the predominant variant, possibly a
reflection of a slightly different diet and physiology [18]. Affin-
ity for Cl− differs between variants, and although there is some
variability between species, the sequence order is NKCC2B>
NKCC2A>NKCC2F for mouse and rabbit cotransporters [19].

Table 2 Functions of NKCC1
and NKCC2 NKCC1 NKCC2

Localization Function Localization Function

Inner ear Hearing and balance Kidney: TAL Na+ reabsorption, NH4
+

reabsorption

Sensory neurons Filtering sensory noise Kidney: macula
densa

Na+ sensing
(tubuloglomerular
feedback)

CNS neurons Proconvulsant or
anticonvulsant

Salivary gland epithelial cells Salivary volume

Intestine interstitial Cajal cells Peristalsis

Vascular smooth muscle cells Vascular tone

Testes Spermatogenesis

Airway epithelial cells Maturation of fetal lung

Distal colon NH4
+ secretion

800

300
mOsM

High Na

low affinity
+

low Na

high affinity
+

Cortex

Outer Medulla

Inner Medulla

F

A

B

100
50

600
300 urea

1200

NKCC2

Glom

TAL

150

30

Fig. 6 Diagram of the mouse medullary and cortical thick ascending
limb of Henle expressing NKCC2. The low affinity isoform, NKCC2F, is
expressed in the lower portion of the outer medullary TAL where the
urine Na+ concentration is high. The high affinity isoform, NKCC2B, is
expressed in cortical TAL where the urine Na+ concentration is low. The
intermediate affinity isoform, NKCC2A, is expressed along the entire
TAL. In the outer medulla, the major role of NKCC2 is to transport Na+

without water, thus raising the osmolarity of the interstitium. Osmolarity
of the urine and interstitium and the urea and Na+ concentrations in the
urine are provided. Glom glomerulus
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The presence of both NKCC2A and B variants in the macula
densa facilitates efficient NaCl sensing over a wide range of
fluctuating NaCl concentrations [18, 19]. Specific NKCC2
variant knockouts did not show severe salt-wasting phenotype
probably because of compensation by the other NKCC2 vari-
ants [93].

NKCC2 is also a major player in NH4
+ reabsorption and

acid–base homeostasis (Table 2). NH3 is produced by gluta-
mine metabolism in renal epithelial cells and exists predomi-
nantly in its acidic form, NH4

+, at physiological pH. The
proximal tubule is primarily responsible for luminal NH4

+

secretion, which is substantially increased by metabolic aci-
dosis. Thereafter, NH4

+ is reabsorbed in the TAL by NKCC2
and, subsequently, accumulated in renal interstitium where it
contributes to the high medullary osmolarity. It is finally
secreted back into the urine by Rhesus glycoproteins in the
collecting duct [73, 126].

NKCC1

In contrast to NKCC2, which exhibits a highly restricted
pattern of expression, NKCC1 is widely expressed in human,
mouse, and other vertebrates. To date, there are no mutations
that have been found in the human SCL12A2 gene, which
suggests that loss of NKCC1 function might be embryonic
lethal in human. Considering the many tissues and functions
supported by NKCC1 (see Table 2), it is surprising that the
NKCC1 knockout mouse is viable [27, 30, 37, 94]. The most
striking deficit of the NKCC1 knockout mouse is sensorineu-
ral deafness and imbalance, which originates in cochlea and
semicircular canals and vestibule, respectively. In the cochlea,
the stria vascularis stratified epithelium composed of marginal
cells expresses the Na+/K+-ATPase and NKCC1 on the
basolateral membrane. As in many epithelia, the Na+/K+

pump provides the force for K+ and Cl− influx through
NKCC1. While Na+ and Cl− are subsequently recycled re-
spectively through the Na+/K+ pump and the ClCK Cl− chan-
nel, K+ is secreted into the scala media by the complex of K+

channels: KCNQ1/KCNE1 [75, 89, 121]. The high potassium
endolymph generates a positive (+85 to +100 mV)
endocochlear potential with a large driving force for the
movement of K+ into sensory hair cells, which transduce
mechanical into electrical signals [138].

NKCC1 is also highly expressed in inner ear spiral
(cochlear) and vestibular ganglia [27]. While the role of the
cotransporter in these specific neurons is unknown, this ob-
servation is interesting in light of the role that NKCC1 plays in
sensory afferent neurons. In primary afferent neurons of dorsal
root ganglia, NKCC1 participates in Cl− accumulation in both
the neuronal cell body and axon terminals. High Cl− in the
terminals leads to GABA depolarization, presynaptic inhibi-
tion, and filtering of sensory noise [2, 116, 128]. As GABAA

receptor subunits are also very abundant in rat spiral ganglion

[133], it is tempting to speculate that the cotransporter in inner
ear ganglion neurons might be participating in the filtering of
auditory noise.

