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Abstract In smooth muscle cells (SMCs), the intracellular
chloride ion (Cl−) concentration is high due to accumulation
by Cl−/HCO3

− exchange and Na+–K+–Cl− cotransportation.
The equilibrium potential for Cl− (ECl) is more positive than
physiological membrane potentials (Em), with Cl− efflux in-
ducing membrane depolarization. Early studies used electro-
physiology and nonspecific antagonists to study the physiolog-
ical relevance of Cl− channels in SMCs. More recent reports
have incorporated molecular biological approaches to identify
and determine the functional significance of several different
Cl− channels. Both “classic” and cGMP-dependent calcium
(Ca2+)-activated (ClCa) channels and volume-sensitive Cl−

channels are present, with TMEM16A/ANO1, bestrophins,
and ClC-3, respectively, proposed as molecular candidates for
these channels. The cystic fibrosis transmembrane conductance
regulator (CFTR) has also been described in SMCs. This
review will focus on discussing recent progress made in iden-
tifying each of these Cl− channels in SMCs, their physiological
functions, and contribution to diseases that modify contraction,
apoptosis, and cell proliferation.

Keywords Chloride channel . Smoothmuscle . TMEM16A/
Ano1 . Bestrophins . ClC-3 . CFTR

Introduction

Chloride (Cl−) is the predominant extracellular and intracellular
anion with intracellular concentration [Cl−]i varying widely be-
tween different cell types. In many cells, such as frog skeletal
muscle, [Cl−]i is similar to that predicted by passive distribution
determined by the Donnan equilibrium [47]. In contrast, in
vascular smooth muscle cells (SMCs), [Cl−]i is much higher than
would be expected [14]. [Cl−]i ranging from ~30 to ~50 mM has
been recorded in SMCs using a variety of techniques, including

radioisotopes, fluorescent dyes, and ion-selective electrodes (see
[57]). High [Cl−]i is maintained by active accumulation through
Cl−/HCO3

− anion exchange and Na+–K+–Cl− cotransportation
[1, 90]. The estimated equilibrium potential for Cl− (ECl

−) is
between −30 and −20 mV in SMCs [57, 66]. Physiological
membrane potential (Em) in vascular and nonvascular SMCs
ranges between ~−60 and ~−40 mV [6, 44, 83, 85, 86, 118].
Cl− channel activation would result in Cl− efflux, leading to
membrane depolarization, voltage-dependent calcium (Ca2+)
channel activation, an elevation in [Ca2+]i, and contraction [19,
46, 65]. In addition to modulation of membrane potential and
contractility, intracellular Cl− has also been proposed to regulate
intracellular pH and cell volume in SMCs [14].

Cl− channels are subdivided into five families: transmembrane
protein 16 (TMEM16)/anoctamin (ANO), bestrophins, voltage-
gated Cl− channels (CLCs), cystic fibrosis (CF) transmembrane
conductance regulator (CFTR), and ligand-gated Cl− channels,
including glycine and γ-aminobutyric acid (GABA) receptors
[30]. This review will summarize knowledge of TMEM16A/
ANO, bestrophins, CLCs, and CFTR due to limited evidence for
other Cl− channel members in SMCs. The predicted membrane
topologies for each of these Cl− channels are illustrated in Fig. 1.
Ligand-gatedCl− channels have been described in airway SMCs,
where both GABAA and GlyR1 channels are expressed and
functional [81, 143]. A distinct type of Cl− current (ICl,acid)
activated by acidic extracellular pH has also been reported in
aortic SMCs that may be generated by CLC-3 [71, 76].

Functional significance of SMC Cl− currents

Several early studies demonstrated Cl− flux in a variety of
different vascular SMC types [11, 108, 124, 137]. Noradren-
aline (NE) stimulated 36Cl− efflux in rat aorta, portal vein, and
rabbit pulmonary arteries [11, 108, 124]. Subsequent findings
showed that NE-induced depolarization of rat anococcygeus
muscle cells was Cl− current-dependent; endothelin (ET) ac-
tivated Cl− currents in porcine coronary artery, human mesen-
teric artery SMCs, and cultured aortic SMCs; and histamine
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activated Cl− currents in rabbit pulmonary artery SMCs [59,
121, 123].

