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Abstract Despite conflicting evidence for the efficacy of
hormone replacement therapy in cardioprotection of post-
menopausal women, numerous studies have demonstrated
reductions in ischemia/reperfusion (I/R) injury following
chronic or acute exogenous estradiol (E2) administration in
adult male and female, gonad-intact and gonadectomized
animals. It has become clear that ovariectomized adult ani-
mals may not accurately represent the combined effects of
age and E2 deficiency on reductions in ischemic tolerance
seen in the postmenopausal female. E2 is known to regulate
the transcription of several cardioprotective genes. Acute,
non-genomic E2 signaling can also activate many of the
same signaling pathways recruited in cardioprotection.
Alterations in cardioprotective gene expression or cardio-
protective signal transduction are therefore likely to result
within the context of aging and E2 deficiency and may help
explain the reduced ischemic tolerance and loss of cardio-
protection in the senescent female heart. Quantification of
the mitochondrial proteome as it adapts to advancing age
and E2 deficiency may also represent a key experimental
approach to uncover proteins associated with disruptions in
cardiac signaling contributing to age-associated declines in
ischemic tolerance. These alterations have important rami-
fications for understanding the increased morbidity and
mortality due to ischemic cardiovascular disease seen in

postmenopausal females. Functional perturbations that oc-
cur in mitochondrial respiration and Ca2+ sensitivity with
age-associated E2 deficiency may also allow for the identi-
fication of alternative therapeutic targets for reducing I/R
injury and treatment of the leading cause of death in post-
menopausal women.
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Introduction

Coronary heart disease (CHD) most commonly presents as
an ischemic coronary event such as acute myocardial infarc-
tion (MI) or unstable angina (collectively termed acute
coronary syndrome) and is the single largest killer of
American men and women, accounting for one in every five
US deaths in 2004 [163]. The estimated annual incidence of
myocardial infarction (heart attack) is 865,000 new and
recurrent attacks, and the prevalence and mortality due to
MI increases with age [163]. In women, longitudinal studies
and clinical statistical reports indicate an important influ-
ence of the menopausal transition on the determination of
cardiovascular risk with advancing age. The incidence of
CHD in postmenopausal women is 2–3-fold higher than in
premenopausal women of the same age [104, 163]. Further,
23 % of women age 40 and older who experience a first MI
will die within 1 year, compared with 18 % of men [163].
These reports implicate the loss of endogenous estradiol
(E2) as an explanation, in part, for the reduced ischemic
tolerance in postmenopausal women.

Despite statistical data suggesting a causative role for E2

deficiency in the age-associated increase in female cardiovas-
cular risk, studies investigating the efficacy of exogenous
hormone replacement therapy (HRT) on cardiovascular risk
reduction have produced conflicting results. Observational
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and epidemiological reports, including the Nurses’ Health
Study, demonstrated reduced risk for CVD and acute MI in
women takingHRT for the management ofmenopausal symp-
toms [17, 58, 72, 181]. In contrast, mid-stage analysis of two
randomized clinical trials, the Women’s Health Initiative
(WHI) [127] and the Heart and Estrogen/Progestin
Replacement Study (HERS) [86], showed evidence for in-
creasedMI and stroke risk in postmenopausal women treated
with conjugated equine estrogens (CEE) alone or CEE plus
medroxyprogesterone acetate. TheWHI and HERS trials were
terminated early as a result of the increased hazard to women
receiving HRT.

One proposed explanation for the conflicting results among
these studies is the age of the subjects and the timing of HRT
administration in reference to the onset of menopause, in that
HRT may be cardioprotective in younger women and those
within the first several years of menopause, but ineffective or
detrimental in older postmenopausal women [133]. A second-
ary analysis of the WHI data revealed a trend toward reduced
CHD risk in women receiving HRT within 10 years of the
onset of menopause and increased risk in women beyond
20 years of menopause, although statistical significance was
not demonstrated [166]. The Kronos Early Estrogen
Prevention Study, an ongoing clinical intervention trial, aims
to identify the effects of early HRT administration in younger
menopausal women [79]. Although the timing hypothesis
may indeed prove to support short-term cardioprotection with
HRT in younger postmenopausal women, the evidence for
diminished efficacy and possible detrimental effects of HRT
on CHD risk in older women, as well as concerns regarding
increased breast and ovarian cancer risk with long-term HRT
use [142, 165], demonstrate the need for alternative strategies
in the treatment of ischemic heart disease in aging, postmen-
opausal women. A necessary first step in forging new thera-
peutic strategies to treat ischemic heart disease in aging
women includes identification of the mechanisms which ren-
der the aged female heart vulnerable to ischemic insult. A
major focus of the current review is to summarize what is
known with regard to cardioprotective signaling in the aged,
E2-deficient female heart, with particular focus on salient
research challenges associated with experimental models to
recapitulate human menopause. Notably, the reader is referred
to several recent complimentary reviews on mitochondrial
aging and mechanisms of cell death [45, 56, 137].

Age, estrogen deficiency, and ischemic tolerance

Acute MI is caused by coronary occlusion, and current treat-
ment options are focused on reducing the duration of ischemia
by initiating reperfusion as quickly as possible. Mechanical
(coronary angioplasty) or enzymatic (thrombolytic) interven-
tions, however, are rarely performed soon enough to avert cell

death during ischemia, and further are ineffective in prevent-
ing the extension of infarction at reperfusion [29, 51].
Extensive and ongoing research has thus focused on the
identification of effective treatments for the reduction of ische-
mia/reperfusion (I/R) injury (termed cardioprotection), which
may be implemented in a clinical setting of acute MI to limit
infarct size and minimize loss of cardiac function.
Premenopausal women have reduced risk for CHD relative
to age-matched men [16], as well as a lower incidence of LV
hypertrophy, coronary artery disease, and cardiac remodeling
following MI [82]. The incidence of CHD increases in post-
menopausal women, however, such that aged women have
both reduced ischemic tolerance [10, 162] and increased mor-
tality following MI [206] relative to age-matched men. In the
paragraphs that follow, information regarding the influence of
aging on cardioprotective signals is presented within the con-
text of information gleaned from studies associated with the
phenomenon of ischemic preconditioning (IPC). Particular
emphasis is also placed on available experimental models of
E2 deficiency.