Regulation of intracellular Cl− seems to be an important
function of NKCC1 in adult neurons located outside the
central nervous system (CNS). NKCC1 is abundant not only
in primary afferent dorsal root ganglion and inner ear neurons,
but also in olfactory neurons [107] and gonadotropin releasing
hormone neurons [24]. In contrast in the CNS, NKCC1 ex-
pression is only elevated in immature neurons but then de-
creases during neuronal maturation [32, 103]. The role of the
cotransporter in immature neurons is, however, not very well
understood. First, there is currently a debate in the field on
whether the cotransporter truly accumulates Cl− in immature
neurons. In reality, only minimal changes in the GABA-
mediated Cl− reversal potential are measured in wild-type
neurons exposed to bumetanide [32, 140] or in neurons lack-
ing NKCC1 expression versus wild-type neurons [5, 139].
Second, there is conflicting information regarding the pro-
versus anticonvulsant nature of the cotransporter as studies
have demonstrated that bumetanide decreases spontaneous
network activity in the immature hippocampus [32], whereas
absence of NKCC1 significantly increased spontaneous activ-
ity in immature CA3 pyramidal neurons [140]. Bumetanide
treatment has been recently effectively used in treating adult
patients with temporal lobe epilepsy [33]. However, it is
difficult to know if the effect of the loop diuretic is a direct
effect on neurons or an indirect effect due to volume depletion.
Indeed, the diuretic in the circulation is bound to albumin and
does not permeate the blood–brain barrier. The diuretic is
currently in clinical trial for intractable neonatal seizures
(http://ClinicalTrials.gov). In these newborns, the blood–
brain barrier might not be completely tight and the diuretic
might be crossing to the brain.

NKCC1 also plays an important role in epithelial function
(Fig. 5b). In salivary gland, NKCC1 is highly expressed at the
basolateral membrane of acinar cells where it participates in
the secretion of fluid that accompanies secreted α-amylase
and mucine. Inhibition or deletion of NKCC1 gives rise to a
reduction in the volume of saliva secreted in response to
muscarinic agonists [34]. In the intestine, the cotransporter is
expressed on the basolateral membrane of epithelial cells
where it is also involved in fluid secretion [37, 67, 91].
Interestingly, the cotransporter is also expressed in cells in-
volved in peristalsis or contraction and relaxation of smooth
muscles that helps the movement of the food along the gas-
trointestinal tract. Indeed, the cotransporter is found in the
interstitial cells of Cajal which surround the myenteric plexus
and serve as a pacemaker. These cells generate slow waves
that synchronize smooth muscle cell contraction, thus promot-
ing an efficient intestinal transit. NKCC1 is responsible for
maintaining intracellular Cl− concentration above equilibrium
and its absence in NKCC1 knockout mice induces a
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depolarization of the smooth muscle cell membranes, leading
to a decrease in the frequency and amplitude of the slow
waves. In wild-type cells, bumetanide reversibly affects the
shape, frequency, and amplitude of slow waves in the smooth
muscle cells of the jejunum [130]. Deficit in peristalsis in the
NKCC1 knockout mouse might explain the intestinal obstruc-
tions and high lethality observed in animals prior to weaning
[37]. In humans, impaired myenteric cells of Cajal have been
reported in chronic intestinal pseudo-obstruction, infantile
pyloric stenosis, Hirschsprung’s disease, slow transit consti-
pation, and diabetic gastroparesis [35, 119, 120, 125].

Two additional striking phenotypes of the NKCC1 knock-
out mouse are hypotension and male infertility. The hypoten-
sion is due to decreased vascular tone, as studies performed in
isolated rat aorta have shown that NKCC1 is activated by
vasoconstrictors, inhibited by nitrovasodilators, and is upreg-
ulated in hypertension [37, 48]. Furthermore, intravenous
infusion of bumetanide resulted in a rapid drop in blood
pressure in wild-type mice, but not in NKCC1 knockout mice
[48]. NKCC1 knockout males show smaller testis size than
their wild-type counterpart. Histological analysis demon-
strates a smaller diameter of the seminiferous tubules and
absence of mature spermatids near the lumen of the tubule
[94]. This deficiency might be due to a deficit in the
hypothalamus/pituitary/testis axis, as reduced circulating
levels of testosterone and luteinizing hormone are observed
in the knockout mice [43].

