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Abstract Lithium, an inhibitor of glycogen synthase kinase 3
(GSK3), is widely used for the treatment of mood disorders.
Side effects of lithium include nephrogenic diabetes insipidus,
leading to renal water loss. Dehydration has in turn been shown
to downregulate Klotho, which is required as co-receptor for
the downregulation of 1,25(OH)2D3 formation by fibroblast
growth factor 23 (FGF23). FGF23 decreases and 1,25(OH)2D3

stimulates renal tubular phosphate reabsorption. The present
study explored whether lithium influences renal Klotho expres-
sion, FGF23 serum levels, 1,25(OH)2D3 formation, and renal
phosphate excretion. To this end, mice were analyzed after a
14-day period of sham treatment or of treatment with lithium
(200 mg/kg/day subcutaneously). Serum antidiuretic hormone

(ADH), FGF23, and 1,25(OH)2D3 concentrations were deter-
mined by ELISA or EIA, renal Klotho protein abundance and
GSK3 phosphorylation were analyzed byWestern blotting, and
serum phosphate and calcium concentration by photometry.
Lithium treatment significantly increased renal GSK3 phos-
phorylation, enhanced serum ADH and FGF23 concentrations,
downregulated renal Klotho expression, stimulated renal calci-
um and phosphate excretion, and decreased serum 1,25
(OH)2D3 and phosphate concentrations. In conclusion, lithium
treatment upregulates FGF23 formation, an effect paralleled by
substantial decrease of serum 1,25(OH)2D3, and phosphate
concentrations and thus possibly affecting tissue calcification.
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Introduction

Fibroblast growth factor 23 (FGF23), a hormone released
mainly from osteoblasts [25, 47], is a powerful regulator of
calcium phosphate metabolism [23, 51]. As previously shown
[3, 4, 42, 51, 69, 71, 73, 75], FGF23 inhibits renal tubular
phosphate reabsorption. Moreover, FGF23 downregulates re-
nal 1α hydroxylase (Cyp27b1) and upregulates 25-
hydroxyvitamin D 24-hydroxylase (Cyp24), effects leading to
decreased formation and increased catabolism of 1,25-dihy-
droxyvitamin D3 (1,25(OH)2D3) [18, 26, 72, 75]. FGF23, thus,
lowers serum 1,25(OH)2D3 levels [3, 4, 26, 62, 69, 71, 73, 75].
1,25(OH)2D3 is a powerful regulator of renal and intestinal
phosphate and calcium transport [10, 54, 55, 68]. FGF23
increases renal elimination of phosphate [3, 4, 69, 71, 73, 75].
FGF23 deficiency elevates serum phosphate, calcium, and
1,25(OH)2D3 levels, effects eventually leading to several se-
vere disorders, such as vascular calcification, decrease of bone
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density, growth retardation, infertility, and a dramatic reduction
of lifespan [15, 49, 67, 71, 72, 76].

To become effective, FGF23 requires Klotho as co-receptor
[25, 36, 37]. Accordingly, mice with reduced Klotho expres-
sion similarly suffer from multiple age-related disorders with
growth retardation, extensive soft tissue calcification, and
decreased life span paralleled by osteopenia/osteoporosis, en-
dothelial dysfunction, impaired angiogenesis, sinoatrial node
dysfunction with sudden cardiac arrest, enhanced erythrocyte
turnover, pulmonary emphysema, skin atrophy, hypogo-
nadotropic hypogonadism, infertility, muscle dystrophy, hear-
ing loss, neuron degeneration, Parkinson’s disease, cognition
impairment, neoplasms, inflammation, and tissue fibrosis [5,
11, 17, 29, 35, 37–39, 50, 56, 57, 63, 74, 79, 82, 83]. Klotho
deficiency is largely effective through strong increases in
1,25(OH)2D3 formation, inhibition of renal tubular phosphate
transport, and subsequent elevation of serum phosphate levels
[14, 24, 87]. Hyperphosphatemia predisposes to vascular cal-
cification [20] and is recognized as predictor of mortality [81].