Ischemia/reperfusion injury in aging Reduced IT and in-
creased susceptibility of the heart to I/R injury is a hallmark
adaptation of both aged human and animal hearts [2, 30, 92,
116, 124, 128, 152, 173, 184, 207]. The aged heart is also
refractory to endogenous protection from interventions like
IPC (described below), verifying inadequate protective cellu-
lar reserves [62, 63, 98]. The precise cellular mechanisms
underlying this dysfunction, however, are incompletely un-
derstood. The problem is further exacerbated by the paucity of
studies using females, limiting extrapolation of results.
Reversal of cardioprotection with senescence is likely to in-
volve aberrations in both intrinsic (i.e., excitation–contraction
coupling) and extrinsic (adrenergic) inotropic regulatory
mechanisms (for review see [98, 116]). However, alterations
in cell signaling pathways related to metabolic and oxidative
stress may also shift the balance from cell survival to cell
death regulating pathways [38, 78, 101, 153, 167].

In distinction from aging, independent effects of E2 defi-
ciency on cardiovascular risk have also been observed. As
early as 1953, Wuest et al. noted the increased prevalence of
coronary artery disease in autopsy studies of premenopausal
women who had undergone oophorectomy [210], and nu-
merous studies conducted throughout the ensuing five dec-
ades have demonstrated increased risk for CHD and
myocardial infarction in both postmenopausal and oopho-
rectomized premenopausal women [16, 41, 43, 59, 164].
Epidemiological data indicate the interaction of gender and
aging and the influence of menopause on the determination
of cardiovascular risk in aging women. Animal and human
studies have identified both functional and cellular altera-
tions in ischemic tolerance and cardioprotection due to the
independent and combined effects of aging and E2
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deficiency. A notable limitation in identifying specific
mechanistic underpinnings in the adult and aged female
heart has been differences in experimental models used to
recapitulate postmenopausal E2 deficiency.

Ovariectomy as a model of E2 deficiency in the aged
rat Given the discrepancies in observational and epidemio-
logical data indicating the effects of menopause and HRT on
cardiovascular risk in aging women, an animal model suit-
able for the experimental study of age- and E2-related cel-
lular changes has presented significant challenges. Although
the study of nonhuman primates has been purported as the
model perhaps most applicable to the menopausal transition
in humans [106, 208, 209], the feasibility of this approach is
extremely limited, especially in the context of aging and in
the physiological study of myocardial infarction. The feasi-
bility of aging studies in other animal models commonly
used to study I/R injury, such as the canine and porcine
models, is also reduced by the relatively long lifespan of
these animals and the limited availability of aged supply
colonies. The relevance to the human heart of I/R studies
performed in the rabbit, especially in aging, has also been
questioned [4].

The clinical definition of menopause is the cessation of
spontaneous menstrual cycling for at least 1 year and occurs in
women at an average age of 51 years [194]. In human and
nonhuman primates, the cessation of menstruation is preceded
by a gradual decline in the function of the hypothalamic–
pituitary–gonadal (HPG) axis [209]. Plasma E2 concentrations
in postmenopausal women have been reported to average
about 30 pg/ml [26], compared with a cyclic variation from
~80 to 800 pg/ml in healthy, premenopausal women [182].
The menopausal transition in the rat is incompletely under-
stood and exhibits important differences from menopause in
humans. Notably, the onset of senile anestrous is variable in
rats [1, 33, 136, 172, 179], resulting in a state of persistent
estrous followed by persistent diestrous, whereby sustained E2

levels are similar in magnitude to diestrous in adult animals.
The age of ovarian decline and the timing of this progression
may also vary between mice and rats and also between differ-
ent strains of the same species. Nevertheless, important sim-
ilarities between menopause and “estropause” (for recent
review, see [33, 136, 217]) include cessation of estrous cy-
clicity (~16 months in F344 rats) and a progressive deteriora-
tion in HPG axis function thereafter [179] until senile
anestrous. Interestingly, the menopausal transition in humans
is also characterized by elevated E2 levels [73, 75, 205].

Given the complicated nature of the menopausal transition
in rodents, surgical ovariectomy (OVX) has been used to
create a model of menopause to more closely approximate
the dramatic E2 deficiency observed in menopausal women.
Ovariectomized adult rats represent, in fact, the most com-
monly used animal model of postmenopausal changes.

However, this model does not reflect the possible interactions
between aging and E2 deficiency occurring in natural meno-
pause [172]. Indeed, studies from our laboratory suggest a
highly selective myocardial response to E2 deficiency in adult
vs aged female rats with regard to alterations in mitochondrial
protein targets [117]. Additional considerations when using
the adult OVX model include the time course of changes in
plasma E2 following OVX. Adult OVX animals reveal dra-
matic reductions in plasma E2 initially, which is followed by
significant increases at 4, 5, and 6 months post-surgery
(~30 pg/ml) [226]. The increase in plasma E2 post-OVX has
been attributed to increased extragonadal aromatization of
testosterone to E2. Other studies have demonstrated increased
adiposity following OVX in rats [107]. The increases in
extragonadal aromatization with time after OVX, as well as
increased adiposity and potential metabolic alterations in the
OVX rat, have important implications for the validity and
applicability of the adult OVX model to age-associated E2

deficiency. An alternative approach for the study of meno-
pause and cardioprotection includes use of age-appropriate
rats in conjunction with OVX [89, 117, 118, 145, 190], which
represents an often overlooked but critical design consider-
ation of rodent studies to recapitulate postmenopausal E2

deficiency and reproductive senescence. At the very least,
experimental design limitations should be acknowledged with
regard to the interpretation of research findings and extent of
the conclusions drawn. Given the cyclic nature of protein
turnover and potential influence of circulating E2, some stan-
dardization of estrous cycle activity in rodents should also be
considered. With regard to studies employing E2 replacement,
assessment of circulating E2 levels should also be performed
at routine intervals throughout the entire duration of replace-
ment, to determine the physiological relevance and potential
impact of dosages employed on observed responses.