Research using a variety of nonselective Cl− channel an-
tagonists further supported the concept that Cl− flux contrib-
utes to vasoconstriction. 4,4′-Diisothiocyanatostilbene-2,2′-
disulfonic acid (DIDS) and indaryloxyacetic acid (IAA-94),
but not niflumic acid (NFA), hyperpolarized and relaxed
pressurized rat cerebral arteries [84]. NFA reduced NE- but
not K+-induced contractions in rat aorta and mesenteric arter-
ies [16, 17, 62]. Histamine-induced depolarization and con-
traction were also attenuated by NFA in rabbit middle cerebral
and basilar arteries, respectively [37, 120]. IAA-94 inhibited
ET-induced vasoconstriction in cultured vascular SMCs [114].
Anion replacement has also been utilized to strengthen func-
tional evidence obtained using nonspecific Cl− channel inhib-
itors. Substitution of extracellular Cl− with methanesulfonate
potentiated NE-, serotonin-, endothelin-1-, and histamine-
induced, but not K+-induced contractions in rabbit basilar
arteries and rat aorta [19, 20, 62]. Lowering extracellular Cl−

potentiated pressure-induced constriction and inhibited
histamine-induced contraction in rat cerebral arteries [84,
120]. Substitution with Br− and NO3

−, which are more
permeant anions than Cl−, increased contraction to NE in rat
portal vein [125].

In addition to modulating SMC contractility, both volume-
sensitive Cl− channels and Ca2+-activated Cl− channels (ClCa)

channels have been proposed to control SMC proliferation
[12, 138, 142]. DIDS, but not IAA-94 or 5-nitro-2,2″-dicar-
boxylic acid (NPPB), another nonselective Cl− channel
blocker, suppressed ET-1-induced proliferation in cultured
aortic SMCs [138]. In contrast, NPPB and IAA-94, but not
DIDS, inhibited insulin-like growth factor (IGF)-induced pro-
liferation in porcine coronary artery SMCs [12]. Under chron-
ic hypoxic conditions, NFA and IAA-94 also inhibited prolif-
eration of rat pulmonary artery SMCs [142].

In summary, studies measuring ion flux and those using
nonselective Cl− channel blockers and extracellular anion
replacement suggested that Cl− currents regulate SMC func-
tion. More recent studies have identified some of the proteins
that generate and regulate these Cl− currents and investigated
their physiological functions and pathological alterations.

Molecular identification of Cl− channels in SMCs

Classic Ca2+-activated Cl− (ClCa) channels

ClCa currents have been described in a variety of SMC types,
including those from humanmesenteric, rabbit ear, pulmonary
and coronary arteries, rat portal vein and cultured cells from
rat pulmonary, and cultured pig aorta [2, 26, 58, 64, 91, 130,
145]. Nonspecific Cl− channel blockers previously shown to
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Fig. 1 Predictedmembrane topologies of Cl− channels described in vascular SMCs. TMEM16A/ANO1was adapted from [144], although an alternative
membrane topology has been suggested [144]. Bestrophin modified from ref. [79], ClC-3 from ref. [27], and CFTR from ref. [152]
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modulate SMC functions were demonstrated to inhibit whole-
cell ClCa currents, supporting relevance [64]. Cl− channel
blockers also inhibited spontaneous transient inward currents
(STICs) in rabbit portal vein SMCs [48]. STICS occur due to
the simultaneous activation of multiple Cl− channels by a Ca2+

spark, a local intracellular Ca2+ transient that occurs due to
ryanodine (RyR)-mediated sarcoplasmic reticulum Ca2+ re-
lease [53]. In some SMC types, including those from airways,
Ca2+ sparks activate both STICs and spontaneous transient
outward currents (STOCs), which occur due to the simulta-
neous activation of multiple large conductance Ca2+-activated
potassium (BKCa) channels. A single Ca2+ spark can activate
both ClCa and BKCa channel, eliciting a STOC followed by a
STIC [151]. STICs induce depolarization, whereas STOCs
hyperpolarize the membrane potential. Thus, bimodal regula-
tion of ClCa and BKCa channels by Ca2+ sparks permits fine
tuning of membrane potential [150].

