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Abstract Research has elucidated causal links between
stress exposure and the development of anxiety disorders,
but due to the limited use of female or sex-comparative
animal models, little is known about the mechanisms under-
lying sex differences in those disorders. This is despite an
overwhelming wealth of evidence from the clinical literature
that the prevalence of anxiety disorders is about twice as
high in women compared to men, in addition to gender
differences in severity and treatment efficacy. We here re-
view human gender differences in generalized anxiety dis-
order, panic disorder, posttraumatic stress disorder and
anxiety-relevant biological functions, discuss the limitations
of classic conflict anxiety tests to measure naturally occur-
ring sex differences in anxiety-like behaviors, describe sex-
dependent manifestation of anxiety states after gestational,
neonatal, or adolescent stressors, and present animal models
of chronic anxiety states induced by acute or chronic
stressors during adulthood. Potential mechanisms underly-
ing sex differences in stress-related anxiety states include
emerging evidence supporting the existence of two anatom-
ically and functionally distinct serotonergic circuits that are
related to the modulation of conflict anxiety and panic-like
anxiety, respectively. We discuss how these serotonergic
circuits may be controlled by reproductive steroid hormone-
dependent modulation of crfr1 and crfr2 expression in the
midbrain dorsal raphe nucleus and by estrous stage-
dependent alterations of γ-aminobutyric acid (GABAergic)
neurotransmission in the periaqueductal gray, ultimately
leading to sex differences in emotional behavior.
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Human gender differences in anxiety and emotional
disorders

Similar to the increased prevalence of depression in
women [194, 197, 387] the US National Institute of
Mental Health reports that the lifetime prevalence of an
anxiety disorder is 60 % higher in women than in men
[198, 215, 247, 269] and that the onset, severity, clinical
course, and treatment response of anxiety disorders differ
significantly in women [293]. According to the current
Diagnostic and Statistical Manual of Mental Disorders,
fourth edition, text revision (DSM-IV-TR), anxiety disor-
ders are categorized into generalized anxiety disorder
(GAD), panic disorder with or without agoraphobia, ag-
oraphobia without history of panic disorder, posttraumatic
stress disorder (PTSD), acute stress disorder, obsessive–
compulsive disorder, social anxiety disorder (social pho-
bia), anxiety secondary to a medical condition, substance-
induced anxiety disorder, and stimulus-specific phobias
[16, 189]. For this review, GAD, panic disorder, PTSD,
and to a certain extent, acute stress disorder are of
particular relevance because acute, repeated, or chronic
stress exposures are common triggers for these psychiat-
ric disorders [273, 286], because women may have an
inherently increased stress vulnerability, and because key
symptoms of these disorders have been successfully
modeled in animals.

Generalized anxiety disorder

GAD is characterized by constant, nonspecific, often irrational
worry and increased arousal in generally safe situations or
interactions, resulting in significant impairment of everyday
functionality. In developed, but not in developing, countries,
women are two to three times more likely than men to suffer
from GAD and have higher self-reported anxiety scores [90,
138, 215, 396]. In light of evolution, different rates of game-
togenesis, number of gamete availability, and partner selection
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may have predestined females to display a “more carefully
assessing,” selective, or anxious behavioral spectrum than
men, with the exception of pregnancy, peripartum period,
and lactation, times when more aggressive and less anxious
behaviors are beneficial in order to protect the offspring [265].
Accordingly, naturally higher anxiety scores in females com-
monly disappear during the peripartum period and lactation in
both women [254, 280, 360] and rodents [49, 265].

Panic disorder

Panic disorder patients suffer from sudden brief periods of
intense fear, hypervigilance, and distress, including autonomic
symptoms like tachycardia, difficulty breathing, or nausea,
without significant hypothalamic–pituitary–adrenal (HPA) ax-
is stress responses [135]. Panic attacks can be, but do not have
to be, triggered by specific stimuli, and the prevalence for
panic disorder is two to three times as high in women as in
men [127, 199, 396]. Also, in an 8-year longitudinal study
Yonkers et al. [396] reported a threefold higher incidence of
relapse in women compared to men. Kelly et al. [192] found
that, among healthy test subjects, both men and women ex-
posed to 20 % CO2, a stimulus that elicits responses compara-
ble to a spontaneous panic attack in panic patients, display
similar autonomic responses (heart rate, electrodermal re-
sponse, and frontalis muscle tension), while the subjective
experience of fear and panic is far greater in women, indicating
differences in how a panicogenic stimulus is perceived or
processed in the female brain. To dissect such gender differ-
ences, research must also take the estrous cycle stage into
account. The female brain must have mechanisms in place to
cope with the monthly fluctuations of sex steroids, many of
which are neuroactive [157, 252, 325], and it is probably only
when such adaptive mechanisms are disturbed that psychiatric
diseases manifest themselves. Anxiety sensitivity, e.g., the
fearful belief that certain bodily sensations or the experience
of anxiety itself may indicate undetected illness [248], is an
established cognitive risk factor for the development of panic
disorder [233, 268, 323]. During the premenstrual phase
(days 24–28) both women with panic disorder and women
with high anxiety sensitivity scores display a greater electro-
dermal response magnitude to auditory anxiety-provoking
stimuli than healthy controls, while baseline recordings (in
the absence of auditory stimulation) are the same among all
groups and estrous phases [333, 334]. Similarly, women suf-
fering from panic disorder are more likely to experience a
panic attack after a laboratory CO2 challenge during their
premenstrual phase (days 23–28), compared to their
intermenstrual phase (days 8–22) or healthy controls in either
phase. The fact that a panicogenic challenge with CO2 [132,
196] or intravenous sodium lactate [113, 318] causes premen-
strual dysphoric disorder (PMDD) patients to display panic
attacks at about the same rate as in panic disorder patients

further indicates a common underlying psychobiology [368].
Rodent as well as human research [190, 260, 274, 333] now
proposes a three-factor interaction between (a) the rate at which
progesterone and its anxiolytic metabolite allopregnanolone
drop during the late luteal phase (humans) or during late
diestrus (comparable phase in rodents) [221, 222, 314], (b)
γ-aminobutyric acid (GABA)A receptor sensitivity, kinetics,
and subunit assembly in stress-coping circuitries including the
amygdala and the periaqueductal gray (PAG) [143, 147], and
(c) external stressors [94, 95, 340] as a model of sex-dependent
predisposition for panic disorder [268].

Posttraumatic stress disorder

According to Olff [275], Breslau [60, 62], and Cohen and
Yehuda [80], women are also more likely than men to
develop acute stress disorder or PTSD, but controversy
exists on whether this is due to inherently increased stress
vulnerability or an earlier average age of trauma exposure,
different types of PTSD-inducing events (e.g., sexual vs.
combat-related assaults), or increased societal victimization
of women combined with a different perception of the
PTSD-inducing event [80, 275]. In contrast to GAD,
PTSD diagnosis requires the experience of one or a series
of psychologically traumatic events that result in flashback
memories and nightmares as well as avoidance of stimuli
associated with that event, in combination with typical anx-
iety symptoms such as hypervigilance. HPA axis dysfunc-
tion in PTSD is proposed for both genders [395], but a
recent meta-analysis revealed that especially female PTSD
patients appear to have lower circulating cortisol concentra-
tions, compared to healthy controls [251].

Anxiety-relevant physiological and psychological gender
differences

In healthy individuals, research over the past decade has
identified several physiological and neurological gender
differences that are relevant to stress responsiveness and
anxiety. In the Trier Social Stress Test (TSST) [205], an
anxiogenic, social-evaluative laboratory setting that reliably
activates the human HPA axis, many studies report lower
salivary cortisol responses in women compared to men [186,
212, 213, 324], while others find no difference [193, 388],
yet women report overall more irritability and distress after
the test [193]. Overall, these human HPA axis response
results are puzzling because rodent studies robustly find
the opposite sex difference, meaning higher increases of
corticosterone secretion in females following various types
of stressors [156, 327, 365, 381]. Because estrogens have
been shown to positively regulate the expression of the human
corticotropin-releasing factor (CRF) gene [363], which does
not only orchestrate HPA axis activity, but is also expressed in
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anxiety-related brain circuits [139, 216, 335, 375] and facili-
tates anxiety-like behaviors and lasting anxiety states [107,
328], differences in central actions of CRF may be more
relevant to the female bias in anxiety disorders. This notion
is supported by recent animal studies [28, 244, 346].

Imaging studies have now revealed several structural or
functional gender differences in anxiety-relevant brain re-
gions, such as the prefrontal cortex (PFC), hippocampus,
and extended amygdala complex [348]. For example, the
central part of the bed nucleus of the stria terminalis (BNST)
is smaller in women compared to men [399], and a meta-
analysis found that negative emotions were consistently
associated with a stronger activation of the left central
amygdala (CE) in women, whereas positive emotions acti-
vated the left CE more in men compared to women [348].