Ischemic preconditioning as a model of cardioprotection

IPC, in which brief intermittent periods of ischemia (I) and
reperfusion (R) reduce myocardial damage during subsequent
prolonged I/R injury [140], represents the most powerful and
reproducible form of cardioprotection identified to date [139].
Two phases of cardioprotection have been characterized: an
early or acute phase that lasts for 2 to 3 h following the
preconditioning stimulus, and a late phase that is effective
beginning 24 h following the stimulus and can last for 3 to
4 days [214]. Although still incompletely understood, much
has been learned about the mechanisms by which acute IPC
renders the heart resistant to I/R injury (for review, see [52,
139]) and, by default, glean potential insight into aged-
associated mechanisms of reductions in ischemic tolerance.
While the direct therapeutic relevance of IPC is limited simply
by the requirement that it must be invoked prior to the onset of
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an ischemic event, which is rarely foreseeable, the endoge-
nous cellular pathways of IPC have come to be used as a
model by which to study cardioprotective signaling and to
identify targets for clinically applicable interventions. These
efforts have been encouraged by recent findings that I/R injury
can be reduced by the activation of signaling pathways im-
mediately prior to ischemia or at the beginning of reperfusion
[224]. While initially thought to minimize infarction during
ischemia, current thinking states that the protection afforded
by IPC is realized primarily at reperfusion through a reduction
in necrotic, apoptotic, and potentially autophagic cell death,
which are normally responsible for the extension of infarct
size and are critically regulated by the mitochondria [57, 80,
227]. Substantial experimental evidence has promoted the
mitochondria as the convergence point for the protective
cellular signaling pathways of IPC and has established the
role of protein kinase C (PKC; and the PKCε isozyme in
particular) as a critical mediator of this convergence [90]. In
the paragraphs that follow, particular emphasis is placed on
the potential role of PKCεmodulation as a potential therapeu-
tic strategy to improve ischemic tolerance with age-associated
E2 deficiency.

Working model of cardioprotective signaling Although the
molecular mechanisms of cardioprotection have yet to be fully
elucidated, years of extensive study into IPC have character-
ized many cell signals associated with reductions in I/R injury
in adult animals (Fig. 1; adapted from [139]). Brief precondi-
tioning cycles of I/R cause the release of agonists including
adenosine [123], bradykinin [199], and opioids [174] from the
ischemic myocardium, which act through G-protein-coupled
receptors to trigger multiple signaling cascades. The protec-
tion provided by each of these agonists can be blocked by
inhibition of PKC [13, 70, 132, 168], illustrating the central
importance of PKC as a common target in this signal trans-
duction. Moreover, PKCε has been directly implicated in
infarct sparing following global ischemia [91]. Low-level
activation of PKCε has consistently been found to reduce
hypoxic injury [161], and Mochly-Rosen and colleagues [35,
91] have provided direct evidence that isoform-specific activa-
tion of PKCε utilizing cell-permeating peptides prior to global
ischemia is sufficient to reduce infarct size in adult male rats.
Bradykinin and opioids stimulate PKCε by way of a complex
phosphatidylinositol 3-kinase (PI3K) pathway that involves
activation of Akt, endothelial nitric oxide synthase (eNOS),
guanylyl cyclase, protein kinase G, and the opening of mito-
chondrial ATP-sensitive K+ channels (mitoKATP) [42, 148].
Subsequent K+ influx to the mitochondria leads to the genera-
tion of reactive oxygen species (ROS), which act as a second
messenger to activate PKCε [109]. Adenosine, in contrast to
bradykinin and opioids, activates PKCε during IPC by a dis-
tinct pathway, since PI3K inhibition does not block adenosine-
stimulated cardioprotection. Although critically important to

IPC, PKCε acts not as an effector of cardioprotection, but rather
as a crucial intermediate in linking protective signaling to the
mitochondria and initiating cellular protection at reperfusion.
PKCε activates both the PI3K/Akt and MEK1/2–ERK1/2 sur-
vival kinase cascades at reperfusion. Akt and ERK1/2 both
phosphorylate and inactivate mitochondrial glycogen synthase
kinase-3β (GSK-3β) [15, 191], which has been shown to result
in strong inhibition of the mitochondrial permeability transition
pore (MPTP) [94, 99], the hypothesized end effector of IPC
[81, 94].

The MPTP is a large conductance pore directly connecting
the mitochondrial matrix to the cytosol. While its identity has
not been firmly established [52], induction of the MPTP
results in dissipation of the mitochondrial membrane potential
which compromises the cell’s capacity for ATP production
and hence volume regulation by Na+/K+ ATPase pumps,
which leads to cellular swelling, lysis, and necrosis [74].
Mitochondrial swelling is also encouraged by MPTP forma-
tion, and lysis of the outer mitochondrial membrane results in
cytochrome c release and the initiation of apoptosis [121].

PKCε prevents MPTP formation at reperfusion not only by
activation of the survival kinases Akt and ERK1/2, but also by
direct phosphorylation and inhibition of GSK-3β [99], acti-
vation of mitoKATP channels [69], and phosphorylation of
possible MPTP regulatory proteins such as the voltage-
dependent ion channel (VDAC) and the adenine nuclear
transporter (ANT) [14]. Additionally, PKCε phosphorylates
mitochondrial connexin43 (Cx43), which may cooperate with
the mitoKATP channel in mitochondrial volume regulation and
ROS production [175]. Further roles for PKCε in the regula-
tion of cellular redox status through association with eNOS
[158], and in the regulation of myocardial ATP synthesis by
targeting of the mitochondrial F1ATPase [111] and cyto-
chrome c oxidase subunit IV [147], have been demonstrated.
The central role of PKCε in IPC suggests that cardioprotection
is likely mediated by additional mitochondrial PKCε binding
partners that have yet to be identified. How these signals may
be influenced by age-associated E2 deficiency and reductions
in ischemic tolerance is discussed in the next sections.