ClCa currents exhibit a distinct phenotype. The IV relation-
ship is outwardly rectifying at low intracellular Ca2+ concen-
trations ([Ca2+]i) [45]. Elevating [Ca

2+]i linearizes the ClCa IV
relationship [65]. The relative permeability of SMC ClCa
currents is SCN− > I− > Br− > Cl− > aspartate [41]. IP3R- or
RyR-mediated SR Ca2+ release, Ca2+ entry through voltage-
dependent Ca2+ channels (VDCC), and local Ca2+ influx
through transient receptor potential (TRP) channels have all
been demonstrated to activate ClCa currents in SMCs [9,
64–66]. Some of these regulatory mechanisms appear to be
cell type-specific, as blockers of nonselective cation channels
but not VDCCs inhibited ClCa currents in cerebral artery
SMCs [9]. In contrast, Ca2+ entry through VDCCs activated
ClCa currents in rat portal vein and rabbit coronary artery
SMCs [64, 92]. Extracellular Ca2+ removal had no immediate
effect on ClCa currents in pig aorta and rabbit ear artery and
portal vein SMCs, suggesting that external Ca2+ was not a
primary direct source for activation [2, 26, 129].

Studies illustrating that Ca2+ sparks activate STICs in rab-
bit portal vein, rat coronary artery, and tracheal SMCs provide
direct evidence that intracellular Ca2+ release can activate ClCa
channels, at least in some SMC types [40, 51, 128, 151].
However, STICs do not occur in many SMC types, including
those that generate Ca2+ sparks and express ClCa channels.
These findings indicate that some SMC types locate ClCa
channels in close proximity to sites of intracellular Ca2+

release and, more specifically, nearby RyR channels that
generate Ca2+ sparks [53]. Such organization permits local
control of ClCa channel activity. In contrast, other SMC types
appear to position ClCa channels away from Ca2+ spark sites,
eliminating this regulatory mechanism.

Bestrophins, CLCs, CLCAs, and a tweety-3 homolog have
been proposed to generate ClCa currents[66]. Tweety appeared
to be an unlikely candidate due to its relatively high conduc-
tance [113]. Similarly, recombinant CLCA channels generate
currents that were kinetically distinct from ClCa currents in

SMCs [66]. The voltage dependence of recombinant
bestrophins or CLCs was also dissimilar to those of SMCClCa
currents [45, 87, 111]. Recently discovered TMEM16A/
ANO1 channels displayed properties similar to native ClCa
channels [10, 105, 141]. TMEM16A/ANO1 channel message
and protein have been described in rat cerebral, pulmonary
and carotid artery, murine portal vein, and cultured rat pulmo-
nary artery SMCs [21, 72, 117]. Evidence supporting the
contribution of TMEM16A/ANO1 channels to ClCa currents
includes the fact that recombinant channels and native SMC
ClCa currents exhibit similar Ca2+ dependence and IV linear-
ization by an elevation in [Ca2+]i (Fig. 2) [10, 72, 82, 106,
117]. TMEM16A/ANO1 knockdown reduced ClCa current
density in rat cerebral artery and cultured pulmonary artery
SMCs [72, 117]. Cell swelling and membrane stretch activat-
ed TMEM16A/ANO1 currents in cerebral artery SMCs [9].
Selective TMEM16A/ANO1 knockdown attenuated intravas-
cular pressure-induced cerebral artery depolarization and va-
soconstriction [9]. T16Ainh-A01, a TMEM16A/ANO1 inhib-
itor, relaxed methoxamine-contracted murine and human
blood vessels, suggesting that agonists can activate these ion
channels to induce contraction [22]. These studies provide
strong evidence that TMEM16A/ANO1 channels generate
classic ClCa currents in SMCs.

TMEM16A/ANO1 channels also appear to generate func-
tional ClCa currents in nonvascular SMCs. TMEM16A/ANO1
is expressed in sheep, rat, and mice urethral SMCs [103].
Electronic field stimulation (EFS)- and NE-induced uterine
contractions were inhibited by NFA and exposure to Cl−-free
Krebs solution [103]. The authors suggested that TMEM16A/
ANO1 regulates the development and maintenance of excit-
atory contractile responses in urethral SMCs [103].
TMEM16A/ANO1 is expressed in airway SMCs, and activa-
tion contributes to methacholine-induced contraction [146].
Benzbromarone, a TMEM16A/ANO1 blocker, inhibited
methacholine-induced contraction of mouse and human air-
way SMCs [50]. TMEM16A/ANO1 is also expressed in
interstitial cells of Cajal (ICC), which control SMC contrac-
tion and induce rhythmic slow waves in the gastrointestinal
tract [38, 49, 52, 104]. In TMEM16A knockout mice, rhyth-
mic contractions are reduced or absent in gastric and small
intestine SMCs [49, 52].