Interestingly, women have greater pain sensitivity thanmen
[119, 142], a phenomenon that is due to thalamocortical
processing or emotional appraisal of the stimulus, not spinal
nociceptive activity [130], and that disappears when trait
anxiety is controlled for [130, 300]. This likely depends on
an interaction of sex steroid fluctuation and stress exposure
because rodent studies have demonstrated that such sex-
dependent hyperalgesia only occurs after a mild anxiogenic
stressor during late diestrus, but not during other estrous
stages [93].

Thus, while some gender discrepancies in emotional
disorders might be skewed by the fact that women tend to
report and seek help more readily than men [43, 199, 235],
understanding the true biological determinants of anxiety
disorders in both women and men is of therapeutic and
economic importance.

Significance and socioeconomic impact of gender
differences in anxiety

In Western civilizations, the lifetime prevalence for anxiety
disorders amounts to approximately 18 % of the population
[198], the average onset age for anxiety disorders is 11 years
of age [269], and while the overall costs of anxiety disorders
in the USA were an estimated $42 billion/year during the
1990s [141], mental health care costs, including those for
anxiety disorders, are currently outgrowing those of heart
disease and cancer [270]. In women, more so than in men,
anxiety disorders are also often identified as a preexisting
condition before the onset of a major depressive episode
[63, 64, 163, 281, 282], and anxiety often remains a major
comorbidity with depression [61, 77, 106, 246, 258]. Recent
studies have also shown that anxiety disorders occurring as
early as childhood and adolescence are strong predictors of
later depressive episodes [20] and, in girls, of later suicide
attempts [65]. Generally, anxiety disorders are much more
common in girls than in boys [20, 267], and adolescent

anxiety is associated with increased rumination in girls but
not in boys [158]. This highlights the ethical and socioeco-
nomic need to prevent or treat anxiety disorders as early as
possible under the reasonable assumption that preventing
the manifestation of an early anxiety disorder may also
reduce the risk of later affective disorders.

While research acknowledges existing gender differences
in anxiety disorders, treatment remains largely indifferent
towards those facts [37, 78]. Revealing biological substrates
and mechanisms relevant to the etiology of anxiety disor-
ders in females compared to males would relieve some of
the economic and personal burden originating from ineffec-
tive treatment strategies.

Major questions and challenges for animal models

Key questions are whether sex differences in anxiety disorders
originate mainly because of sex-chromosomal gene expres-
sion [89], sexually dimorphic developmental differentiation of
brain regions and stress-response systems (organizational ef-
fects of sex steroids), female reproductive hormone fluctua-
tions postpuberty, protective or vulnerability-inducing effects
of reproductive hormones in adulthood (activational effects of
sex steroids), or differences in stressor perception and emo-
tional appraisal. Since the Y chromosome contains a very
limited number of genes and the Barr body (second X chro-
mosome in females) remains largely inactive in healthy cells
of the female body [73, 74], the impact of chromosomal
differences in the classic sense [19, 299] on anxiety-related
behavior is probably small in comparison to developmental or
adult neuroendocrine sex differences, but not negligible [35,
89, 241]. The role of the maternally inherited mitochondrial
genome and its effects on energy balance should also not be
ignored because a higher predisposition for anxiety and
depressive disorders is detected in mothers and matrilineal
relatives of children with maternally inherited mitochondri-
al diseases [48], and clinical in vitro fertilization studies
among offspring of genetically related or unrelated mothers
suggest that, in many cases, affective and anxiety-linked
genetic traits may be inherited from the mother [38, 307,
308]. It also to be expected that anxiety-relevant biological
sex differences exist with regard to stress vulnerability,
meaning how the female brain perceives and processes
stressful events, and that some of these differences should
be detectable on a molecular level.

While neuroanatomy and physiology are very similar be-
tween female rodents and women, discrepancies in reproduc-
tive cycle duration (4 days in rodents vs. 28 days in humans),
cycle pattern of estradiol and progesterone, and hormone
amplitude differences [35, 120] exist. For a detailed compar-
ison of the hormonal fluctuations across the rodent estrous
cycle and the human menstrual cycle, please refer to Fig. 1.
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Additional challenges are increased costs of studies com-
paring both sexes or analyzing all four stages of the rodent
cycle (proestrus, estrus, early/late diestrus), instead of using
ovariectomized or hormone-replaced females, and concep-
tual issues such as interpreting detected sex differences
properly. Not every (neuro)biological sex difference indi-
cates vulnerability, and many responses to acute or even
chronic stressors may be adaptive not maladaptive [8]. For
example, rodent research may find more acute stress-
induced expression of the immediate early gene c-fos in
several brain regions of male rats, but not proestrus or estrus
female rats [45, 117], or increased memory loss in male rats
compared to female rats [225] after chronic stress, but it
remains to be determined whether such differences represent
adaptive or maladaptive coping mechanisms. This leads to
the importance of pairing neuroendocrine or neuroanatomi-
cal studies with appropriate behavioral tests. Since we can-
not inquire about subjective states of anxiety in a rodent, we
instead employ tests that have face validity (e.g., classic
tests of conflict anxiety) and correlate those with biological
measures (e.g., neuronal activation or gene expression).
Useful behavioral tests thus either translate the human con-
cept into a test situation that is evolutionarily comparable
and relevant to the rodent without anthropomorphizing the
animal’s behavior or are based on known neurocircuits or
neurotransmitter systems within the body.

While animal models cannot mimic societal injustice
that still exists towards women in parts of the world or
address how societal issues and gender-dependent rein-
forcement are processed by males vs. females, animal
models can inform on underlying biological differences,
sex-dependent symptomology, and coping mechanisms in

stress-related anxiety disorders and may lead to the identifi-
cation of sex-specific targets for pharmaceutical treatment. In
the following sections, we focus on sex differences in natu-
rally occurring trait anxiety and sex differences in anxiety
states induced by acute, repeated, or chronic stress exposure.

Sex differences in conflict anxiety and current animal
models

Naturally occurring sex differences in classic anxiety tests

One behavioral symptom of GADwith face validity in rodents
is conflict anxiety, meaning an inhibited approach when
placed in an ambiguous situation that involves both potential
reward and potential danger or punishment [140, 249, 250]. In
other words, the rodent’s inherent avoidance behavior (e.g.,
towards open/exposed/brightly lit areas, a novel object, or
towards an aversive stimulus) competes with the natural ex-
plorative drive, for example, to seek a reward such as food or
water. Similarly, human anxiety is maladaptive when it pre-
vents the individual from participating in normal daily activ-
ities and interactions or from seeking reward due to an
unrealistic, exaggerated fear of failure, social scrutiny, or
punishment. Unconditioned behavioral paradigms such as
the light–dark (white/black) box [256, 302], elevated plus
maze (EPM) [170, 288], open field (OF) [298, 378],
novelty-suppressed feeding [46, 161], or Vogel punished
drinking [369] are classic approaches to test inherent conflict
anxiety (for a schematic overview, see Fig. 2). The elevated T-
maze (ETM) [397] evaluates both conflict anxiety, with longer
latencies to enter the open arm of the maze as a measure of

Fig. 1 Schematic comparison
of the 4-day rodent
reproductive cycle and the 28-
day human menstrual cycle.
Depicted are average
fluctuations of the circulating
hormones 17-beta-estradiol,
progesterone, luteinizing
hormone (LH), and follicle-
stimulating hormone (FSH) in a
female rat (left panel) vs. a
female human (right panel).
Gray bars in the left panel
depict the dark phases. Data for
individual hormones were
adapted from [120, 339, 353]
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inhibitory avoidance, and panic-like escape responses, with
shorter latencies to escape from the open arm of the maze as an
index of increased panic-like behavior. The social interaction
(SI) test [118], using a novel adult conspecific of the same age,
weight, and sex, and the juvenile social exploration test [75],
using a novel adolescent conspecific of the same sex, evaluate
anxiety in the context of rodent-specific, nonaggressive social
identification, contact, and play behaviors initiated by the
experimental rat.

Interestingly, most murine rodent models report lower
anxiety-like behavior in females, compared to males. Table 1
lists examples of adult sex differences, as well as age-
dependent and estrous stage-dependent female behavior in
classic conflict anxiety paradigms.We also list sex differences
in ultrasonic vocalization of isolated neonates (40–50 kHz)
because it has proven to be positively correlated with adult
trait anxiety [68, 389, 392] and is used to screen for anxiolytic
drugs [168, 255], such as 5-hydroxytryptamine receptor type
1A (5-HT1A) agonists or benzodiazepines [121], targeting
GABAA receptors. A major advantage of assessing the dura-
tion or frequency of ultrasonic vocalization is that it is an
objective behavioral endpoint, easily quantifiable, automated,
locomotion-independent, and requires no conditioning proce-
dure. Early studies using adult rodents [182, 195] often en-
tirely failed to distinguish between anxiety-like behavior and
locomotion or general activity, which is commonly higher in
females [115], but even in more careful evaluations, it is
impossible to evaluate anxiety-like variables distinctly from
locomotor activity because locomotion is the driving force
underlying the variables of interest [102]. In contrast, the SI
and Vogel punished drinking tests tend to detect a sex bias
towards increased anxiety-like behavior in females [182, 343].
However, male–male vs. female–female SI may have inher-
ently different components, and more avoidance in the Vogel
punished drinking paradigm might be compromised by en-
hanced female pain sensitivity [119]. Sex differences in
anxiety-like behavior also depend on the species (with mo-
nogamous, alloparenting species such as Mongolian gerbils

[66] and prairie voles [26] potentially proving to be better
rodent models for sex differences in anxiety than mice and
rats), strain [13, 309, 358], age [110, 175], and whether female
data were pooled for all estrous stages or not. In fact, estrous
stage appears to be amajor determinant of conflict anxiety, with
diestrus females acting more anxious than males or estrus,
metaestrus, and proestrus females [125, 133, 234, 261]. Also,
circadian testing time, light or dark phase, light intensity, and
other methodological differences, such as pretesting conditions
or test order, can profoundly alter outcome variables [72, 172,
302]. Conclusively, it seems necessary to evaluate existing
paradigms more carefully, e.g., using principal component
analyses [13, 115] or z-scoring computation [146], to develop
novel behavioral tests that are not driven by anxiety-irrelevant
behaviors or physiology and to identify reliable, easily measur-
able correlates of conflict anxiety in order to properly address
and quantify sex differences in rodent emotionality models.