Regulation of SLC12A1/2

Regulation of the gene level

In contrast to other transport mechanisms, there is very little
information about the regulation of the SLC12A1/2 genes at
the transcriptional level. The SLC12A2 gene (NKCC1) is
encoded by 28 exons, and as discussed above, exon 21 is
alternatively spliced. Analysis of the genomic DNA sequence
upstream of the putative transcriptional initiator site revealed a
promoter region characteristic of a housekeeping gene: a
TATA-less promoter and several Specificity Protein 1 (Sp1)
sites [105]. Activator protein-2 (AP-2) binding sites are also
located ~30 and ~500 bp upstream of the transcription initiator
site. In plants, AP-2 transcription factors have been implicated
in response to environmental signals in stress acclimation
[29]. AP-2 s are also involved in the regulation of cell prolif-
eration, differentiation, apoptosis, and carcinogenesis [99].
Several studies have examined changes in NKCC1 mRNA/
protein expression upon changes in physiological conditions.
Experiments performed in rats dehydrated for 2 days or fed
with NH4Cl for 6–7 days to induce metabolic acidosis have
shown a significant increase in NKCC1 abundance in both
outer and inner medullary collecting ducts [64]. In another

study performed in cell culture with T-84 cells, it was shown
that hypoxia leads to a significant decrease in NKCC1 tran-
scription [60]. This decrease was due to HIF-1α, a transcrip-
tion factor mediating transcriptional activation of genes in
response to decreased oxygen concentration [92]. Colonic
mucosal scrapings from HIF-1α knockout animals showed a
~10-fold increase in NKCC1 expression [60]. Finally,
NKCC1 expression was shown to be significantly downregu-
lated in a skin-specific knockout of the forkhead transcription
factor, FoxA1 [21]. NKCC1 expression is also epigenetically
regulated during the development of hypertension in rat
models [20]. While the NKCC1 promoter is methylated with
age in normotensive rats, the promoter is hypomethylated in
spontaneous hypertensive (SHR) rats. Hypomethylation of the
NKCC1 promoter leads to an increase expression of the
cotransporter whose function affects vascular tone. It was
demonstrated that activity of the DNA methyltransferase is
attenuated in hypertensive rats, while upregulated in normo-
tensive rats [20].

The SLC12A1 (NKCC2) gene is encoded by 27 exons with
alternative splicing of exon 5 which exists in three versions
encoding the A, B, and F variants. Nuclear run-off assays
experiments demonstrated that the kidney-specific expression
of NKCC2 is due to interactions between kidney-enriched
transcription factors and regulatory elements in the 5′-flanked
region of the SLC12A1 gene [63]. Deletion analysis revealed
the presence of positive regulatory elements controlling the
NKCC2 promoter in TAL cells in an ~280-bp fragment not
too far upstream from the TATA box. Those transcriptional
elements include a putative Hepatocyte Nuclear Factor 1
(HNF-1) site, a GA microsatellite, two consensus CCAAT
Enhancer-Binding Protein (C/EBP) binding sites, and one
Enhancer Box (E-box) site. In addition, negative regulatory
elements were shown to be present in a 725-bp fragment
located about 1 kb upstream of the previous region. Both
transcription and mRNA stability of NKCC2 are increased
upon chronic metabolic alkalosis [71]. This is not unexpected
as the cotransporter is a major pathway for NH4

+ reabsorption
in the medullary thick ascending limb.

Posttranslational modification

Both NKCC1 and NKCC2 are activated by an increase in the
external osmolarity and a decrease in the intracellular Cl−

concentration. Activation by low Cl− is not related to a gradi-
ent effect, but due to a Cl−-sensitive mechanism [80]. Inter-
estingly, the two stimuli are interrelated and working in op-
posite directions. Indeed, an increase in external osmolarity
results in cell shrinkage, which is accompanied by an increase
in intracellular Cl−. Thus, there is an activation signal due to a
decrease in cell volume and an inhibition signal due to an
increase in intracellular Cl−. Whether under these conditions
there is overall activation of Na–K–2Cl cotransport is a matter
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of debate. Two pieces of evidence indicate that it might not be
the case. First, as we discussed above, cell shrinkage induces
an increase in K+/K+ exchange, which is neutral for net
transport [26]. Second, most cells fail to exhibit a regulatory
volume increase (RVI) response when exposed to a hyperto-
nicity solution, but demonstrate RVI only when they are
returned to isosmotic conditions following a hypo-osmotic
challenge (for review, see [59]). Stimulation of NKCC in this
case is due to the loss of Cl− that the cells experience during
volume restoration under hypotonicity. Similarly, stimulation
of NKCC is sometimes observed upon mild hypotonic shock.
This can also be explained by a decrease in intracellular Cl−

that occurs when low Cl− solutions are used to decrease the
external osmolarity.