Recent studies suggest that alterations in TMEM16A/ANO1
function contribute to cardiovascular pathology. ClCa currents
were elevated in pulmonary artery SMCs of rats exposed to
hypoxia for 7 days [70]. TMEM16A/ANO1 mRNA/protein
and ClCa currents were elevated in pulmonary artery SMCs of
rats with chronic hypoxic pulmonary hypertension (CHPH)
[112]. ClCa currents and TMEM16A/ANO1 expression were
also increased in conduit and intralobar pulmonary artery SMCs
from monocrotaline (MCT)-treated rats, another pulmonary hy-
pertension model [32]. NFA and T16Ainh-A01 both attenuated
an elevation in serotonin-induced vasocontraction in pulmonary
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arteries from both CHPH and MCT rats [32, 112]. In contrast,
TMEM16A/ANO1 protein and ClCa currents were both lower in
basilar artery SMCs isolated from 2-kidney, 2-clip
renohypertensive (2k2c)-rats [133]. The authors concluded that
TMEM16A/ANO1 is a negative regulator of cell proliferation
and may be important in hypertension-induced cerebrovascular
remodeling.

In an ovalbumin (OVA)-sensitized mouse model of chronic
asthma, TMEM16A/ANO1 expression was higher,
suggesting contribution to airway hyperresponsiveness
[146]. NFA and benzbromarone prevented airway
hyperresponsiveness and augmented airway SMC contrac-
tion. Agonist-mediated contraction was also attenuated in
airway SMCs of TMEM16A/ANO1−/− mice [146]. An in-
crease in TMEM16A protein expression and ClCa channel
activity was observed in asthmatic mouse models and human
asthmatic patients, although this increase in protein was pri-
marily observed in epithelial, not smooth muscle, cells [50].

In summary, studies suggest that TMEM16A/ANO1 chan-
nels generate ClCa currents, and activation leads to membrane
depolarization and constriction in both vascular and
nonvascular SMCs. Diseases are associated with altered
TMEM16A/ANO1 expression and functionality, with differ-
ential changes described that may depend on multiple factors,
including the pathology involved.

cGMP-dependent ClCa channels

A ClCa current distinct from classic ClCa that requires cGMP for
Ca2+ activation was initially discovered in rat mesenteric artery
SMCs [93]. Subsequently, this current has been described in
multiple vascular and colonic SMCs [55, 73, 74]. cGMP-
dependent ClCa currents are voltage-independent and require
lower [Ca2+]i for activation than classic ClCa currents [74, 94].
Halide permeability is also different to classic ClCa currents, at
Br− > I− > Cl− [74, 94]. cGMP-dependent ClCa currents are
highly sensitive to Zn2+ and relatively insensitive to both NFA
and DIDS, effective classic ClCa blockers [73]. cGMP-

dependent and classic ClCa current densities are approximately
equal in SMCs from many vascular beds, although deviations
from this stereotype have been described [74].

cGMP-dependent ClCa currents should induce membrane
depolarization and vasoconstriction. Such an effect is coun-
terintuitive to the recognized actions of cGMP-mediated PKG
activation, which activates several K+ channels, including
BKCa, leading to membrane hyperpolarization and relaxation
[73, 116]. Conceivably, cGMP-dependent ClCa currents act as
a break to oppose the cGMP-mediated vasodilation, permit-
ting an additional level of fine tuning of membrane potential
and contractility.

The molecular identity of cGMP-dependent Cl− channels is
unclear, but bestrophins, a family of four proteins (1 through 4),
can control this current. Cl− currents generated by recombinant
bestrophins are Ca2+-activated, but do not resemble those of
classical ClCa (Fig. 3) [4, 13, 97, 111]. Bestrophin-3 mRNA and
protein are present in rat mesenteric arteries, rat aorta, and
cultured A7r5 cells [75]. In contrast, bestrophin-1 and
bestrophin-2 are weakly expressed in these tissues [75]. In line
with these observations, studies have focused primarily on
identifying physiological functions of bestrophin-3 in SMCs
[8]. Bestrophin-3 is found in rabbit, but not rat, pulmonary
arteries suggesting species-specific expression [66]. The pres-
ence of bestrophin protein has been described to match that of
cGMP-dependent ClCa currents in SMCs. Bestrophin-3 knock-
down reduced cGMP-dependent ClCa currents in cultured A7r5
cells and rat mesenteric artery SMCs, but did not alter classic
ClCa currents [75]. Vasomotion in rat mesenteric arteries was
reported to have a strong Cl− dependency that required cGMP
[5, 93]. Replacement of extracellular Cl− with less permeable
aspartate inhibited vasomotion in rat mesenteric arteries [5].
Consistent with a role for bestrophins, bestrophin-3 knockdown
reduced synchronized vasomotion, but not tonic contractility, in
rat mesenteric arteries [8]. ClCa current has not been uniformly
observed after bestrophin-3 expression in heterologous expres-
sion systems; therefore, it is unclear whether the protein forms a
prototypical ion channel or is an accessory subunit [88, 96].