Adult anxiety states induced by adverse early life experience

A large body of literature exists on the development of adult
anxiety states following adverse early life experience [315], an
effect that is likely dependent on epigenetic modifications that
result in long-lasting alterations of brain physiology and stress-
coping strategies [171], and many of these models report sex
differences in anxiety-like behaviors. To discuss this literature in
detail is beyond the scope of this review, but it is worth men-
tioning several anxiety-relevant sex differences discovered in a
variety of rodent models using manipulations of maternal diet,
other gestational stressors, neonatal lipopolysaccharide (LPS)
exposure, maternal separation (MS) or low maternal care, and
adolescent stressors to investigate resilience-inducing or
vulnerability-inducing effects of early life adversity. For a re-
view of comparable developmental ages in rodents [14] vs.
humans, refer to Eiland and Romeo [108], and for a species-
comparative table listing the developmental windows relevant
for the formation of anxiety-relevant mesolimbocortical brain
regions, see Weinstock et al. 2001 [380].

Fig. 2 Schematic overview of commonly used tests of unconditioned
conflict anxiety in adult rodents and of neonatal ultrasonic vocalization.
Shades of gray represent darker (or, in case of the OF and SI test, more
protected) zones of the respective test paradigm. Thick black lines desig-
nate walls of the test apparatus or cage (in the case of novelty-suppressed
feeding/neophagia). In the OF, light–dark (white/black) box, EPM, and
ETM, an increased latency to enter into and less time spent in the brighter
(or more exposed) zones designates anxiety-like behavior. Similarly,

decreased SI behavior with an age-matched, weight-matched, and sex-
matched conspecific, decreased numbers of shock-punished licks (1
shock every 20 licks) at the drinking bottle after 16–24 h of water
deprivation in the Vogel punished drinking test, and suppressed consump-
tion of food in a brightly lit, novel cage or arena also indicate an anxiety-
like behavioral state. Frequency and duration of neonatal ultrasonic
vocalizations at 40–50 kHz are used to screen for anxiolytic drugs and
are strongly correlated with adult trait anxiety
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Maternal high-fat diet

Obesity rates are alarmingly high in Western societies. A
recent survey concluded that, by 2008, 68 % of all adult
Americans were overweight [122], and the percentage is
likely to have increased since then. While genetic predispo-
sition is estimated to contribute < 2 % to the body mass
index variation between individuals [219], sedentary life-
style and high-fat dietary choices are likely to explain many
obesity cases. In addition to the numerous physiological and
mental comorbidities [210], including increased risk for
anxiety and depression [310], that are associated with obe-
sity, animal studies recently revealed that poor nutritional
choices by the mother may also imprint the offspring to

suffer from a disadvantageous energy balance [57, 367],
increased susceptibility to metabolic disorders [184], in-
creased brain inflammation [41], and anxiety-like behavior
[41, 287, 350]. Specifically, Bilbo et al. [41] fed rat dams a
high-fat diet (HFD; both a saturated-fat diet and a trans-fat
diet had similar consequences) for 4 weeks prior to mating
and throughout pregnancy and lactation. Upon weaning, rat
pups were raised on standard rat chow. After reaching
adulthood, male, but not female, HFD offspring displayed
increased anxiety on the EPM. In contrast, female, but not
male, juveniles born to Japanese macaques that were fed an
HFD for up to 4 years, including pregnancy and lactation,
displayed increased anxiety when presented with a novel
object task in a study by Sullivan et al. [350], while the

Table 1 Examples of naturally occurring sex differences and estrous stage-dependent female behavior in unconditioned, classic rodent tests of
adult conflict anxiety and neonatal ultrasonic vocalization

Test paradigm Species and strain Sex difference or major finding Reference

Light–dark box Mouse, FVB/NHsd ↓ anxiety in females vs. males [370]

Rat, Lewis ↓ anxiety in females vs. males [303]

Mongolian gerbils ↑ anxiety (dark-side entries, but not dark-side time) in females throughout all
estrous stages vs. males

[66]

Elevated plus maze Mouse, DAB/2 ↓ anxiety in females vs. males [309]

Rat, Wistar ↓ anxiety in 90-day-old females vs. males [175]

Rat, Long Evans ↓ anxiety in proestrus females vs. males and other estrous stage females [125]

Rat, Wistar ↑ anxiety in diestrus vs. proestrus females [234]

Mouse, 129S2/SvHsd×
C57BL/6J

↓ anxiety in females vs. males [370]

Rat, Lewis ↓ anxiety in females vs. males [303]

Rat, Wistar ↑ anxiety in early diestrus females vs. males and other estrous stage females [97]

Mongolian gerbils ↑ anxiety in females, throughout all estrous stages vs. males [66]

Prairie voles ↑ anxiety in females (two times more time in closed relative to open arms) vs.
males

[26]

Rat, Wistar ↓ anxiety in 60-day-old females vs. males [110]

Rat, Long Evans ↑ anxiety in senescent vs. reproductively competent females [372]

Mouse, C57BL/6J ↑ anxiety in females vs. males [13]

Elevated T-maze Rat, Sprague Dawley ↓ avoidance in females vs. males [5]

Rat, Lewis ↓ avoidance in females vs. males [303]

Rat, Wistar ↑ avoidance and decreased escape in diestrus females vs. males [133]

Novelty-suppressed
feeding

Rat, Sprague Dawley ↑ anxiety in diestrus females vs. females in other estrous stages [261]

Open field Rat, Long Evans ↓ anxiety in proestrus females vs. males [125]

Mouse, C57BL/6J ↑ anxiety in females vs. males [13]

Social interaction Rat, Lister hooded ↓ social interaction in females vs. males [182]

Rat, Long Evans ↑ social interaction in proestrus females vs. males and females in other estrous
stages

[125]

Mongolian gerbils ↓ (aggressive) social interaction in females, throughout all estrous stages vs. males [66]

Rat, Sprague Dawley ↓ social interaction in proestrus and diestrus females vs. males [343]

Mouse, C57BL/6J ↑ social interaction in females vs. males [13]

Ultrasound
vocalization

Rat, Wistar ↑ vocalization in male pups when female pups in litter vs. male-only litters [264]

Mouse, various strains ↑ vocalization in male pups on postnatal days 2–6 vs. females [149]

Vogel punished
drinking

Rat, Lister hooded ↓ punished licks in females vs. males [182]

Rat, Long Evans ↓ punished licks in senescent vs. reproductively competent females [372]
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mRNA expression of both tph2, encoding tryptophan hy-
droxylase 2 (Tph2, the rate-limiting enzyme for serotonin
synthesis), and htr1a, encoding the inhibitory 5-HT1A

autoreceptor, were increased about twofold within the sero-
tonergic dorsal raphe nucleus (DR) in fetuses (third trimes-
ter) of both sexes. This indicates maternal diet-induced
alterations of brain serotonergic systems, which may be-
come further dysregulated during puberty when reproduc-
tive hormones become active. Sullivan’s nonhuman primate
HFD model is consistent with the human sex bias in anxiety
disorders and may, to date, be one of the best animal models
for anxiety and depression, as TPH2 mRNA and TPH
protein expression have repeatedly been shown to be in-
creased in depressed suicide victims [21, 22, 47, 359] and
because the association between obesity and affective as
well as anxiety disorders is 1.5-fold to 2-fold stronger in
women than men [92].