Recent observations revealed that renal Klotho expression
is markedly downregulated by dehydration [80]. Drugs caus-
ing dehydration include lithium [21, 30], which is widely used
in the treatment of bipolar disorders and Alzheimer’s disease
[16, 28, 52]. Lithium treatment interferes with renal effects of
antidiuretic hormone (ADH), thus causing nephrogenic dia-
betes insipidus [8, 31, 43, 65, 77]. Lithium is at least partially
effective by inhibition of glycogen synthase kinase 3 (GSK3)
[32], which in turn regulates aquaporin 2 water channels via
adenylate cyclase or prostaglandin-E2 [60, 88]. GSK3 inhibi-
tion is similarly implicated in the effects of lithium on affec-
tive disorders and Alzheimer’s disease [6, 22, 27]. Potential
side effects of lithium treatment may include hypercalcemia
[1, 30, 40, 44, 48], which has been observed in 5–20 % of
treated patients [40, 48]. The hypercalcemia has been attrib-
uted to hyperparathyroidism [1, 7, 9, 44]. Moreover, renal
Ca2+ excretion may be compromised and hypercalcemia pre-
cipitated by volume depletion, which is expected to stimulate
proximal tubular Na+ and, thus, Ca2+ reabsorption [66].

The present study explored the effect of lithium treatment on
renal GSK3 phosphorylation and Klotho expression as well as
on serum FGF23, 1,25(OH)2D3, calcium, and phosphate
concentrations.

Methods

Mice

All animal experimentswere conducted according to theGerman
law for the welfare of animals and were approved by local
authorities. Experiments were performed in female C57Bl6 mice
at the age of 10 weeks. The mice had free access to water and
control food (Ssniff, Soest, Germany). For lithium treatment,

LiCl (Calbiochem, Merck GmbH, Germany) was dissolved in
isotonic saline and administered subcutaneously at a dosage of
200 mg/kg/day for 14 days [28]. Control animals were treated
with saline only.

Determination of serum and plasma concentrations

To collect blood specimens, animals were lightly anesthetized
with diethyl ether (Roth, Karlsruhe, Germany) and about 50–
200 μl of blood was withdrawn into heparinized capillaries by
puncturing the retro-orbital plexus. Serum C-terminal-FGF23
(Immutopics International, CA, USA), ADH (AVP EIA kit,
Phoenix Europe, Karlsruhe, Germany) and serum 1,25
(OH)2D3 (IDS, Boldon, UK) concentrations were measured by
ELISA or EIA. The serum phosphate and total Ca2+ concentra-
tions were measured by a photometric method (FUJI FDC
3500i, Sysmex, Norsted, Germany). The free calcium concen-
tration was analyzed by a blood gas analyzer (ABL 725, Radi-
ometer, Copenhagen, Denmark) in heparinized plasma samples.

Measurement of urinary calcium and phosphate
concentrations

To determine urinary parameters, the mice were placed indi-
vidually in metabolic cages (Tecniplast, Hohenpeissenberg,
Germany) from day 11–14 of lithium treatment. Twenty-four-
hour collection of urine was performed. To assure quantitative
urine collection, metabolic cages were siliconized, and urine
was collected under water-saturated oil.

The urinary phosphate concentration was determined color-
imetrically utilizing a commercial diagnostic kit (Roche Diag-
nostics, Mannheim, Germany). Urinary calcium was measured
by flame photometry (Eppendorf, Hamburg, Germany).

Western blotting

To analyze Klotho and NaPi-IIa protein abundance and GSK3
phosphorylation in renal tissue, the kidneys were removed and
immediately snap-frozen in liquid nitrogen. After homogeniza-
tion in lysis buffer (54.6 mM HEPES; 2.69 mM Na4P2O7;
360 mM NaCl; 10 % (v/v) glycerol; 1 % (v/v) NP40 or RIPA
lysis buffer (Cell Signaling, Frankfurt, Germany)) containing
phosphatase and protease inhibitor cocktail tablet (Complete
mini, Roche, Mannheim, Germany), the samples were incubat-
ed on ice for 30 min and then centrifuged at 14,000 rpm and
4 °C for 20 min. The supernatant was removed and used for
Western blotting. Total protein (80 μg) was separated by SDS-
PAGE, thereafter transferred to nitrocellulose membranes and
blocked in 5 % nonfat milk/Tris-buffered saline/Tween-20
(TBST) at room temperature for 1 h. Membranes were probed
overnight at 4 °C with polyclonal rat anti-Klotho antibody
(1:1,000 in 5 % fat-free milk in TBST; kindly provided by
Akiko Saito, Kyowa Hakko Kirin Co., Ltd., Japan), with rabbit
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anti-NaPi-IIa antibody ([13]; 1:3,000 in TBSTwith 5 % BSA),
or with rabbit anti-phospho-GSK3ß (Cell Signaling; 1:1,000 in
TBST supplemented with 5 % BSA). After incubation with
horseradish peroxidase-conjugated anti-rat or anti-rabbit sec-
ondary antibodies (Cell Signaling, 1:2,000) for 1 h at room
temperature, the bands were visualized with enhanced chemi-
luminescence reagents (Amersham, Freiburg, Germany).
Membranes were also probed with GAPDH antibody as load-
ing control. Densitometric analysis was performed using Quan-
tity One software (Bio-Rad, Munich, Germany).