Aging and protective signaling Animal models of I/R injury
demonstrate impaired functional recovery and larger infarct
size following I/R in the aged heart [3, 11, 185]. In addition,
many studies demonstrate the reduced or abolished efficacy
of IPC to reduce infarct size in the aged heart [6, 63, 126,
173, 178], although the majority of studies have been con-
ducted in males. Nevertheless, clinical studies have also
suggested a diminished capacity for cardioprotection fol-
lowing IPC or persistent angina in the aged human heart
[5, 18, 119, 125]. At least in male animals and men, age-
related declines in ischemic tolerance appear to correlate
with alterations in cellular protein expression related to
cardioprotective signal transduction. For instance, increased
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evidence of apoptosis and reduced induction of HSP70 was
reported following ischemia in the aged rat heart [124, 144],
and the loss of IPC-induced cardioprotection in the aged
mouse heart was associated with reductions in gap junction-
al and mitochondrial Cx43 [21]. Tani et al. found in the
middle-aged rat heart that the loss of IPC-induced cardio-
protection was associated with altered PKC translocation
and that cardioprotection was achieved less effectively by
PKC activation than by mitoKATP activation, suggesting that
disruptions downstream of PKC signaling contributed to the
loss of IPC with age [184]. Our laboratory previously dem-
onstrated that impaired ischemic tolerance in aged male rats
was associated with (1) increased basal PKCδ expression
and could be improved by acute PKCδ inhibition (by
Tat-δV1-1 administration) [112] and (2) reduced PKCε
and increased GSK-3β at the mitochondria during ischemia
and could be improved by acute PKCε activation (by
Tat-ψεRACK administration) [111]. Impaired responsive-
ness to IPC in elderly patients undergoing coronary angio-
plasty has also been attributed to attenuated activation of
KATP channels, since the KATP channel agonist nicorandil
restored IPC-induced cardioprotection [119]. Chakravarti et
al. described the altered expression of numerous proteins,
primarily relating to cellular energetics at the mitochondria,
in the aged male mouse heart through proteomic profiling
experiments [34]. Examples of these include age-related
reductions in mitochondrial aconitase 2, mitochondrial
F1ATP synthase β, and NADH dehydrogenase subunit ex-
pression. Lines of evidence also support a role for posttrans-
lational modifications or proteolysis; however, the exact

nature and quantity of these modifications was not further
examined [35].

Senescence is also associated with enhanced cytochrome
c release in male rats [111, 156] and expression of the
proapoptotic proteins Bad, Bax, and caspases [12, 32, 122,
221]. Age-related increases in ROS [71, 116, 141, 170] are
also likely to contribute to increased apoptotic signaling.
While ROS can be cytoprotective through activation of
known survival signals such as PKCε [100, 134], increased
ROS production in the face of declines in antioxidant
defenses [213] is likely to contribute to increased I/R injury
in the aged heart. Elevated nitric oxide production during
I/R through NOS-dependent processes can also result in
formation of more reactive oxidant species like superoxide
(O2

–) and peroxynitrite (ONOO−) [189, 204, 216] (i.e., NOS
uncoupling) [229]. In females, links between E2 defi-
ciency, aging, ROS, and I/R injury are unclear, as
studies in OVX younger animals may not accurately
mimic the aged state [213]. In aged male rats, elevated O2

–

production does occur during early reperfusion [149];
however, the effects in aged females are unknown and
are currently under investigation in a number of labora-
tories, including our own.

In female animals, reduced ischemic tolerance has been
observed and is attributed to both the independent and com-
bined effects of aging and E2 deficiency. Willems et al. dem-
onstrated increased infarct size and impaired functional
recovery following I/R in aged relative to adult female mice
[207], and Hunter et al. showed that the increase in infarct size
following I/R in aged relative to adult female rats was

Fig. 1 Simplified schematic of
cardioprotective cellular
signaling. Abbreviations: BAD
Bcl-2-associated death
promoter, Cx43 connexin 43,
DAG diacylglycerol, eNOS
endothelial nitric oxide
synthase, ERK extracellular
signal-regulated kinases,
GSK-3β glycogen synthase
kinase-3β, MPTP
mitochondrial transition pore,
PI3K phosphoinositide
3-kinase, PLC phospholipase C,
PKCε protein kinase Cε, PKG
protein kinase G, VDAC
voltage-dependent anion
channel. Adapted
from [139]
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associated with decreased Akt and mitochondrial PKCε lev-
els, as well as increased mitochondrial GSK-3β [88]. E2

deficiency alone reduces ischemic tolerance in the female
heart, as Song et al. demonstrated increased infarct size fol-
lowing I/R and the loss of IPC-induced cardioprotection in
adult OVX relative to adult ovary-intact female mice [180].
Kam et al. also showed, under hypercontractile conditions of
elevated Ca2+, similar results using adult OVX rats [103].
Hunter et al. further found that aged OVX rats exhibited more
severely impaired functional recovery and greater infarct size
following I/R than was seen with aging or OVX alone, sug-
gesting an additive detriment of aging and OVX in the female
rat heart [88]. In support of a protective role for PKCε targeting
in the aged, E2-deficient female rat heart, acute activation of
PKCε prior to ischemia by local delivery of ψεRACK peptide
has been associated with (1) improved functional recovery and
reduced infarct size, (2) increased mitochondrial targeting of
PKCε, and (3) candidate downstream signaling targets suggest-
ing a role for activation of antioxidant enzymes as a mechanism
of PKCε-mediated protection [118]. Specifically, mitochondri-
al Hsp10, GPX, and SOD2 (MnSOD) abundance are signifi-
cantly increased with ψεRACK administration in aged OVX
hearts (by ~10, 20, and 30 %, respectively). Due to the brief
time period of PKCε activation in these hearts (10 min),
changes observed in this analysis are likely attributable to
PKCε-stimulated mitochondrial translocation or import of
identified proteins. Following ischemia, it is likely that im-
proved levels of mitochondrial Hsp10, GPX, and MnSOD2
observed in PKCε-treated aged OVX hearts are further influ-
enced by protective effects limiting protein degradation. It is
clear from the work of Zhang and colleagues [222] that I/R-
induced alterations to the mitochondrial proteome of adult mice
occur and are dependent upon severity of ischemia and specific
protein abundance. How specific mitochondrial proteins are
targeted for lysosomal and/or proteosomal degradation in the
aged heart, and the dynamic regulation of these processes, is
poorly understood and a necessary focus of future studies.
Moreover, results are confounded by differing models
of I/R injury including varying amounts of ischemic insult
(i.e., duration of ischemia).