Other gestational stressors

A variety of other gestational disturbances, including malnu-
trition, maternal exposure to psychological (e.g., repeated
restraint) or social stressors (e.g., defeat by a lactating, highly
aggressive dam), or increased maternal inflammatory milieu
due to bacterial or viral infections, have been shown to alter
brain development and increase adult-life anxiety in the off-
spring, as reviewed by Markham and Koenig [236]. Some of
these behavioral alterations may reflect adaptive emotional
coping strategies from an evolutionary standpoint [315]. If
you are born into a stressful world, increased vigilance and
avoidance may save your life while you are vulnerable and
developing, and only become maladaptive when applied to
safe or potentially rewarding situations later on. Interestingly,
prenatal stress appears to partially reverse extremes of genet-
ically inbred trait anxiety, with prenatal stress reducing anxiety
in the offspring of high-anxiety-behavior rats and increasing it
in the offspring of low-anxiety-behavior rats [50]. With regard
to sex differences due to gestational stressors, outcomes de-
pend on the choice of stressor and anxiety test. Gestational
malnutrition (6 % vs. normal 25 % protein content) increases
open-arm exploration of female offspring tested on the EPM
(an anxiolytic effect), but significantly decreases social explo-
ration in both sexes in the SI test due to increased rearing
behavior, possibly indicative of increased explorative escape
behavior, vigilance, and impulsivity at the expense of social
behaviors [6, 7, 209]. A similar hypervigilance, together with
faster escape behavior, was detected in female offspring of a
prenatal stress model by Louvart et al. [220]. Schulz et al.
[326] exposed pregnant rats to daily unpredictable stressors
during the last gestational week, resulting in paradigm-
dependent elevated anxiety-related behaviors in male
(decreased SI time) and female offspring (less time in
the open compartments of the elevated zero maze, an

open/closed-arm paradigm that lacks the ambiguous cen-
ter square of the EPM). In contrast, prenatal restraint
stress was found to selectively increase OF anxiety-like
behavior of female offspring [55].

Maternal separation

MS appears to be a reliable way to induce a chronic anxiety
state in male, but not female, offspring. MS protocols,
consisting of several hours of litter isolation from the dam,
typically between postnatal days 2 to 14 (while maintaining
adequate temperature conditions), often produce a bidirectional
sexually dimorphic effect on later-life anxiety, with exaggerat-
ed anxiety-like behavior in male offspring, but less intense
[390] or even anxiolytic outcomes in females tested in conflict
anxiety paradigms such as the OF, EPM, and ETM [245, 263,
305, 311, 338, 390]. MS also increases startle and adult (20–
28 kHz) ultrasonic vocalization responses to acoustic stimula-
tion in males, but not females [188]. Sexually dimorphic sen-
sitivity to reduced sensory stimulation (tactile, olfactory, and
auditory) during MS may also exist because neonatal tactile
stimulation can reverse MS-induced increases in contextual
fear-conditioned freezing to that of non-isolated controls in
females, but not in males [174]. Similarly toMS, early weaning
from maternal care also exerts sex-dependent anxiogenic ef-
fects in both mice [200, 201] and rats [208], with a strong bias
towards pronounced and longer-lasting male vulnerability.

A recent animal study found that same-strain cross-
fostered male Fischer 344 (but not Sprague Dawley) rats
scored higher on adult anxiety-related behaviors in the SI
and novelty-suppressed feeding tasks than controls [358].
Female offspring were also cross-fostered in this study, but
excluded from behavioral assessment. This suggests that, in
addition to classic MS models, adoption may also increase
the risk to develop anxiety states later in life [148].

Neonatal lipopolysaccharide

Several research groups have demonstrated that an immune
challenge early in life, for example, with the endotoxin LPS (a
pyrogenic cell wall component of gram-negative bacteria),
can result in a long-lasting anxiety-like state throughout adult-
hood and even senescence [58, 374], in particular in “double-
hit” models, including a second immune response activation
[351] or psychological stress exposure [376] during adult-
hood. Indicating a similar male-biased trend of early life
disturbances as observed in MS models, Tenk et al. describe
that neonatally LPS-challenged male rats are more anxious in
the OF test 2 h after a second homotypic immune challenge in
adulthood [351] than females, and that neonatal LPS (without
a second challenge during adulthood) actually decreases anx-
iety in female rats tested in the light–dark box [352]. Walker et
al. [376] used a “hide box/OF” setup, offering rats a protected
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box within the OF to retreat into, to reveal that neonatal LPS
together with adult restraint stress causes increased risk assess-
ment and overall vigilance in both sexes, but that neonatally
LPS-challenged males are more susceptible to anxiety-like
behavior in the OF and EPM after restraint during adulthood
than females. Interestingly, the anxiety state induced by neo-
natal LPS persists into the F2 offspring generation when male
or female LPS-group rats are mated with control rats, poten-
tially due to epigenetic changes in the paternal line [373]. In the
maternal line, however, this anxiety inheritance depends on
maternal lactation patterns and maternal care and is reversible
by cross-fostering F2 pups with saline mothers [373].

Adolescent stressors

Adolescence is the somewhat ill-defined phase between nutri-
tional independence and adulthood, defined by the endocrine,
neural, and behavioral events of sexual maturation [336], and is
accompanied by both increased social stressors and a need for
social buffering as attention naturally shifts from parent to peer
interactions [202]. During this period, social behaviors, such as
aggression, risk taking, social play, dominance establishment,
and mating, as well as stress-responsive limbic [312] and
cortical brain regions [185, 237] take on adult patterns. In fact,
a certain amount of stress exposure or socio-environmental
stimulation is probably necessary for normal development
and exerts long-term stress-protective, anxiolytic, and antide-
pressant effects later in life [240, 277, 355, 356], especially if
the adolescent stressor remains controllable [211]. Following
the murine postweaning phase (postnatal days 21–30),
rat/mouse adolescent days 31 to 60 include puberty and are
roughly commensurate with human ages of 10 to 18 years
[108]. However, rodent offspring are weaned from maternal
care before adolescence, while humans remain under parental
care for much longer. Research now attempts to parse out
stress-related and anxiety-related sex differences and to
match prepubertal and postpubertal endocrine profiles be-
tween the species throughout different developmental stages
within adolescence [67].

Compared to other early life stressors discussed previously,
postweaning and/or adolescent stress models are a reliable
way to produce long-lasting alterations in female emotional
behavior. Male rats are especially prone to develop a chronic,
long-lasting anxiety state when the stressor, such as social
isolation, is initiated in preadolescence [283, 386, 393], while
male social isolation initiated during adolescence may be
anxiolytic [17, 18, 354, 382] or have no effect [59, 217].
With the exception of Weiss et al., who found anxiogenic
effects of social isolation in male, but not female [386] rats,
social and nonsocial stressors during both preadolescent and
periadolescent time windows seem to result in elevated anx-
iety states of female rats during adulthood [18, 217, 242, 297,
382]. Bourke and Neigh [52] chose a mixed-modality

adolescent stress paradigm (restraint, isolation, and social
defeat) in Long Evans rats of both sexes (using retired breeder
males or ovariectomized females for social defeat) that also
increased adult anhedonic behavior in the sucrose preference
test and reactive stress coping (increased immobility) in the
forced swim test (FST) in females, but not males. Also, only
female adolescence-stressed rats of this study displayed in-
creased adult locomotor activity, rears, and overall vigilance
on the EPM (without altering open-arm time) and three times
as many escape-seeking dives during the FST than unstressed
controls, indicating a complex alteration of context-dependent
risk assessment and coping strategies (active or reactive) that
may closely resemble the behavioral symptoms of panic dis-
order or PTSD. Postweaning isolation protocols in female rats
result in increased adult anxiety, as measured by deficits in SI
behavior, OF exploration, and novelty-suppressed feeding
[161], and increased vigilance and arousal upon injection of
an anxiogenic pharmacological compound [229]. These
chronic anxiety states have been associated with altered cen-
tral serotonergic [227, 229], GABAergic [226], and
glutamatergic functions [161].

Adult anxiety states induced by acute or chronic stress

While only a few acute stressors have been shown to produce
long-lasting anxiety-like states in adult rodents, a variety of
chronic stress conditions, some employing an array of
unpredictable heterotypic stressors [145, 146, 257, 319] and
others using repeated exposure to a homotypic stressor such as
restraint [54, 172, 203], result in chronically increased
anxiety-like behavior and commonly also depressive-like be-
havior. To avoid an exhaustive description of such models, we
here solely discuss learned helplessness and psychosocial
stress models in light of the female-specific physiology and
behavioral outcomes. Glucocorticoid (GC)-mediated or
CRF/urocortin-mediated adult anxiety states are integrated
into the “Potential mechanisms for sex differences in stress-
related anxiety states” section.

Inescapable stress and learned helplessness

Responding to and coping with acute or temporary stressors
belongs to the normal repertoire of mammals. However,
severe, traumatic, or uncontrollable stressors are capable of
inducing a depression-like and anxiety-like state for up to
48 h, also termed “learned helplessness,” in which the
individual then also perceives controllable situations as un-
controllable. Very few studies use female rodents as sub-
jects, but in male rats, 1 session of 100 inescapable tail
shocks (about 1 h 40 min total duration) is sufficient to
induce a 48-h-long anxiety-like and depressive-like behav-
ioral phenotype [231]. Learned helplessness is thought to be
due to a prolonged release of serotonin within the DR and its
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target regions during and after stress exposure, resulting in
functional desensitization of 5-HT1A autoreceptors [313]
and subsequent exaggerated serotonin release within fore-
brain structures controlling anxiety-like behaviors [10].