Real-time RT-PCR

UMR106 rat osteosarcoma cells were cultured in DMEM high
glucose medium supplemented with 10 % FCS and 1 %
penicillin/streptomycin under standard conditions. Cells were
pretreated with 100 nM calcitriol (Sigma, Schnelldorf, Germa-
ny) to induce FGF23 expression [33]. After 24 h, cells were in
addition treated either with lithium (2 mM) for another 24 h or
with [Arg8]-vasopressin acetate salt (Sigma; 50 nM) for anoth-
er 12 h, or with recombinant human Klotho protein (30 ng/ml)
for another 12 h, or left untreated. Next, total RNAwas isolated
with TriFast RNA extraction reagent (Peqlab Biotechnologie
GmbH, Erlangen, Germany) based on a chloroform extraction
protocol. mRNA was transcribed with SuperScript III reverse
transcriptase (Invitrogen, Karlsruhe, Germany) using an oligo-
dT primer. Quantitative reverse-transcription polymerase chain
reaction (RT-PCR) was performed on a Bio-Rad iCycler iQTM

real-time PCR detection system (Bio-Rad Laboratories,
München, Germany) using the following primers:
Tbp (TATA box-binding protein)

Forward (5′-3′): ACTCCTGCCACACCAGCC
Reverse (5′-3′): GGTCAAGTTTACAGCCAAGATTCA

Fgf23

Forward (5′-3′): TGGCCATGTAGACGGAACAC
Reverse (5′-3′): GGCCCCTATTATCACTACGGAG

The final volume of the PCR reaction mixture was 20 μl and
contained 2μl cDNA, 1μMof each primer, 10μl GoTaq qPCR
master mix (Promega, Mannheim, Germany), and sterile water
up to 20μl. qPCR conditions were 95 °C for 3 min, followed by
40 cycles of 95 °C for 10 s, and 58 °C for 10 s. Calculated
mRNA expression levels were normalized to the expression
levels of Tbp of the same cDNA sample. Relative quantification
of gene expression was performed using theΔΔct method.

Statistics

Data are provided as means±SEM; n represents the number of
independent experiments. All data were tested for significance
using unpaired Student t test unless otherwise stated. Only
results with p <0.05 were considered statistically significant.

Results

In a first series of experiments, the effect of lithium treatment
on renal GSK3 phosphorylation was determined. To this end,
10-week-old female mice were treated with sham only or with
LiCl (200 mg/kg/day s.c. for 14 days). As illustrated in Fig. 1,
lithium treatment was followed by a significant increase in
GSK3 phosphorylation. Since lithium treatment may lead to
nephrogenic diabetes insipidus, a second series of experiments
explored the serum concentration of ADH. As shown in
Fig. 2a, lithium treatment was followed by an increase in
ADH serum levels, an observation pointing to dehydration.
Body weight, however, was not influenced by the 14-day
lithium treatment (Fig. 2b).