Nevertheless, it is likely that increases in GPX and SOD2
immediately following PKCε activation may serve to combat
increased ROS production in the aged female heart [120]. In
contrast, Hsp10 is a stress response and chaperone protein
shown to regulate mitochondrial pro-caspase-3 activation and,
thus, the initiation of apoptosis, through the formation of a
complex with Hsp60 in the intermembrane space [169]. HSPs
have recently been implicated in mitochondrial import of
PKCε during I/R [28] and, thus, may contribute to observed
increases in mitochondrial PKCε localization following acute
PKCε activation in the aged female heart. Identification of
candidate downstream PKCε signaling targets in mitochon-
dria suggests a role for the regulation of oxidative stress as a

mechanism of PKCε-mediated cardioprotection in the aged
female heart. Studies are clearly needed to quantify the extent
of interplay between ROS production and cell death in the
aged female myocardium.

Estrogen receptors (ER) and cardioprotection The effects of
E2 in the heart are primarily mediated by two ER subtypes,
ERα and ERβ, although the precise subcellular distribution of
cardiac ER receptors remains to be elucidated. Recent lines of
evidence linking ERα and ERβ polymorphisms to adverse
cardiac outcomes in women [154, 157, 198] suggest that ERα
and ERβ may each play distinct roles in cardioprotection.
Genomic actions mediated by nuclear ERα are well-
described [49, 53] and involved ligand binding at E2 response
elements. Nongenomic (rapid) effects of E2 are thought to be
mediated by ERα and/or ERβ localized to the plasma mem-
brane [8, 215, 220], and associated functions include Ca2+

homeostasis, anti-apoptosis, and mitochondrial metabolism
[215]. With regard to the latter, the recent demonstration that
mitochondrial ERβs are present in human myocardium [215]
has positioned ERβ as a potential regulator (or regulated
target) of mitochondrial function and cell survival, perhaps
through mitochondrial gene regulation [85]. Rapid ER signals
are also known to regulate ER gene transcription in the myo-
cardium [130]. In this regard, ERs are subject to posttransla-
tional modification through phosphorylation, acetylation, and
sumoylation, which not only has the potential to influence ER
activity, but may also influence ER stability and localization,
particularly with aging (for review, see [36, 61, 66, 223]).

While the importance of cardiac ER subtypes in I/R injury
remains controversial, studies employing ERα- and ERβ-
deficient mice have each demonstrated reductions in ischemic
tolerance [68, 201]. However, it is important to note that ER
deficiency in these models is not cardiac specific, and some
results are confounded by the use of mice which encode a
truncated ERα, as well as a metabolic phenotype which
develops with age [27, 83]. Nevertheless, in mice completely
null for ERα, greater I/R injury and impaired mitochondrial
function [202, 219] are observed vs nontransgenics. Further,
activation of ERα with the specific agonist, propyl pyrazole
triol (PPT), protects the in vivo rabbit heart from I/R injury,
while the specific ERβ activator, diarylpropiolnitrile (DPN),
was without effect [24]. Recent studies also suggest a greater
role for ERα vs ERβ in the modulation of endothelial pro-
genitor cells and cardiac repair [47, 76]. Taken together, these
data support a dominant role for ERα as the cardioprotective
ER involved in I/R injury [24]. In contrast, Murphy and
colleagues [68, 144] have provided equally compelling evi-
dence that ERβ mediates gender differences in I/R injury
using ERβ-deficient mice under hypercontractile conditions
or with DPN.

With regard to the potential cardioprotective role of non-
genomic ER activation in reducing I/R injury in aged hearts,
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several recent findings implicate a possible role for selective
ERα activation as follows [145]: (1) effectively reduced
infarct size, (2) resulted in greater mitochondrial and partic-
ulate ERα localization coordinate with a protective pattern
of PKCε activation, and (3) enhanced gene expression of the
PKCε anchoring protein RACK2. Collectively, these results
demonstrate a protective role for nongenomic ERα signal-
ing in the aged female rat heart, the cellular basis of which
may involve two distinct PKCε-dependent mechanisms.
What is less clear are the mechanisms which underlie altered
cardiac ER translocation. As noted above, posttranslational
modifications such as phosphorylation, acetylation, and
sumoylation (for review, see [36, 37, 61, 66, 223]) are
known to effect ER targeting, the effects of which are
unstudied in aging. Since some nongenomic ER effects are
specific to aged animals [145], it will be important that
future studies incorporate true models of aging in conjunc-
tion with E2 deficiency to fully characterize the nongenomic
ER response.