Acutely, inescapable shock activates stress-induced seroto-
nin release from local axon collaterals [238] and induces the
expression of the immediate early gene c-fos [137] in a mid-
brain serotonergic region that is also activated by urocortin 2
[152, 344], a CRF-like peptide that preferably binds to CRF
type II receptors (CRFR2), certain anxiogenic pharmacologic
compounds [1], and anxiogenic environmental stimuli [126,
341]. This subdivision has been identified as the dorsal and
caudal DR (DRD/DRC; see Fig. 3). In contrast, escapable tail
shock, in other words experiencing control by being able to
terminate each shock, while receiving exactly the same physical

stressor as a yoked rat receiving inescapable tail shock, prevents
the behavioral and neurobiological phenotype of learned help-
lessness and even renders the individual resilient towards sub-
sequent inescapable stress [11]. Projections from the medial
PFC to the DRD/DRC region mediate some of the behavioral
manifestations of controllability [31]. Both the PFC and the
DRD/DRC are sensitive targets for fluctuating concentrations
of reproductive hormones, especially estrogens [116, 364].

Whether inescapable shock-induced learned helplessness
also manifests itself in females remains to be determined,
although recent evidence suggests that female rats maintain
their escape-seeking behavior, interpretable as a sign of resil-
ience [87, 332]. In humans, on the other hand, overly active
escape-seeking or hypervigilance may be symptomatic of
panic or agoraphobia. Bland et al. [45] was one of the first
to use females in the learned helplessness model and found
that, immediately following inescapable tail shock, male rats
display a greater increase of both c-fos and bdnf expression
(encoding the presumably neuroprotective brain-derived
neurotrophic factor [BDNF]) in the PFC than females, com-
pared to home cage controls. In contrast, expression levels of
both genes were either similar in both sexes or increased in
females, compared to males, 60 min after inescapable shock.
These findings suggest differential temporal response patterns
in males vs. females, while the behavioral consequences and
neuronal effects within downstream target sites of the female
PFC remain to be determined.

Psychosocial stress models

Since female rodents do not display the same aggressive,
territorial, and hierarchy-establishing behaviors as males, only
few relevant and effective psychosocial stress models exist.
Among those, the resident–intruder test, exposing the expe-
rimental female to an aggressive lactating dam after temporary
removal of her pups [266], and novel chronic psychosocial
stress mouse models based on disruption of the animal’s social
stability, such as social isolation (single housing) or rotation of
cage mates [279, 322], are most promising. Schmidt et al.
[322], for example, rotated the group composition of four
female mice per cage twice a week for a total of 7 weeks from
adolescence throughout young adulthood, resulting in in-
creased anxiety in the novelty-suppressed feeding task.
There is a clear need for more psychosocial stress models in
females because results from both human TSST studies [193]
and rodent models [177] indicate that females perceive social-
ly stressful situations as much more fear-inducing and
distressing than males despite similar or comparably low GC
responses. Because social stressors are most pervasive to
humans and are key contributors to the etiology of anxiety
and mood disorders, stress models that are derived from
socially important and evolutionary meaningful contexts from
the rodent’s perspective currently offer the best face,

Fig. 3 Hypothetical model of how stress-induced increases in cortico-
tropin-releasing factor (CRF) expression and signaling from the bed
nucleus of the stria terminalis (BNST) may interact with decreased
GABAergic inhibition from the ventrolateral periaqueductal gray
(VLPAG) during late diestrus to enhance serotonergic output in the
conflict anxiety-related dorsal and caudal DR (DRD/DRC). During late
diestrus in rodents, declining circulating concentrations of progester-
one and its neuroactive metabolite allopregnanolone cause increased
expression of α4, β1, and δ subunits of the γ-aminobutyric acid
(GABA) receptor type A within the PAG [143, 144], including the
VLPAG, ultimately resulting in attenuated ongoing GABAergic inhib-
itory signaling [221]. Attenuated activity of GABAergic neurons from
the VLPAG render serotonergic neurons in the DRD/DRC more active
[183], and stress induces CRF expression in the conflict anxiety-related
BNST [232, 331, 375]. Enhanced CRF release from BNST projections
further activates serotonergic neurons through CRF receptor type 2
(CRFR2) [204] within the DRD/DRC [335]. Together with stress-
induced desensitization of autoinhibitory 5-HT1A receptors on DRD/
DRC serotonin neurons [313], late diestrus-enhanced hyperactivity of
the DRD/DRC causes increased serotonergic output to distal target
sites controlling conflict anxiety-like behavior, in particular through
actions on excitatory 5-HT2C receptors [76] in the BL [12, 150].
Neuronal projections are drawn unilaterally solely for simplicity and
do not imply functional laterality
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construct, and predictive validity [153, 154, 162] and an
alternative to socially irrelevant or painful stress procedures.

Sex differences in animal models of panic disorder

To our knowledge, no physiologically and behaviorally
validated female rodent models for panic disorder exist to
date. However, there are well-characterized models in male
rodents that could easily be replicated in females while
monitoring estrous cycle stage through hormonal profiling
or vaginal smears [35] and would contribute important
information on sex differences in panic-like behaviors and
panic-like physiological responses. Also, many behavioral
and physiological characteristics of chronic anxiety states in
rodent models, as described previously, may pertain to
panic-specific biological symptomology.

Clinically relevant sex differences may exist in response to
stimulation with panicogenic agents. Genest et al., for exam-
ple, report more hypercapnia-induced tachypnea (increased
respiratory rate), as measured in a plethysmography chamber,
only in maternally separated female rats, whereas neonatally
separated males hyperventilated less than controls [129].
Estrous stage-dependent variations in reproductive hormones
may be a critical factor for altering the sensitivity of cardio-
vascular and respiratory control centers to a panic-inducing
stimulus because intravenous administration of the synthetic,
panicogenic peptide pentagastrin has been shown to cause
increased tachycardia and tachypnea during diestrus com-
pared to proestrus in anesthetized female rats [56].
Concordant with Klein’s “false suffocation alarm” hypothesis
of panic disorder [206], hypercapnia is a useful tool to com-
pare human (see the “Panic disorder” section) to rodent re-
sponses [34, 178]. Similar to increased CO2 sensitivity and
predisposition to panic disorder in humans from unstable
parental environments [33], recent studies have shown that
female and male rodents exposed to neonatal MS in infancy or
to an unstable cross-fostering environment show an increased
hypercapnic ventilation response to the panicogenic agent
CO2 as adults [86, 104]. An equally relevant method to detect
panic-related physiology and behavior in both humans and
rodents is intravenous infusion of sodium lactate. Sodium
lactate infusions, through central actions of sodium rather than
changes in osmolarity or lactate [259], are sufficient to induce
panic attacks in panic disorder patients, but not in healthy
controls [84, 131, 290], and likewise cause panic-like re-
sponses in animal models of panic disorder [301, 316].
Sodium lactate infusion into male control rats activates sero-
tonergic neurons in the “lateral wings” of the DR, the so-
called ventrolateral DR/ventrolateral periaqueductal gray
(DRVL/VLPAG), while male rats that have been rendered
panic-prone (through disinhibition of the medial hypothala-
mus with the GABA synthesis inhibitor L-allylglycine) fail to

activate these neurons [179]. Five days of subthreshold prim-
ing of CRFR1 with the CRF-like peptide urocortin 1 locally
within the basolateral amygdala (BL) also affects the
DRVL/VLPAG region, causing an increase in tph2 mRNA
and reduced SI in male rats [99]. Rats of the same intra-BL
priming model react with panic-like physiological and behav-
ioral responses to sodium lactate infusion, while controls do
not [301]. Serotonergic DRVL/VLPAG projections are likely
to travel through the periventricular tract to innervate the
dorsal periaqueductal gray (DPAG) [36, 349]. This region
controls a spectrum of defensive behaviors ranging from
freezing to escape, depending on the perception of how close
or imminent a threat is [44, 296], and controls autonomic
responses to stress in mammals [134, 173, 191, 249].
Serotonergic signaling is capable of inhibiting those re-
sponses, for example, through actions on postsynaptic 5-
HT1A [296] and 5-HT2A receptors [295]. The serotonergic
DRVL/VLPAG is thus ideally positioned to control escape
behaviors and panic-like responses. Failure to activate the
DRVL/VLPAG, in contrast, may result in increased vulnera-
bility to stress and facilitate escape-like and panic-like re-
sponses. The questions that remain are whether these panic
models can be reproduced in females and if they would reveal
(as we expect) sex-dependent or estrous stage-dependent (re)
activity of the DRVL/VLPAG.

Another new rodent model of panic disorder uses a
noninvasive ultrasound stimulus to induce panic-like re-
sponses in adult rats, but also has yet to be tested in females.
Namely, Lister hooded rats respond with tachycardia and
hyperthermia to a noninvasive 22-kHz (typical frequency for
an adult rat) ultrasound stressor without altering HPA axis
function, and this is associated with increased c-fos activation
of the DPAG/dorsolateral periaqueductal gray (DLPAG)
[207]. This is of interest because one core characteristic of a
classic panic attack in humans is the activation of autonomic,
but not neuroendocrine, stress-response systems [135].
Concordantly, excitatory stimulation of the DPAG/DLPAG
in primates [191] and (electrically) in awake non-panic disor-
der human patients [173] causes panic-like emotional and
autonomic responses (e.g., tachycardia and hyperventilation)
and, when increased in intensity, a shift from reactive freezing
behavior to active escape in rodents [321].