Recombinant Ano1 currents
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Fig. 2 Original electrophysiological recordings of recombinant
TMEM16A/ANO1 and SMC ClCa currents. Whole-cell currents of
TMEM16A-expressing HEK-293 cells in different free [Ca2+]i [106].

Reproduced with permission from [106]. © the Biochemical Society.
Whole-cell recordings of Cl− currents in cerebral artery SMCs with 200
nM and 1 μM free [Ca2+]i (adapted from ref. [117])

864 Pflugers Arch - Eur J Physiol (2014) 466:861–872



In addition to regulating vasomotion, bestrophin-3 has
been demonstrated to inhibit H2O2-induced apoptosis in bas-
ilar artery SMCs [55]. Bestrophin-3 knockdown reduced cell
viability, whereas bestrophin-3 overexpression prevented ap-
optosis. Supporting a protective role, bestrophin-3
overexpression reduced ER stress-induced cell death in cul-
tured renal epithelial cells [67].

In summary, both cGMP-dependent and cGMP-independent
ClCa currents have been observed in vascular SMCs
[74]. Data indicate that two distinct ClCa channels gen-
erate these currents, including that bestrophin-3 tissue
distribution closely matches that of cGMP-dependent
ClCa currents [75]. The majority of research on
bestrophins in SMCs has been in mesenteric arteries.
Future studies should investigate bestrophin functions
in other vascular beds and whether bestrophins form a
prototypical ion channel or an accessory subunit to
another ion channel protein. Although bestrophin-3 locates
near the cell surface in mesenteric artery SMCs, other
bestrophin family members (bestrophin-1 and bestrophin-2)
are intracellular proteins when expressed in heterologous ex-
pression systems [8, 61, 97]. Conceivably, in SMCs of differ-
ent vascular beds, other bestrophin proteins may be expressed
and perform additional physiological functions.

Volume-sensitive Cl− channels

In many cell types, cell swelling stimulates compensatory K+,
Cl−, and H2O efflux as a mechanism to reestablish cell volume
[31]. Volume-sensitive Cl− channels are expressed in many
cell types, including vascular SMCs, and appear to contribute
to this process [42]. Although controversy exists as to whether
Cl− channel-3 (ClC-3), a member of the ClCn gene family,
operates as a prototypical ion channel, this protein has been
proposed to act as a volume-sensitive Cl− channel (Fig. 4)
[54]. Currently, ClC-3 is the only molecular candidate for a
volume-sensitive Cl− channel in SMCs. Therefore, evidence
supporting ClC-3 will be summarized in this section.

ClC-3message was detected in canine pulmonary and renal
artery SMCs [140]. Hypotonic solution activated an outward-
ly rectifying Cl− conductance with a similar phenotype to
cardiac myocyte ClC-3, including anion permeability and
inhibition by DIDS and extracellular ATP [28, 140]. Similar
data were obtained when studying cultured human aortic and
coronary artery vascular SMCs and isolated canine pulmonary
artery and colonic SMCs [25, 29, 63]. ClC-3 overexpression
elevates volume-regulated Cl− currents in aortic SMCs [76].
Intracellular dialysis of ClC-3 antibodies abolished volume-
activated Cl− currents in canine pulmonary artery SMCs
[127]. ClC-3 knockdown inhibited volume-sensitive Cl− cur-
rents in A10 vascular SMCs [126, 149]. PKC activators
differentially regulate swelling-activated Cl− currents in rabbit
portal vein versus canine pulmonary artery SMCs and cardiac
myocytes, an effect that may be attributed to differences in
intracellular signaling pathways involved [148]. ClC-3 ex-
pression and volume-sensitive Cl− currents were larger in
femoral artery than vein SMCs, perhaps due to differences
in venous and arterial blood pressures to which these vessels
are exposed [56].