There are many additional factors, e.g., physical, hor-
mones, cytokines, and signaling cascades, that affect the ac-
tivity of NKCC1 and NKCC2 [4, 14, 53, 68]. It is worth
noting that not all of them affect the cotransporters directly
but rather indirectly through other transport mechanisms. For
instance, adenylcyclase activators (e.g., forskolin), phospho-
diesterase inhibitors (IBMX), and cAMP have a profound
effect on NKCC1 function in Cl− secreting epithelia (from
shark rectal gland [79] to human airway [58]). It is not at all
clear, however, that the cyclic nucleotide and/or protein kinase
A have a direct stimulatory effect on the cotransporter. Indeed,
in this case, NKCC1 activation is likely due to stimulated Cl−

secretion on the apical membrane (i.e., through CFTR),
resulting in a reduction in intracellular Cl− and secondary
activation of the cotransporter. This mode of activation likely
occurs in other situations where K+ channels and Cl− channels
activities are affected and the level of intracellular Cl− is
decreased.

Evidence that NKCC is activated by phosphorylation
comes from the demonstration by John Russell that ATP
depletion caused a significant decrease in Na–K–Cl transport
activity in squid giant axon [1]. In addition, orthovanadate and
fluoride, two inhibitors of protein phosphatases, decreased
this rate of inhibition supporting the hypothesis that the
cotransporter in squid axon is regulated by phosphorylation–
dephosphorylation. This observation was later pursued by
Bliss Forbush’s group who showed that NKCC in shark rectal
gland acquires phosphate at serine and threonine residues in
response to forskolin and cell shrinkage stimuli [79]. The
identity of the kinases remained unknown until the discovery
of Ste20-kinase association with K–Cl and Na–K–2Cl
cotransporters [31, 101].

The regulation of SPAK/OSR1 and of NKCC1/NKCC2 is
complex and has been addressed thoroughly in a recent review
[42]. Here, we will briefly summarize some of the major
findings. The current working model involves WNK kinases
and PKC kinase isotypes acting upstream of SPAK and OSR1
[44, 76, 113] with the best characterized activation cascade
involving WNK4–SPAK. In this cascade, WNK4 and SPAK

physically interact through an RFxV motif in WNK4 and the
CCT/PF2 domain in SPAK. WNK4 then phosphorylates
SPAK at residues T243 in the catalytic domain and S383 in
the regulatory domain, resulting in the activation of the Ste20
kinase. SPAK is then able to activate and phosphorylate the
Na–K–2Cl cotransporters [44, 123]. An additional protein,
which seems to play a critical role in cotransporter activation,
is the calcium binding protein-39 (Cab39), also called mouse
protein-25 (MO25). The adaptor protein comes in two iso-
forms Cab39 and Cab39-like, which are the products of two
related genes. Both Cab39/MO25 isoforms serve as scaffolds,
stabilizing Ste20-related kinases in their close or active con-
firmation [8, 36]. Knockdown of Cab39/MO25 suppresses the
SPAK/OSR1-mediated phosphorylation and activation of
NKCC1 [36]. We recently demonstrated that Cab39 can facil-
itate the trans phosphorylation and activation of SPAKmono-
mers, in the absence of upstream activation by WNK kinases
[104]. This finding argues that the Ste20 and WNK kinases
can also act independently of each other, making the interpre-
tation of the in vivo whole animal model data much more
complicated.

Important questions in the field involve the multiplicity and
possible redundancy of kinases and adaptor proteins. Why do
we need multiple Ste20 kinases, WNK kinases, and Cab39
proteins? One possible answer is that the homologous proteins
might be expressed in different cell types, might have slightly
different properties, and might differently modulate the activity
of specific transport proteins. Another conceivable answer is
the need for redundancy that would minimize the prospect of
affecting important physiological functions. For the Ste20 ki-
nases, we have considered the need for two Ste20 kinases and
the answer is mixed. On one hand, we found SPAK and OSR1
both expressed in sensory neurons and each participating in the
activation of NKCC1 [51]. On the other hand, SPAK knockout
mice mainly display a distal convoluted tubule (DCT) pheno-
type [136], whereas OSR1 knockout mice predominantly ex-
hibit a TAL phenotype [77]. There are also significant differ-
ences between the two kinases as OSR1 is mostly found as a
full-length product, whereas SPAK in kidney medulla is also
observed as smaller fragments [57, 84]. Similarly, there are
some major differences betweenWNK kinases, both in expres-
sion patterns, as well as molecular properties [83].