Sex differences in animal models of PTSD

Rodent models of PTSD are hard to validate, and only little
substantiated evidence for sex differences exist. PTSD ro-
dent models generally strive to avoid chronic or repeated
exposure to homotypic stressors in order to prevent habitu-
ation, but instead try to mimic the isolated, traumatic, and
life-threatening nature of the inducing stressor(s), ideally in
a species-relevant context, such as exposure to a predator or
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to predator smell [4]. Such protocols appear to be most
successful in modeling increased vulnerability in females.
While 10 min of protected exposure to an actual cat pro-
duces a long-lasting anxiety state in both sexes of C57BL/6J
mice, only females are just as susceptible to the feline odor
by itself [3]. As a hint towards serotonergic involvement in
this sex difference, male serotonin transporter knockout
mice (SERT−/−) take on the same vulnerability as females
by also developing a long-lasting anxiety state upon exposure
to cat odor alone [2]. An observation of potential relevance for
wild-type mice as well is that 5-HT1A receptor functionality
appears to be particularly impaired in SERT−/− females [51,
112], probably as a result of estrogenic downregulation of
5-HT1A autoinhibitory functionality that can be reversed by
ovariectomy [51, 239, 276]. A rise in 17-beta-estradiol during
the late diestrus and early proestrus could thus impair
autoinhibition of serotonergic neurons, rendering them more
active. Classic inescapable and uncontrollable stress para-
digms (see the “Inescapable stress and learned helplessness”
section) are also often interpreted as PTSD models [80, 394]
and are certainly useful to elucidate the inescapability aspect
of a trauma-inducing event, but often fail to induce behavioral
expression of learned helplessness in females [80, 96].

Potential mechanisms for sex differences
in stress-related anxiety states

Many sexually dimorphic characteristics, including neuro-
transmitter systems [15, 103, 164, 362], neuroactive peptides
[85, 244, 337], actions of reproductive steroid hormones
within the mesolimbocortical system [98, 383, 384, 398],
functionality of the GC receptor and HPA axis negative feed-
back [27, 42, 53, 70, 342, 366], neonatal microRNA spectrum
[262], BDNF polymorphisms and PFC expression of bdnf
[32, 45, 109], and immunological/inflammatory responses
[159, 253, 278], have emerged as candidates for mechanisms
underlying sex differences in anxiety states. To discuss all of
them is beyond the scope of this review. However, in an
attempt to integrate interactions of reproductive hormones,
GCs, CRF-related signaling, and brain serotonergic systems,
we here describemodels for neural circuits controlling conflict
anxiety (Fig. 3) and panic-like anxiety (Fig. 4) that, based on
recent evidence, may be more vulnerable to stress-induced
disturbances in females than in males.

Sex differences within a neural circuit controlling conflict
anxiety

A conflict anxiety-related serotonergic region that may be
particularly vulnerable in females is the midbrain DRD/DRC.
In a rat model of violence in intimate relationships (females
cohabitating with aggressive males, inducing a long-lasting

anxiety state in the females), Cordero et al. [83] recently found
selective hyperactivation of the DRD/DRC, a serotonergic
system that appears to control conflict anxiety-like behavior
(see Fig. 3), upon subsequent exposure to an unfamiliar male.
Interestingly, this effect persisted into the F1 generation even
when rearing conditions were controlled for. DRD/DRC
hyperactivation is likely dependent on CRF overexpression
in a specific region of the extended amygdala complex.
Mechanistic studies in male rodents suggest that projections
from the BNST specifically target the DRD/DRC region be-
cause overexpression of CRF within the lateral BNST [335]
has recently been reported to enhance the expression of con-
textual fear (similar to conflict anxiety) after conditioning and
to alter CRFR2 receptor density selectively within the DRD.
The DRD/DRC responds with increased c-fos expression in
response to various anxiogenic stimuli, such as threatening

Fig. 4 Hypothetical model of how stress-induced increases in cortico-
tropin-releasing factor (CRF) expression and signaling from the
basolateral (BL) and central (CE) amygdaloid complex likely function
to activate serotonergic output from the “lateral wings” of the dorsal
raphe nucleus (DR) and may interact with decreased GABAergic
inhibition from the periaqueductal gray (PAG) during late diestrus to
increase panic-like responses. During late diestrus in rodents, declining
circulating concentrations of progesterone and its neuroactive metabo-
lite allopregnanolone cause increased expression of α4, β1, and δ
subunits of the γ-aminobutyric acid (GABA) receptor type A within
the PAG [143, 144], ultimately resulting in attenuated ongoing
GABAergic inhibitory signaling [221] within the panic-related dorsal
PAG (DPAG). Stress-induced elevation of CRF within the BL leads to
increased CRF release from CE projections that target the “lateral
wings” of the DR, namely, the ventrolateral portions of the DR and
PAG (DRVL/VLPAG), either acting on CRF receptor type 2 (CRFR2)
directly on serotonergic neurons [204] or indirectly via CRFR2-medi-
ated inhibition of nonserotonergic neurons [289]. This normally leads
to increased activation of the DRVL/VLPAG, increased serotonergic
output to distal target sites, and postsynaptic 5-HT1A-mediated and/or
5-HT2A-mediated inhibition of panic-like responses. During late dies-
trus, however, decreased GABAergic signaling disinhibits the DPAG,
facilitating fight-or-flight and panic/escape-like responses [134]. Neu-
ronal projections are drawn unilaterally solely for simplicity and do not
imply functional laterality
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situations, anxiogenic drugs, or urocortin 2 [1, 126, 152, 285,
344, 345]. Additional support for an important role for the
BNST in controlling DRD/DRC serotonergic neurons comes
from the observations that learned helplessness [231] depends
on BNST functionality [155], that inescapable, relative to
escapable, tail shock specifically activates serotonergic neu-
rons in the DRD/DRC region [9], and that the delivery of
only two foot shocks 24 h following inescapable tail shock
produces a markedly increased release of serotonin within
limbic target areas of the DRD/DRC, for example, the BL
[10]. Desensitization of 5-HT1A autoreceptors within the
DRD/DRC appears to facilitate this effect [313].
Importantly, antagonism of 5-HT2C serotonergic receptors
in the BL is sufficient to block the DRD/DRC-mediated
learned helplessness effects of inescapable tail shock 24 h
later, as measured in the juvenile SI test [76]. Other
prominent anxiety-related or fear-related distal target sites
of DRD/DRC projections are the BNST itself [292] and a
conflict anxiety network that includes the BL [150, 151]
and the ventral hippocampus [284] and is activated by
exposure to an OF, a comparably mild conflict anxiety-
inducing stressor [151]. The ventral hippocampus is an
important region for fear conditioning and memory consol-
idation of fearful events [79, 114], but also serves to assess
risk in typical conflict anxiety situations [249].

It is unclear what mechanisms may cause this conflict
anxiety circuit to be overly responsive or active following
stress, but the DRD/DRC system has been demonstrated to
be more sensitive to estrogens than other DR regions. Local
wax pellet implants of 17-beta-estradiol flanking the DR of
ovariectomized female rats increase tph2 expression in the
DRD/DRC [98] and in the DRC when 17-beta-estradiol is
given systemically [166]. In contrast to the topographic
match of altered tph2 expression, the anxiety-related behav-
ioral effects of estrogen treatment in the aforementioned
studies, however, were inconclusive. Five days of local
delivery of 17-beta-estradiol or of an estrogen receptor beta
(ERβ)-specific compound within the immediate surround of
the DR did not alter anxiety-like behaviors [98] of ovariec-
tomized female rats, whereas systemic administration of 17-
beta-estradiol to ovariectomized female rats can have anxi-
olytic or anxiogenic effects, with the latter being correlated
with decreased expression of the gene encoding the
autoinhibitory 5-HT1B receptor in the ventromedial DR
[98, 165, 167]. These seemingly contradictory effects may
partially be due to the expression pattern of the two ER
systems within the brain. While only very few serotonergic
neurons express the androgen receptor in either sex [329],
ERα is found primarily in nonserotonergic neurons (e.g., in
GABA neurons in the inhibitory surround of the DR) and
ERβ appears to be predominately localized within seroto-
nergic cell nuclei [272, 329]. ERα is generally accepted to
exert anxiogenic actions, while ERβ has repeatedly been

shown to display anxiolytic function [357, 371, 383], but
where exactly within the brain those dichotomous ER receptor
systems are exerting these effects and whether they contribute
to the development of female-specific anxiety states remains
subject to further investigation [383–385]. Luine reported in
1993 that the serotonin metabolite 5-hydroxyindoleacetic acid
(5-HIAA) increases by 580% in the DRwithin a 5-h period of
the proestrus afternoon, while no such increase happens dur-
ing diestrus [224]. Another group found that female rats,
independent of estrous stage, display a much higher ratio of
5-HIAA to serotonin (a measure of serotonergic metabolism,
which is often correlated with serotonergic activity) than male
rats [97], but only in the DR, not in the median raphe nucleus
(MnR). Interestingly, a single exposure to the EPM conflict
anxiety paradigm in the same study, lastingly and sex-
specifically decreased the 5-HIAA/serotonin ratio in the DR
of females (but not males) and in the MnR of males (but not
females) for almost 2 weeks.