Other evidence questions whether ClC-3 acts as a volume-
sensitive Cl− channel in SMCs. ClC-3 expression in Xenopus
oocytes and HEK-293 cells did not produce volume-sensitive
Cl− currents, suggesting that results may be cell type-
dependent [33, 76, 109]. When expressed in immortalized cell
lines, ClC-3 was an intracellular channel that was not volume-
regulated [69, 89, 135]. There is also variability in the contri-
bution of ClC-3 to ClCa currents in different cell types. For
example, ClC-3 knockout reduced ClCa currents in aortic
SMCs, but had no effect in parotid acinar cells [3, 36]. Cell-
specific differences may arise due to variability in CaMKII
activation, as ClC-3 regulation is CaMKII-dependent in aortic
SMCs [36]. Further uncertainty derives from data indicating
that volume-sensitive Cl− currents in pulmonary artery SMCs
and other cell types, including cardiac myocytes, are unaltered
in ClC-3 knockout (Clcn3−/−) mice [3, 39, 110, 132, 139]. One
explanation for this finding may be that ClC-3 knockout leads

Recombinant bestrophin currents SMC cGMP-dependent Cl currentsCa
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Fig. 3 Recombinant bestrophin-3 and SMC cGMP-dependent ClCa cur-
rents.Whole-cell mBest3 currents expressed in COS-7 cells at a [Ca2+]i of
500 nM [88]. Adapted with permission from ref. [88]. © the American
Physiological Society (APS). Whole-cell niflumic acid (NFA)-insensitive

cGMP-dependent ClCa current recorded in a mesenteric artery SMC [5].
Adapted with kind permission from Springer Science+Business Media:
(ref. [5], Fig. 7)
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to compensatory upregulation of other volume-regulated ion
channels [139]. Consistent with this concept, mRNA for ClC-
1 and ClC-2, but not ClC-4 or ClC-5, is elevated in Clcn3−/−

mice atrial myocytes [139].
Volume-regulated Cl− channels may depend on an associ-

ation between ClC-3 and NADPH oxidase(Nox)-dependent
reactive oxygen species (ROS) signaling in SMCs [76]. ClC-3
locates to membrane of organelles, including endosomes,
where it regulates Nox1-mediated ROS generation [43, 80].
ClC-3 acts as a Cl−/H+ exchanger that neutralizes electron
flow generated by Nox1 [80]. SMCs from ClC-3−/− mice did
not generate endosomal ROS or activate transcription factor
nuclear factor (NF)-κB in response to tumor necrosis factor
(TNF)-α and interleukin (IL)-1β [80]. As a result, volume-
regulated Cl− current was not activated by TNF-α and IL-1β
in ClC-3−/− mice [76].

Evidence has been provided that ClC channels control SMC
function. In pig artery SMCs, ClC-2 knockdown suppressed
IGF-1-induced proliferation [12]. ClC-3 knockdown inhibited
endothelin-1 (ET-1)-induced aortic SMC proliferation by ar-
resting the cell cycle [115, 131]. Aortic SMCs from Clcn3−/−

mice proliferated more slowly than those from wild-type con-
trols [80]. TNF-α and carotid artery injury both stimulated ClC-
3 expression with injury-induced carotid artery neointima for-
mation reduced in Clcn3−/− mice [15]. ClC-3 overexpression
inhibited apoptosis in pulmonary artery SMCs [18].

ClC-3 is associated with changes in SMC function during
disease. A hypotonicity-induced decrease in [Cl−]i and an
increase in rat basilar artery SMC size correlated with hyper-
tension in 2k2c rats, suggesting that volume-sensitive Cl−

channels are more active and may be involved in vascular
remodeling [107]. ClC-3 mRNA and protein were both ele-
vated in pulmonary artery SMCs of rats with experimentally
induced pulmonary hypertension [18]. Static pressure stimu-
lated ClC-3 expression, volume-sensitive Cl− currents, and
proliferation in aortic SMCs, and these changes were attenu-
ated by Cl− channel blockers and ClC-3 knockdown [95].
Ca2+-independent Cl− currents, but not ClCa currents, were
larger in proliferating pulmonary artery SMCs from rats ex-
posed to hypoxia, suggesting that antagonists of this current

may be useful in the treatment of pulmonary hypertension
[70]. Volume-sensitive Cl− currents increased as femoral ar-
tery SMCs switched from a contractile to a proliferative state
during vascular remodeling [56]. ClC-3 mRNA and protein
were higher in aortic SMCs of diabetic rats than controls,
suggesting that the channel may be associated with pathology
[34]. Although the contribution of ClC-3 to volume-regulated
Cl− currents is controversial and requires additional study,
ClC-3 may represent a therapeutic target in SMC-associated
diseases, including during proliferative vascular disease.