In contrast, acute ERβ activation does not appear to
impact functional recovery following I/R injury in either
adult or aged rats with varying degrees of E2 deficiency
[190]. A logical interpretation of these results is that while
classical genomic ERβ activation via chronic stimulation is
possible, rapid, nongenomic signaling mechanisms down-
stream of ERβ may not be operative in the female rodent
myocardium. However, in this study, ERβ mRNA was not
detected in either the adult or aged rat myocardium [190].
The lack of measureable ERβ in the F344 rat myocardium
was surprising given results gleaned from past studies uti-
lizing the ERβ knockout mouse model [67, 200, 203] men-
tioned heretofore. In this regard, ERβ expression in the
rodent myocardium remains controversial [65, 93, 112,
171, 176, 212, 215], and the protein signal produced by
ERβ antibodies in cardiac homogenates may be the result of
cross-reactivity with ERα [190]. Combined with these pre-
vious findings, either ERβ signaling varies substantially
between rat, rabbit, and murine models, or cardioprotection
observed in mouse models may be mediated indirectly
through extra-cardiac ERβ signaling. For instance, DPN
injection at the rostral ventrolateral medulla, an area associ-
ated with autonomic cardiovascular control, has been shown
to reduce systemic arterial pressure in rats [177]. That ERβ
activation can reduce systemic arterial pressure via auto-
nomic influence indicates that additional autonomic cardio-
protective mechanisms attributed to E2 may be mediated
through ERβ. Indeed, E2-linked cardioprotection has been
associated with reduced sympathetic input to the heart and
vasculature during ischemia in female rats, resulting in
reduced heart rate, mean arterial pressure, arrhythmia fre-
quency, and overall improved ischemic tolerance vs males
[54, 55]. Therefore, it is plausible that hypertension and
vascular dysfunction observed in whole body ERβ

knockout mice as well as cardioprotection observed in
chronic DPN-treated mice may be explained by indirect
ERβ effects on autonomic cardiac control and not direct
effects on the myocardium [143, 151]. Future studies exam-
ining extra-cardiac effects of chronic ERβ stimulation, in-
cluding vascular and neural mechanisms, may prove useful
in elucidating possible therapeutic interventions with aging.
Definitive studies on ER subtype distribution in adult and
aged human myocardium are needed.

The demonstration that rapid ERα activation reduces I/R
injury in the aged female heart supports a key role for
nongenomic ER signaling in the maintenance of cardiopro-
tection. A better understanding of the nongenomic actions of
E2 may lead to improved clinical therapeutic interventions
for treating acute coronary syndrome in aged women, spe-
cifically selective modulation of cardiac ERs and nonge-
nomic ER signaling in an attempt to harness the protection
associated with E2 observed in adult women without in-
creased cardiovascular risk observed from chronic HRT. In
this regard, 17-β estradiol is the major physiological E2, but
it has a similar affinity for both ERs. As noted, a number of
selective ERα and ERβ agonists have been created and
described; however, only a minority of these compounds
has been evaluated extensively in vivo. The discovery of the
GPCR30 has also reinforced the need for additional ER-
specific modulators. Selective estrogen receptor modulators
may be of great utility and in understanding the role of ERs
in ischemic tolerance with aging.

PI3K–Akt–GSK-3β signaling and estrogen Interestingly,
many of the protective actions mediated by rapid ER sig-
naling involve downstream effectors known to be associated
with IPC, such as PI3K–Akt, eNOS, and PKCε (for review,
see [139]). Increased levels and/or activity of Akt has also
been observed in female (vs male) animal and human myo-
cardium [31, 225]. ERα-mediated nuclear transcription is
also affected by Akt, and nuclear accumulation of Akt in
human cardiocytes is increased 5.8-fold in adult women
over men and reduced in postmenopausal women [31].
Collectively, these data suggest that the PI3K–Akt pathway
is acutely activated by E2 and could be subject to modula-
tion by aging. Urata and colleagues [196] recently demon-
strated that E2 administration (18 h) in myocardiac H9c2
cells leads to a reduction in hydrogen peroxide (H2O2)-
induced apoptosis through upregulation of glutaredoxin,
which was abolished by the ER inhibitor ICI-182,780.
Effects were presumed ERβ-mediated since these cells do
not express ERα.

A target of Akt which has been proposed as a conver-
gence point for many cardioprotective signals is inactivation
of mitochondrial GSK-3β and associated apoptotic signal-
ing. This model is supported by I/R- and OVX-dependent
changes in mitochondrial pGSK-3β which mirror changes
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in pAkt in adult but interestingly not aged rats [87], suggest-
ing dysregulated Akt–GSK-3β interactions in aged.
Additional mechanisms by which rapid E2 signaling may
influence GSK-3β and subsequent ischemic tolerance are
worth noting. Recent studies suggest that GSK-3β can
enhance ERα-mediated transcription [131], implicating the
nuclear compartment as an potentially important site of
regulation in the aged female heart. If this is so, several
cardioprotective or apoptotic proteins that are modulated by
E2 (such as heat shock proteins [77], ANT-1 [193], or Cx43
[218]) may show altered expression or activity, thus contrib-
uting to reduced ischemic tolerance in aged. Future studies are
indicated to determine the role, if any, of altered gene expres-
sion in relation to cell survival with age-associated E2

deficiency.

Mitochondrial mechanisms of cell death

Mitochondria are the main source of both ATP and ROS in
the heart ideally positioning them as mediators of, and
therapeutic targets for, ischemic CHD. Because of the piv-
otal role played by the mitochondria in the maintenance of
cell survival and cardioprotection, it is logical that age-
associated reductions in ischemic tolerance might arise from
alterations in mitochondrial proteins. Given the estimate that
1,000 to 2,000 proteins are expressed in the mitochondria
[129], it is likely that the adaptation of additional mitochon-
drial proteins in aging and/or E2 deficiency may contribute
to the reductions in ischemic tolerance and increased I/R
injury associated with advancing age and menopause. While
correlational relationships between age-dependent declines
in ischemic tolerance and altered expression and localization
of cardioprotective signaling proteins have been noted in the
female heart, the breadth and extent of protein changes have
only recently been addressed.