We have determined that chronic administration of corti-
costerone via the drinking water [100] creates a conflict
anxiety-like behavioral phenotype and elevated tph2 expres-
sion in anxiety-related serotonergic systems of male rats, but
have yet to determine if similar effects are evident in females
or how tph2 expression and enzyme activity respond to es-
trous stage. Animal models of chronic stress [243] or chronic
GC exposure during adulthood [82, 88, 100] are likely to be
mediated through GC-induced elevation of CRF expression
within the BNST [232, 330] and reliably result in increased
conflict anxiety-like behavior as a major behavioral outcome,
associated with increased tph2 expression (see supplemental
material to [100]) and in vivo tryptophan hydroxylase activity
[101] specifically in the DRD/DRC region.

Recent results from female nonhuman primate studies sug-
gest that elevation of reproductive steroids, namely 17-beta-
estradiol, may sensitize CRF receptor systems, in a female-
specific manner. In support of estrogen-induced alteration of
female-specific stress responsiveness within the DRD/DRC,
28 days of 17-beta-estradiol replacement in ovariectomized
female macaques markedly increased crfr2 expression within
laser-captured serotonin neurons of the DR in comparison to
ovariectomized controls without hormone replacement or
combined estradiol/progesterone administration [317]. In ad-
dition, both estradiol and combined estradiol/progesterone
treatment in ovariectomized female macaques altered the
composition of cell adhesion molecules within serotonergic
neurons and thus their synapse assembly [40]. How may this
specifically affect the DRD/DRC system? CRF is likely to act
directly in the DRD/DRC, via actions on CRFR2 receptors, to
increase serotonergic neuronal firing rates. The DRD/DRC
densely expresses crfr2/CRFR2 [91, 335], CRFR2 is
expressed directly on serotonergic neurons of the DRD/DRC
[230], and CRF elicits CRFR2-mediated currents in ex vivo
electrophysiological studies of DR serotonergic neurons
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[204]. Thus, female vulnerability of the DRD/DRC circuitry
may be increased, depending on fluctuating concentrations of
estradiol.

Sex differences within a neural circuit controlling panic
and escape

An anxiety-related neurocircuit that includes the BL, CE, and
serotonergic DRVL/VLPAG [99] probably exerts inhibitory
control over panic-like and escape-like autonomic and behav-
ioral responses originating in the DPAG and may also display
reproductive steroid-dependent sex differences, especially with
respect to developmental manipulations. In an early life adver-
sity model, Lukkes et al. [229] recently discovered that adult
female, but not male (unpublished data), rats that underwent
social isolation during adolescence display increased vigilance
behavior and decreased basal tph2 expression in the panic-
related “lateral wing” region of the DR (DRVL/VLPAG; see
Fig. 4). Expression of panic-like anxiety is thought to depend
on CRFR1 signaling within the BL [319]. Five days of sub-
threshold intra-BL priming of CRFR1 with urocortin 1, a CRF-
like peptide, for example, decreases SI time and renders male
rats prone to sodium lactate-induced tachycardia, hyperten-
sion, and hyperventilation [301]. Conversely, the anxiogenic
effects of intra-BL priming with urocortin 1 are reversible
when a CRFR1 antagonist is locally infused into the BL prior
to assessment of behavior in the SI test [128]. In a recent
collaboration with the Shekhar laboratory [99], we also found
that the same intra-BL urocortin 1 priming model selectively
alters tph2 expression in the DRVL/VLPAG. Serotonin neu-
rons within the DRVL/VLPAG may be required to suppress
panic attacks [136]. When activated, serotonergic projections
to the DPAG are thought to inhibit panic-like autonomic and
behavioral responses [36, 296, 349]. Only control, but not
panic-prone, rats respond with increases in c-fos expression
in DRVL/VLPAG serotonergic neurons following sodium lac-
tate infusion [179]. Failure to activate DRVL/VLPAG neurons
may not only decrease inhibitory serotonergic signaling from
the DRVL/VLPAG to the DPAG [296], but also to the rostral
ventrolateral medulla (RVLM), a brainstem region exerting
sympathoexcitatory control over physiological responses in-
cluding heart rate, blood pressure, and respiration [23, 24,
223], and to the perifornical region of the hypothalamus, from
where orexin/hypocretin neurons control arousal and vigilance
behaviors [180, 181]. Both CRFR1 and CRFR2 are expressed
within the DR and in the immediate inhibitory surround of the
DR [91]. During stress, CRF from CE-derived afferents likely
binds to CRFR1 on GABAergic interneurons within the
DRVL/VLPAG to facilitate and maintain appropriate inhibito-
ry control of DR serotonergic neurons [204]. Meanwhile, intra-
DR activation of CRFR2-expressing serotonergic neurons,
possibly within the DRVL/VLPAG, appears to facilitate anti-
panic/anti-escape behaviors such as freezing [123]. Likewise,

local blockade of CRFR2 prevents serotonin release in
distal target regions [124, 228]. Interestingly, crfr1 expres-
sion within (laser-captured) DR serotonin neurons is
highest in ovariectomized female macaques without hormone
replacement compared to female 17-beta-estradiol-treated or
estradiol/progesterone-treated ovariectomized animals [39,
317], and combined estradiol/progesterone treatment (28 days
of estradiol/progesterone during the last 14 days) reduces
both crfr1 and crfr2 expression [317]. Estrous cycle stages
of low estradiol and progesterone may thus exaggerate
CRFR1-mediated inhibition of DRVL/VLPAG serotonergic
neurons. Developmentally, our data [229] and findings from
other groups [283, 386, 393] support the idea that females are
particularly vulnerable to the anxiety-inducing effects of so-
cial isolation during adolescence and that this may be a good
model for panic disorder because it results in decreased basal
tph2 mRNA expression in the DRVL/VLPAG [229].
Decreased inhibitory serotonergic signaling from serotonin
neurons in this region to distal autonomic target sites would
consequently be expected to disinhibit escape behaviors and
arousal systems [136, 296].

Sex differences in CRF signaling and receptor expression
within anxiety and arousal systems

Aside from reproductive hormone-dependent crfr1 and crfr2
expression within DR serotonergic neurons, other sex differ-
ences in CRF systems may also pertain to sexually dimorphic
stress perception, response, and adaptation and thus contribute
to the sex-specific prevalence of chronic conflict-like or panic-
like anxiety states. Rat research, for example, has shown that
females typically express more CRF than males in certain
brain regions, including the paraventricular hypothalamic nu-
cleus, but also the CE and BNST [105, 176, 347, 365].
Receptor binding studies furthermore revealed that, through-
out puberty, more CRFR2 becomes expressed within the CE,
BL, and medial amygdala of male, but not female, rats,
whereas adult females display more CRFR1 in the
posteroventral medial amygdala and in the BL [214, 379].
Adult males of twomonogamous and two promiscuous prairie
vole species are also reported to have elevated CRFR2 expres-
sion in the BNSTcompared to their female counterparts [218].
The fact that these sex differences do not occur until puberty
together with findings of response elements to reproductive
steroids in the promoter region of CRF receptor genes suggest
a key role for gonadal hormone regulation. Abnormal stress
hormone exposure during certain developmental windows, in
contrast, may lead to a “feminized” expression pattern of CRF
receptors in the brain. Consistent with the idea that, in some
forebrain regions, the anxiogenic effects of CRF are mediated
via CRFR1, while CRFR2 counteracts these effects, a prenatal
stress model [69] that only causes anxiety in adult male, but
not female, offspring demonstrated that increased anxiety in
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male offspring was correlated with a higher crfr1/crfr2
expression ratio in the amygdala. Also, only prenatally
stressed males had more crfr1 mRNA in the BL and
CE, but lower crfr2 expression in the BL. It remains to
be determined how different ratios of CRFR1/CRFR2

[25] within other mesolimbocortical brain regions of
relevance, such as the DR, may contribute sex differ-
ences in anxiety-like behaviors.

Immunoprecipitation studies of Bangasser, Valentino,
and colleagues recently revealed sex differences in the in-
tersection of stress and the noradrenergic arousal center of
the locus coeruleus (LC), especially with regard to sexually
dimorphic intracellular signaling and trafficking of the
CRFR1 receptor [27, 30, 361]. In unstressed control rats,
the CRFR1 receptor associated more strongly with its GTP-
binding protein Gs (signaling through the cyclic adenosine
monophosphate/protein kinase A pathway) in females than
it did in males [28], and only male rats displayed CRFR1

coupling with β-arrestin after stress exposure, an integral
step of receptor internalization. The latter finding is consis-
tent with electrophysiological evidence of stress-induced
desensitization to CRF in males, but excessive or non-
desensitizing CRF-mediated activation of LC neurons in
females [85]. Consistently, a genetic mouse model of
(global) CRF overexpression found equally increased CRF
fiber innervation of the LC in both males and females, but a
much higher discharge rate of female LC slices in vitro, in
concert with a preponderance of membrane-localized (not
internalized) CRFR1 immunostaining in females compared
to more cytoplasmic CRFR1 in males [29]. These findings
offer an entirely new perspective on sex-dependent stress
adaptation of CRFR1-mediated signaling, not only in the
LC, but possibly also in other brain regions.