Next, we explored the lithium effects on the Klotho/FGF23
hormonal axis, which regulates calcium and phosphate ho-
meostasis. To study renal Klotho expression, kidneys were
removed after the 14-day treatment with or without lithium
and Klotho protein abundance determined by Western blot-
ting. As illustrated in Fig. 3, lithium treatment was followed
by a strong and statistically significant decrease of the Klotho
over GAPDH ratio.
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Fig. 1 Renal GSK3 phosphorylation in sham- and lithium-treated mice.
Original Western blot showing the protein abundance of phosphorylated
GSK3 and GAPDH (upper panel) and arithmetic means±SEM (n =4/
group) of the phosphorylated GSK3 over GAPDH protein abundance
ratio (lower panel) in renal tissue from sham- (white bar) and lithium-
treated (black bar) wild type mice. *p <0.05 indicates significant differ-
ence from untreated mice
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In order to determine whether lithium regulates FGF23
release, serum FGF23 concentrations were determined by
ELISA. As a result, lithium treatment was followed by a
strong statistically significant increase in the serum FGF23
concentration (Fig. 4a). To study whether altered FGF23
release may result from an influence of ADH on FGF23
transcription, UMR106 osteoblast-like cells were treated with
[Arg8]-vasopressin (50 nM) and FGF23 transcript levels de-
termined by quantitative RT-PCR. As a result, [Arg8]-vaso-
pressin significantly decreased FGF23 transcript levels
(0.00522±0.00100 arb. units (n =15)) compared to untreated
cells (0.01157±0.00215 arb. units (n =15); p <0.05, u test).
Thus, ADH is unlikely to account for enhanced FGF23 secre-
tion in lithium-treated mice. Another series of experiments
explored whether Klotho protein impacts on FGF23 transcrip-
tion in UMR106 osteoblast-like cells. FGF23 transcript levels
approached 0.01063±0.00341 arb. units (n =15) in Klotho
protein-treated cells (30 ng/ml) and 0.00708±0.00187 arb.
units (n =15) in untreated cells. Hence, Klotho protein did
not significantly influence FGF23 expression. Exposure of
UMR106 osteoblast-like cells to lithium (2 mM), however,
stimulated FGF23 expression as revealed by quantitative RT-
PCR. The FGF23 transcript level was 0.00769±0.00098 arb.
units (n =15) in untreated and 0.01245±0.00208 arb. units
(n =15) in lithium-treated UMR cells (p <0.001, u test).

To study whether lithium treatment influences renal expres-
sion of the Na+/phosphate cotransporter NaPi-IIa, its expres-
sion was determined by Western blotting. As shown in
Fig. 4b, lithium treatment did not significantly affect total
renal NaPi-IIa protein abundance. Densitometric analysis
yielded a renal NaPi-IIa abundance of 0.55±0.04 arb. units
(n =6) in sham-treated and 0.59±0.06 arb. units (n =6) in
lithium-treated animals.

As FGF23 and Klotho act in concert to downregulate 1α
hydroxylase (Cyp27b1), the key enzyme in the synthesis of
1,25(OH)2D3, ELISA was employed to detect 1,25(OH)2D3

serum concentration. As shown in Fig. 5, lithium treatment
indeed decreased the serum 1,25(OH)2D3 concentration.

Effects of 1,25(OH)2D3 include stimulation of intestinal and
renal calcium and phosphate transport leading to a rise in both
calcium and phosphate serum concentrations. Accordingly,
serum calcium and phosphate concentrations were determined
in sham- and lithium-treated animals by photometric methods.
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Fig. 3 Renal Klotho expression in sham- and lithium-treated mice.
Original Western blot showing renal expression of Klotho and GAPDH
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As illustrated in Figs. 6 and 7, lithium treatment indeed signif-
icantly decreased serum phosphate concentration and tended to
decrease total serum calcium level. In line with this, lithium
stimulated urinary calcium and phosphate excretion (Figs. 6
and 7). The plasma-free calcium levels were not different
between sham-treated (0.93±0.03 mM, n =6) and lithium-
treated mice (0.99±0.04 mM, n =5).

Discussion

The present observations disclose a novel powerful effect of
lithium. A 14-day treatment with lithium resulted in a pronounced

increase in FGF23 serum levels as well as in a statistically
significant decrease of renal Klotho expression. These effects
were paralleled by substantial statistically significant decreases
of serum 1,25(OH)2D3 and phosphate concentrations. The
hypophosphatemia is explained by the phosphaturia of the mice.
Western blotting did not reveal a significant decrease of whole
kidney NaPi-IIa protein abundance following lithium treatment.
The finding does, however, not rule out that the protein abun-
dance in the apical cell membrane is decreased by lithium treat-
ment. Alternatively, lithium treatment affects the activity of the
carrier.

The effect of lithium on FGF23 release may in part be due
to GSK3 phosphorylation, a known effect of lithium [6, 19,
22, 27, 32, 60]. The impact of lithium on both FGF23 serum
levels and renal Klotho expression could theoretically be in
part due to polyuria and dehydration, reflected by increased
serum antidiuretic hormone levels [77]. Dehydration has pre-
viously been shown to downregulate renal Klotho expression,
an effect partially due to ADH [80]. It is noteworthy that
serum FGF23 levels are similarly enhanced in gene-targeted
mice lacking either SPAK [59] or OSR1 [58]. Both SPAK and
OSR1 stimulate the renal tubular Na–Cl co-transporter, and
lack of those kinases is expected to result in dehydration.
However, according to the present study, the vasopressin
analogue [Arg8]-vasopressin downregulated FGF23 tran-
script levels in UMR osteosarcoma cells, and, thus, ADH is
unlikely to account for the enhanced FGF23 serum levels
following lithium treatment.