Using a high-throughput proteomics approach targeting the
cardiac mitochondrial subproteome in adult and aged female
rats, significant directional changes were observed in 67 pro-
teins with aged and/or aged OVX, and 32 were unique to aged
OVX [117]. Notably, only 6 proteins were similarly altered in
adult OVX, highlighting the specificity of the E2 deficiency
response in adult vs aged female rats. Proteins affected by
aging were primarily related to cellular metabolism, oxidative
stress, and cell death, with the largest change seen in mono-
amine oxidase-A (MAO-A), a potential source of oxidative
stress. About 50 % of the identified proteins altered in aged
OVX were associated with mitochondrial ATP production
[117]. Age-associated reductions in cardiac mitochondrial
ATP production have been previously reported in male
rodents, including declines in the rate of oxidative phosphory-
lation and the activity of electron transport chain (ETC) com-
plexes III and IV [120]. A recent report on age-associated

alterations in male rat cardiac mitochondrial gene transcripts
also noted widespread downregulation of ETC complex RNA
as well as decreased complex I and IV activity [159], while
proteomic profiling in aged male mouse hearts demonstrated
reduced expression of several mitochondrial ETC complex
subunits [34]. In aged, E2-deficient female hearts, reduced
quantity of protein subunits of ETC complex I (NADH dehy-
drogenase), II (succinate dehydrogenase), III (cytochrome bc1
complex), IV (cytochrome c oxidase), and V (F0F1 ATPase),
and bidirectional changes in proteins involved in fatty acid
substrate metabolism (acyl Co-A synthetase subunits) have
been observed. In contrast, increases were primarily observed,
in contrast, for proteins involved in carbohydrate and amino
acid metabolism (pyruvate dehydrogenase subunits) and
enzymes of the tricarboxylic acid cycle [117]. Increased levels
of Hsp60 and mtHsp70 in aged OVX are consistent with
previous studies in aged male hearts [44] and may be related
to alterations in mitochondrial matrix protein import of
nuclear-encoded enzymes, which may or may not be balanced
by changes in proteolysis. Measurement of the activity and/or
phosphorylation status [48] of these enzymes is indicated for a
more comprehensive characterization of metabolic alterations
and substrate utilization in the aged female heart.

Nevertheless, dysregulated mitochondrial metabolism
has been suggested as a contributory mechanism underlying
impaired ischemic tolerance in the aged heart [98, 116, 159]
and associated I/R injury (see Fig. 2 for model summary).
First, the reduced capacity for ATP production upon reper-
fusion leads to swelling, lysis, and initiation of necrotic and
apoptotic cell death [52]. Observed reductions in the Na+/K+

ATPase and Ca2+ ATPase pumps in aged OVX hearts may
further contribute to these detrimental events. Additionally,
metabolic dysregulation is thought to contribute to cellular
injury through increased mitochondrial ROS production in
the aged heart [120]. Complex III, for example, has been
identified as a major source of age-associated increases in
mitochondrial superoxide radical (O2⋅) production both at
baseline and in response to I/R [120]. High levels of ROS
are generated during I/R from additional sources both within
and outside the mitochondria, including the ETC complex I
[19, 195], the xanthine oxidase system [211], and vascular
NADPH oxidase [7], and contribute to cellular injury
through lipid peroxidation, protein oxidation, enzyme inac-
tivation, and DNA damage [23]. Further, ROS can induce
opening of the MPTP and therefore initiation of cell death
by the facilitation of mitochondrial Ca2+ overload and/or the
oxidation of thiol groups of ANT, a possible MPTP regula-
tory protein [105, 108, 228].

Indicative of possible increased ROS production in the
aged, E2-deficient heart, altered expression of several mito-
chondrial proteins involved in the oxidative stress response
has also been observed. A large increase (>90 %) of MAO-A,
which is found in the outer mitochondrial membrane and
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represents a potent source of hydrogen peroxide (H2O2) dur-
ing I/R [20, 192], has been noted in both aged and aged OVX
hearts but not adult OVX [117]. Given recent evidence that
MAO-A inhibition can reduce I/R injury in adult hearts (for
review, see [50, 102]), studies from our laboratory addressed
the effects of acute MAO-A inhibition on mitochondrial res-
piration and subsequent I/R injury in the aged, E2-deficient rat
heart [117]. While we observed a protective pattern of mito-
chondrial respiration in isolated mitochondria following
MAO-A inhibition with clorgyline (predictive of mild mito-
chondrial uncoupling), acute MAO-A inhibition at varying
doses and durations of exposure prior to I/R injury in vivo was
unable to produce an infarct sparing effect in the aged female
rat heart. We observed a similar lack of efficacy in isolated
perfused hearts when clorgyline was delivered 15 min prior to
I/R, suggesting that the aged female heart is refractory to
protection by MAO-A inhibition. The mechanism of reduced
cardioprotective efficacy of MAO-A inhibition in aged animals
previously demonstrated in adult animals [20] is not immedi-
ately evident, but combined with the well-characterized refrac-
toriness of the aged heart to ischemic intervention [98], likely
includes an inability of age-associated changes in antioxidant
machinery to combat overproduction of ROS associated with
senescence.

In this regard, SOD2 (MnSOD), the mitochondrial SOD
isoform that catalyzes the conversion of the strongly reactive
O2⋅ radical to less reactive H2O2 and molecular O2 [95], was
increased by nearly 40 % in aged OVX. It is likely that these
increases represent compensatory adaptations to chronically
increased ROS production in the aged female heart [120], and
interestingly, our observation of increased SOD2 expression is
in contrast to studies in male F344 rats demonstrating age-

related increases in cardiac SOD2 activity [96, 156] but unal-
tered SOD2 expression [7, 197]. Increased levels in aged and
agedOVX hearts of mitochondrial proteins are involved in the
initiation of cell death, including cytochrome c and possible
MPTP regulatory proteins VDAC1 and ANT1 (Fig. 2). The
increased quantity of glyceraldehyde-3-phosphate dehydroge-
nase, a glycolytic enzyme that has been reported to play a
proapoptotic role in the mitochondria through induction of the
MPTP [187], was also noted. In this regard, direct measures of
ROS are indicated in the aged female rat heart under condi-
tions of I/R injury.