Estrous stage-dependent variations in GABAergic
neurotransmission

The elegant work of Lovick and colleagues [221] has dem-
onstrated that GABAergic neurotransmission in the PAG is
highly sensitive to estrous stage-related hormonal fluctua-
tions. Due to its value as a pharmacological target for
anxiolytic drugs, such as benzodiazepines [255, 391], or as
a site of action for anxiogenic compounds, such as FG-7142
[111, 291], the GABAA receptor has been a major focus of
anxiety research. During late diestrus (late luteal phase in
humans), concentrations of progesterone and its anxiolytic
metabolite allopregnanolone [400, 401] rapidly drop, and
this decrease in allopregnanolone alters the subunit compo-
sition of the GABAA receptor, meaning a shift towards
decreased expression of the α1 subunit and increased ex-
pression of the α4, β1, and δ subunits [143]. This reduces
the ongoing inhibitory output of the GABA neurons within
the PAG [222] and is correlated with increased anxiety-like

behaviors in diestrus rats, but not proestrus, metaestrus, or
estrus rats [93, 94]. Decreased inhibitory output from
GABAergic PAG neurons during diestrus is likely to disin-
hibit the DPAG and thus reduce the suppression of panic-
like responses. Indeed, stimulation of the PAG during late
diestrus, either via a local electrode within the PAG [320] or
through systemic administration of the panicogenic agent
pentagastrin [56], lowers the threshold for escape behaviors
and enhances autonomic responsiveness. Interestingly, both
allopregnanolone and BDNF are found to be decreased in
corticolimbic brain regions of PTSD and depressed patients,
but in socially isolated mice, a rodent model of PTSD-like
behavioral deficits, antidepressant treatment with fluoxetine
reduces anxiety-like behavior and restores corticolimbic
levels of allopregnanolone and BDNF at lower doses than
those required for serotonin reuptake inhibition [271, 294].

Integrative model of sex differences in conflict anxiety
vs. panic

Taken together, estrous stage, estradiol, progesterone/
allopregnanolone, different expression patterns of CRF re-
ceptor systems, and inherent differences in female vs. male
CRF receptor signaling and CRF receptor-dependent stress
adaptation may all contribute to sexually dimorphic seroto-
nergic activity within anxiety-related circuitries.

In the conflict anxiety circuitry (Fig. 3), evidence frommale
rats suggests that stress-induced increases in CRF signaling
from the BNST [375] act on CRFR2 either directly on seroto-
nergic neurons [335] or indirectly via inhibition of local
GABAergic interneurons [289] to activate serotonin neurons
in the DRD/DRC. During late diestrus in females, however,
stress-induced increases in CRF expression and signaling from
the BNST may interact with decreased GABAergic inhibition
from the VLPAG to enhance serotonergic output from the
conflict anxiety-related DRD/DRC [183]. Declining circulat-
ing concentrations of progesterone and its neuroactive metab-
olite allopregnanolone during late diestrus cause increased
expression of α4, β1, and δ subunits of the GABA receptor
type A within the PAG [143, 144], including the VLPAG,
ultimately resulting in attenuated ongoing GABAergic inhibi-
tory activity towards serotonergic target neurons [221].
Attenuated activity of GABAergic neurons from the VLPAG
would subsequently render serotonergic neurons in the
DRD/DRC more active [183]. During a conflict anxiety-
relevant stress exposure, CRF expression in the BNST [232,
331] and CRF release from BNST projections would become
enhanced and further activate serotonergic neurons through
CRFR2 [204] within the DRD/DRC [335]. In fact, CRF
overexpression in the lateral BNST has been shown to alter
CRFR2 receptor density specifically in the DRD [335].
Together with possible stress-induced desensitization of
autoinhibitory 5-HT1A receptors on DRD/DRC serotonin
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neurons [313], this hyperactivity of the DRD/DRC is likely to
cause increased serotonergic output to distal target sites con-
trolling conflict anxiety-relevant behavioral parameters, main-
ly through actions of serotonin on postsynaptic 5-HT2C

receptors in the BL [12, 76, 150]. Other relevant target sites
of the DRD/DRC are the anxiety-related BNST [187, 292,
306, 375], the fear-related CE [81, 377], and the ventral hip-
pocampus, an area that is involved in risk assessment during
conflict anxiety [151] and facilitates memory consolidation of
stressful situations [79, 114].

In the panic circuitry (Fig. 4), several sexually dimorphic,
CRF-mediated mechanisms may occur. Based on our working
hypothesis, stress-induced increases in CRF signaling from the
CE, a region with volume reductions in panic disorder patients
[160], may act directly on CRFR2-expressing serotonin neu-
rons of the DRVL/VLPAG to increase their inhibitory actions
within the DPAG in both females and males. Pharmacological
and electrophysiological studies suggest that DRVL/VLPAG
serotonergic neurons exert their panic-suppressive actions di-
rectly via postsynaptic, inhibitory 5-HT1A receptors on local
“pro-panic” glutamatergic and DPAG output neurons or indi-
rectly via excitatory actions on 5-HT2A receptors located on
GABAergic interneurons within the PAG [295, 296, 304].
Conversely, blockade of 5-HT1A or 5-HT2A receptors within
the PAG promotes panic-like escape behaviors [295]. During
late diestrus, however, GABAergic inhibitory tone from PAG
interneurons towards the DPAG decreases [221] in females,
thus rendering the system more vulnerable to stress and
panicogenic situations. Lastly, it is also possible that females
display a steroid hormone-dependent increase in crfr1 expres-
sion on GABAergic DRVL/VLPAG interneurons during late
diestrus (similar to the high crfr1 expression in serotonergic
neurons of ovariectomized macaques [39, 40, 317]) or (com-
parable to the sexually dimorphic CRF receptor signaling and
trafficking principles discovered in the LC [27]) a prolonged
CRFR1-mediated activation of GABAergic DRVL/VLPAG
interneurons compared to males. These mechanisms would
lead to an overly pronounced inhibition of DRVL/VLPAG
serotonergic neurons and, consequently, to hyperactive or
hyperresponsive panicogenic output neurons within
the DPAG. Overall, a failure to properly activate these
DRVL/VLPAG serotonergic neurons would facilitate escape-
like fight-or-flight responses [134] via the DPAG,
sympathoexcitation and hypertension [23, 24, 223] via the
RVLM, and hyperarousal and hypervigilance due to hyperac-
tive orexin/hypocretin neurons in the perifornical region of the
hypothalamus [181].

Conclusions

Considering the hormonal fluctuations in premenopausal
women, not even considering pregnancies, one may deem

female physiology as quite stress-resilient and the 2:1
gender ratio of emotional disorders as surprisingly small.
At the same time, this is exactly the biological interface
where research can discover which mechanisms maintain
resilience or how dysregulation of specific systems
creates increased vulnerability. Future studies should ad-
dress questions like: what keeps some individuals from
experiencing PMDD or increased anxiety during certain
estrous cycle stages or what protects most maternal
brains from developing postpartum blues? To assess
which sex differences are worth in-depth research, two
separate considerations may aid the decision: first, does
the sex difference have clinical relevance or does it
pertain to translational studies? If yes, then we have an
ethical obligation to pursue the matter and use the op-
portunity to develop sex-specific preventive, diagnostic,
and therapeutic tools. Second, how can a sex difference
help us better understand a certain biological system?
Longitudinal human studies can now identify elevated
trait anxiety, and genetic, behavioral, or physiological
parameters, such as anxiety sensitivity [268] or baseline
proinflammatory state [169] as early markers of inherent
vulnerability (allowing for a chance for prevention or
early intervention), jointly with the characterization of
acquired state anxiety later on, for example, due to
stressful or traumatic life events. Also, to date, no com-
prehensive literature exists on the interaction of biologi-
cal sex and gender identity regarding anxiety disorders in
transgender men and women [71, 399] before and after
hormone therapy, an area of research that may contribute
valuable insight on the relative impact of sex chromo-
somes, reproductive hormones, as well as neuronal and
psychosocial aspects. Anxiety-relevant research on sex
differences within central autonomic control of sympa-
thetic and parasympathetic pathways, too, are chronically
under-researched and deserve more attention [30, 362],
and much work still lies ahead to increase the validity
and translational value of behavioral endpoints in rodent
models that differentiate not only between the expression
of male vs. female anxiety states, but also between
conflict-relevant, panic-relevant, or PTST-relevant
anxiety-like behaviors.

In summary, the sex bias in anxiety and affective
disorders provides reason enough to acknowledge, in-
stead of ignore, the complexity introduced by the fe-
male menstrual cycle and to intensify research on
sexually dimorphic developmental programming of the
brain and on sex-dependent stress coping mechanisms
in adulthood.
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