Another regulator of NKCC2 function in the thick ascend-
ing limb of Henle is a protein called SORLA (Sortilin-related
receptor, LDLR class A repeats-containing) and which is
mostly studied in the nervous system [96]. SORLA has been
shown to regulate the subcellular localization of SPAK and its
ability to phosphorylate NKCC2. In SORLA knockout mice,
a smaller fraction of SPAK colocalizes with NKCC2 and
phosphorylation of NKCC2 is decreased, whereas the apical
expression is unchanged [106].

Vasopressin is the main hormone that affects NaCl
reabsorption in the TAL [88, 127]. Its infusion in live mice
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increases apical expression and phosphorylation of N-terminal
Thr96 and Thr101 residues of NKCC2 [54]. Vasopressin in-
creases intracellular cAMP which phosphorylates and acti-
vates protein kinase A (PKA), this latter inducing phosphor-
ylation (N-terminal Ser126 and C-terminal Ser874) of rat
NKCC2, leading to increase trafficking of the cotransporter
to the plasma membrane [10]. While vasopressin, calcitonin,
glucagon, and β-adrenergic agonists stimulate NKCC2 traf-
ficking by a cAMP-dependent PKA pathway, atrial natriuretic
peptides, endothelin, α-adrenergic agonists, and nitric oxide
induce an increase in intracellular cGMP, leading to a stimu-
lation of the phosphodiesterase 2 (PDE2), resulting in a de-
crease in the apical expression of NKCC2 [3]. The AMP
activated kinase (AMPK) seems to also regulate NKCC2
activity by phosphorylation at Ser126 (as shown in a murine
macula densa cell line) and at Ser130 in HEK cells [39, 108].
However, it is not known whether AMPK regulates NKCC2
activity in the TAL. Yeast-two-hybrid assay experiments have
shown that the glycolytic enzyme, aldolase B, and the
vesicle scaffolding protein, SCAMP2, both interact with the
C-terminal tail of NKCC2.While an increased in aldolase B or
in SCAMP2 expression decreases membrane expression of
NKCC2 in co-transfected opossum kidney epithelial cells,
their possible role in TAL is unknown [137]. Finally, the lipid
raft-associated protein MAL/VIP17 which is expressed in the
TAL interacts with the C-terminal tail to possibly decrease the
endocytosis of NKCC2 [16].

Final remarks

It is clear that much progress has been made over the past
30 years in understanding the physiology of the two
Na–K–2Cl cotransporters. The availability of furosemide
and bumetanide as potent and rather specific inhibitors
at low concentrations has greatly facilitated the identifi-
cation and characterization of cotransporter function in
many tissues. Likely, it is also the efficacy of furosemide and
bumetanide as potent and safe inhibitors of Na+ reabsorption
in the thick ascending limb of Henle that has prevented the
need to discover new inhibitory compounds. Considering the
multiple roles that the NKCC1 plays outside the kidney, it
would be useful to have compounds that modulate NKCC1
function without affecting NKCC2. This is particularly true
when bumetanide is used in clinical settings to target NKCC1
function, with the knowledge that significant confounding
effects are likely to result from blood volume reduction.

Aside from new pharmaceutical agents, crystal structures
of the entire cotransporter proteins or protein domains are also
in need. These structures should allow us to better understand
how phosphorylation of residues in the N-terminal tail of the
cotransporters results in cotransporter activation or how the
structure of the tail affects the transmembrane core and the

movement of the ions. The crystal structure will also give
precious information on specific residues that interact with
transported ions and inhibitors. These structures might also
help in understanding the slippage modes of the transporter
and the basis for the K+/K+ exchange.

As we have alluded to in this review, we have very limited
information on regulation of both cotransporters at the tran-
scriptional level. It is very unlikely that cotransporter regula-
tion occurs mostly at the posttranslational level, as synthesis
and stability of mRNA and protein must also be modulated by
physiological processes. It is also clear that more and more
proteins associating with the cotransporters are being identi-
fied. Whether or not all these proteins will have a significant
impact on our understanding of cotransporter function is an
unknown. It is clear that the discovery of Ste20 and WNK
kinases has had a profound impact on our understanding of
NKCC1, NKCC2, and even NCC activation, even if many of
the details still need to be worked out. It is increasingly clear
that these proteins are working in context-specific environ-
ments and that there are likely major differences in
cotransporter regulation that are cell-type specific. The chal-
lenge will be to decipher these unique features in situations as
close as physiologically possible.
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