In summary, whether ClC-3 generates volume-sensitive
Cl− channels in vascular SMCs is controversial. It is unclear
whether ClC-3 is located primarily intracellular or in the
plasma membrane. This uncertainty arises, in part, due to the
presence of swelling-activated Cl− currents in the cells of
Clcn3−/− mice [3, 76]. However, ClC-3 is expressed in SMCs
and both knockdown and knockout result in physiological
changes [140]. ClC-3 expression levels are also altered in
disease states. Further studies are required to determine
SMC CLC-3 cellular localization and whether ClC-3 is a
Cl− channel or an accessory protein.

CFTR

The cystic fibrosis transmembrane conductance regulator
(CFTR), a cAMP-activated ATP-gated anion channel, has
primarily been studied in epithelial cells, where it was origi-
nally identified [98]. CFTR channels have subsequently been
found in a number of other cell types, including neurons,
cardiac myocytes, and endothelial cells [35, 119, 136]. CFTR
functions in SMCs were initially proposed from experiments
using highly nonspecific pharmacological modulators [23, 68,
147]. Subsequent studies using immunofluorescence and
Western blotting demonstrated CFTR expression in rat tho-
racic aorta and intrapulmonary artery [101, 102]. cAMP path-
way and CFTR activators both activated iodide efflux in
cultured vascular SMCs and relaxed precontracted,
depolarized endothelium-denuded aortic and intrapulmonary
artery rings via a mechanism sensitive to CFTRinh-172, a more
selective CFTR blocker [100, 102]. cAMP pathway agonists

Recombinant ClC-3 currents SMC volume-regulated Cl- currents

HypertonicIsotonic IsotonicHypertonic HypotonicHypotonic

2 nA
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Fig. 4 Recombinant ClC-3 and SMC volume-regulated Cl− currents.
Osmotic regulation of whole-cell currents recorded from gpClC3-
transfected NIH/3 T3 cells under isotonic, hypotonic, and hypertonic
conditions [28]. Adapted by permission from Macmillan Publishers

Ltd: ref. [28]. Volume regulation of whole-cell currents recorded from
A10 vascular SMCs under similar conditions [149]. Reproduced with
permission from ref. [149]. © 2008 The American Society for Biochem-
istry and Molecular Biology. All rights reserved
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and pharmacological CFTR activators stimulated iodide ef-
flux in depolarized cultured aortic SMCs of wild-type mice,
but not in cells of CFTR−/− mice [100]. Vasoconstrictors also
contracted aortic rings from CFTR−/− mice more than those
from CFTR+/+ mice [100]. These studies suggested that stim-
ulation of the cAMP pathway and CFTR activation were
functional when the SMC membrane potential was more
positive than the ECl. Under this condition, CFTR channel
activation appears to oppose vasoconstriction. A study dem-
onstrating that myogenic tone is enhanced in both CFTR−/−

cerebral and mesenteric arteries supports the concept that
CFTR activation hyperpolarizes membrane potential [77].

CFTR is also expressed in nonvascular SMCs [78, 122].
cAMP pathway agonists and CFTR activators stimulated iodide
efflux and induced CFTRinh-172-sensitive relaxation of trache-
al SMCs [122]. CFTR knockdown attenuated histamine-
induced intracellular Ca2+ release in airway SMCs [78].
CFTR−/− mice also exhibit ileal SMC phenotypes that vary
when studied on different mouse strains [99]. Furthermore,
CFTR channel knockout results in small intestine circular
smooth muscle dysfunction 7 days postnatal in mice [24].