FGF23 is well known to downregulate renal 1α hydroxy-
lase and, thus, the formation of 1,25(OH)2D3 [18, 75]. For this
effect, FGF23 requires Klotho as co-receptor [2, 37], which is
upregulated by FGF23 [78]. Decreased Klotho expression
would be expected to blunt the effects of FGF23 [2]. Howev-
er, lithium treatment led to a decrease of 1,25(OH)2D3 serum
levels. 1,25(OH)2D3 stimulates the release of FGF23 and the
excessive 1,25(OH)2D3 formation in Klotho deficiency en-
hances FGF23 serum levels [53]. Following lithium treatment,

se
ru

m
 C

-t
er

m
 F

G
F

23
 [

p
g

/m
l]

Control

LiCl

0

200

400

600

800

1000 ***

Co             LiCl       Co         LiCl         Co          LiCl

Napi-IIa

GAPDH

a bFig. 4 Serum FGF23 levels in
sham- and lithium-treated mice. a
Arithmetic means±SEM (n =10/
group) of serum FGF23 levels in
sham- (white bar) and lithium-
treated (black bar) wild type
mice. ***p <0.001 indicates
significant difference from
untreated mice. b Original
Western blot showing renal
expression of NaPi-IIa (upper
panel) and GAPDH (lower
panel)

0

20

40

60

80

100

120

140

**

se
ru

m
 1

,2
5-

D
ih

yd
ro

xy
vi

ta
m

in
D

3
[p

m
o

l/L
] Control

LiCl

Fig. 5 1,25(OH)2D3 levels in sham- and lithium-treatedmice. Arithmetic
means±SEM (n =4–5/group) of serum 1,25(OH)2D3 levels in sham-
(white bar) and lithium-treated (black bar) wild type mice. **p <0.01
indicates significant difference from untreated mice

Pflugers Arch - Eur J Physiol (2014) 466:467–475 471



FGF23 serum levels were increased despite the observed
decrease of 1,25(OH)2D3 serum concentrations, which were
expected to result in a decrease of FGF23 release [12, 64, 70,
86].

1,25(OH)2D3 is a powerful stimulator of both renal and
intestinal phosphate transport [10]. In addition to its effect on
1,25(OH)2D3 formation, FGF23 reduces renal tubular phos-
phate reabsorption more directly by inhibiting Na+-coupled
phosphate transport in proximal renal tubules [51, 75]. In view
of the FGF23 effect on 1,25(OH)2D3 formation and renal
tubular phosphate transport, increased FGF23 release is
expected to generate phosphaturia and, thus, to decrease the
serum phosphate concentration. Lithium treatment did not
significantly change serum Ca2+ concentration. Lithium-
induced hypercalcemia [1, 30, 40, 44, 48] is a known side
effect observed in a fraction of lithium-treated patients [40,
48]. Lithium may upregulate the serum Ca2+ concentration by
stimulating PTH release [1, 7, 9, 44], and it may decrease the
serum Ca2+ concentration by lowering 1,25(OH)2D3 serum

concentrations (Fig. 5). The eventual outcome may depend on
the magnitude of the alterations in PTH and 1,25(OH)2D3

release.
As high serum phosphate concentrations lead to vascular

calcification and are associated with accelerated aging and
decreased life-span [61], the present observations may suggest
that lithium is capable of counteracting vascular calcification,
aging, and early death. As a matter of fact, lithium may
attenuate tissue calcification [84]. Both Klotho [36] and
FGF23 [5] are powerful regulators of aging. Lack of either
Klotho [36] or FGF23 [75] accelerates the development of
several age-related disorders and eventually leads to early
death. It is tempting to speculate that lithium may counteract
at least some of the multiple disorders observed in FGF23
deficiency.

FGF23 serum concentration similarly increases in renal
insufficiency [34, 85]. Unlike renal insufficiency, however,
lithium treatment lowers serum phosphate concentration. The
hyperphosphatemia of renal insufficiency leads to vascular
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calcification [46], an effect counteracted by Klotho and
FGF23 [41, 45].

In conclusion, lithium treatment led to upregulation of
FGF23, thus decreasing serum 1,25(OH)2D3 and phosphate
concentrations. At least in theory, the effects may counteract
vascular calcification.
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