SMC dysfunction, including bronchoconstriction, airway
hyperresponsiveness, gastric dysmotility, and intestinal ob-
struction, may contribute to the cystic fibrosis disease pheno-
type [78]. Thus, CFTR modulators may have therapeutic
benefit by acting on airway SMCs. Conceivably, CFTR acti-
vators may also have antihypertensive actions, although many
questions still remain regarding function in SMCs. CFTR
knockout may induce many different compensatory mecha-
nisms that could modify contractility. Conceivably, CFTR
may regulate other Cl− channels in vascular SMCs. CFTR
expression inhibits both volume-sensitive Cl− and ClCa cur-
rent in bovine pulmonary artery endothelial cells, and
upregulation of its expression results in a corresponding
downregulation in both channels in recombinant cells [60,
123, 134]. Whether similar regulating mechanisms exist in
SMCs is unclear, but possible.

Importantly, CFTR channels have not been directly mea-
sured in SMCs using electrophysiological techniques, includ-
ing patch-clamp electrophysiology. Similarly, SMC-specific
inducible CFTR−/− knockout mice should be studied and
systemic blood pressure measurements performed. Such data
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Fig. 5 Cl− channels present in vascular SMCs. Cl− accumulates in SMCs
due to the Na+–K+–Cl− cotransporter (NKCC1) and the Cl−-HO3

− ex-
changer-2 (AE2). cGMP-dependent and independent ClCa channels, a
volume-sensitive Cl− channel, and the cystic fibrosis transmembrane
conductance regulator (CFTR) have been identified. The molecular iden-
tity of the first three channels has been proposed to be bestrophin,
TMEM16A/Ano1, and ClC-3, respectively. Numerous mechanisms of
Ca2+ activation of ClCa channels in vascular SMCs have been suggested,
including IP3R- or RyR-mediated SR Ca2+ release, Ca2+ entry through
voltage-dependent Ca2+ channels (VDCC), and local Ca2+ influx through
nonselective cation channels (NSCC). Activation of these channels leads

to Cl− efflux and subsequent depolarization of the cell membrane that
activates voltage-dependent Ca2+ channels (VDCC). ClC-3 channels
have been proposed to be activated by membrane swelling. ClC-3 is
present in the plasma membrane and in intracellular compartments,
including endosomes. Endosomal ClC-3 channels may regulate vol-
ume-regulated Cl− channels via ROS production. CaMKII inhibits
TMEM16A and activates ClC-3 channels. CFTR is a cAMP-activated
ATP-gated anion channel that appears to be functional when the SMC
membrane potential becomes more positive than the Cl− equilibrium
potential. Under this condition, CFTR channel activation would lead to
Cl− influx and oppose vasoconstriction
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would provide stronger support for physiological functions of
vascular SMC CFTR.

Conclusions

Research has focused primarily on discovering the molecular
identity, physiological functions, and pathological signifi-
cance of cation channels expressed in SMCs. In contrast, little
is known of anion channels, specifically Cl− channels that are
expressed in SMCs. This knowledge gap has arisen, in part,
due to a lack of specific Cl− channel modulators and uncertain
molecular identity of the proteins present. Recent discoveries
of TMEM16A/ANO1, bestrophin, ClC-3, and CFTR expres-
sion in SMCs have provided new insights (Fig. 5). Identifica-
tion of these proteins has permitted the use of molecular
biology techniques to inhibit Cl− channel expression and
study the effects on SMC function. Evidence suggests that
multiple Cl− channel types are expressed in SMCs. These
channels can control physiological functions, including con-
tractility and proliferation, and can contribute to SMC
pathologies.

Future directions

Future studies should aim to identify intracellular signaling
pathways that regulate different Cl− channels in SMCs and
downstream functional effects of such modulation. Many ion
channels have one or more auxiliary and regulatory subunits,
and these proteins can, in some cases, exhibit SMC-specific
expression (e.g., KCa channel β1 subunits [7]). It is possible
that Cl− channels have auxiliary subunits, although this re-
mains to be determined. Similarly, whether some proteins
identified are pore-forming Cl− channels or accessory subunits
is unclear, including some bestrophins and ClC proteins.
Similarly, different Cl− channels may interact and regulate
each other directly, for example through heteromultimer for-
mation, and indirectly, via signaling networks. Many of these
research directions will benefit from the discovery of specific
Cl− channel modulators and animals with inducible, SMC-
specific genetic alterations of the proteins under investigation.
The next decade should see a significant increase in knowl-
edge of Cl− channel signaling, physiology, and pathology in
SMCs.
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