Although preserving ATP and limiting ROS production by
inhibiting MPTP formation is a common strategy for cardio-
protection, as noted above, these strategies are often less ef-
fective in the aged [22, 63, 186]. While several groups have
investigated changes in basal mitochondrial function with age,
the results are variable, likely due to differences in isolation,
mitochondrial subfractions, and measurement protocols.
Respiration rates have been reported to increase [39, 46],
decrease [40, 113, 155, 160, 188], or have variable effects
depending on individual complexes or mitochondrial subpop-
ulation [60, 84, 96, 114]. It is important to note that with the
exception of Davies et al. [46], all of these aging studies were
performed on male heart mitochondria which may not neces-
sarily extrapolate to aging in females. Given reported reduc-
tions of subunits in all five complexes of the ETC, subsequent
studies [89] revealed that (1) age significantly reduced the
respiratory control index (RCI) at complexes I and II, (2)
estrogen deficiency and age sensitized the mitochondria to
Ca2+ overload, and (3) PPT increased mitochondrial RCI but
did not improve Ca2+ sensitivity. No significant age-dependent
changes in state 2 or state 3 respiration of complexes I, II, and

Fig. 2 Summary of proposed
changes in mitochondrial
electron transport complex and
proapoptotic proteins which
may contribute to reductions in
ischemic tolerance with
age-associated E2 deficiency.
Abbreviations: ANT adenine
nucleotide translocator 1, ATP
adenosine triphosphate, CypD
cyclophilin D, IMM inner
mitochondrial membrane,
MAO-A monoamine oxidase-A,
MPTP mitochondrial
permeability transition pore,
OMM outer mitochondrial
membrane, ROS reactive
oxygen species, VDAC
voltage-dependent anion
channel
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IV (state 3 only) were observed, which are in agreement with
oxygen consumption studies of similar mitochondrial popula-
tions in adult and 24-month-old male rats [40, 60, 84].
However, in contrast to these studies, age-dependent decreases
in the RCIs for complexes I and II were observed in females,
which is consistent with increased mitochondrial uncoupling
with aging. Although inhibition of ATP/ADP exchange and/or
ATP synthase may also account for decreased RCI, ADP-
induced respiration was not significantly decreased.
Furthermore, it has been proposed that mitochondrial uncou-
pling may be a compensatory mechanism sacrificing ATP
production efficiency to combat increased ROS production
seen with aging in tightly coupled mitochondria [25].

Cardiac calcium handling is perturbed with senescence and
the aged myocardium is more sensitive to ROS- and Ca2+-
induced MPTP opening [97, 115]. Similar to studies in male
hearts, increases in Ca2+ sensitivity with aging occur in the
female myocardium as evidenced by Ca2+-induced decreases
in complex I respiration and swelling [89]. Interestingly, the
age-dependent reductions in complex I respiration with Ca2+

are mirrored in adult mitochondria with OVX, suggesting that
E2 may play a protective role with respect to Ca2+ sensitivity
in adult animals. This hypothesis is supported by the obser-
vation that femalemitochondria accumulate Ca2+more slowly
than do male [9] and that E2 supplementation reduces mito-
chondrial calcium accumulation [135]. That OVX does not
worsen the age-dependent sensitization to Ca2+ suggests that
age and OVX are sufficient to sensitize the mitochondria to
Ca2+ to the same degree. Given discrepant results in respiration
studies of mitochondria isolated from aged animals, more
studies addressing measures in both subsarcolemmal and inter-
fibrillar mitochondrial populations are indicated. Moreover,
studies in true models of female aging are also sorely needed
to reconcile the impact of associated changes in mitochondrial
protein levels and functional outcomes.

Conclusion

The increased prevalence of cardiovascular diseases in women
following menopause coupled with the failure of HRT to
demonstrate cardioprotection has led many researchers to re-
examine mechanisms of cardioprotection and subsequent loss
of this cardioprotection in advancing age with E2 deficiency. It
has become clear that ovariectomizing adult animals may not
accurately represent the combined effects of age and E2 defi-
ciency seen in postmenopausal females. E2 is known to regu-
late the transcription of several cardioprotective genes by
action through ERα and ERβ, including eNOS and Akt, and
females exhibit increased association of eNOS with the
myocardial-specific caveolin-3 [146, 150, 183]. Acute, non-
genomic signaling downstream of ER activation or E2 action at
GPCRs, in addition, can activate many of the same signaling

pathways recruited in cardioprotection, including PI3K, Akt,
and eNOS pathways [64, 138]. Alterations in cardioprotective
gene expression or acute cardioprotective signal transduction
are therefore likely to result in the context of aging and E2
deficiency and may help explain the reduced ischemic toler-
ance and loss of cardioprotection in the senescent female heart.
The assessment of cardioprotective signal transduction down-
stream of PKCε activation in aging and E2 deficiency may
further allow for the identification of alternative therapeutic
targets for reducing I/R injury in postmenopausal women. In
this regard, recent findings [110, 111] demonstrating improved
ischemic tolerance in aged male and female rats following
acute PKC modulation extend the protective reach of PKC
therapeutics to a model of senescence.

It is also clear that the mitochondria play a central role in
cardioprotection, and research elucidating the mechanisms of
this protection in the aged female heart is ongoing.
Importantly, the vast majority of this research is being per-
formed in adult models, rather than the population at risk for a
cardiovascular event, i.e., the aged. Indeed, recent proteomic
screens of mitochondria isolated from aged and E2-deficient
rat hearts have revealed a highly selective response to E2

deficiency in aged vs adult, and perturbations of several
ETC proteins may upset the stoichiometry of the ETC and
contribute to increased ROS production. Importantly, quanti-
fication of ROS and characterization of the mitochondrial
subproteome as it adapts to advancing age and E2 deficiency
are indicated, which will allow for the identification of pro-
teins and possible posttranslational modifications associated
with cardiac signaling disturbances contributing to age-
associated declines in ischemic tolerance. Evidence-based
medical treatments and therapies have helped to drastically
reduce deaths due to CHD with≈47 % of the reduction in
deaths in the USA from 1980 to 2000 being attributed to their
increased use [163]. This finding emphasizes the necessity of
further research into the field of I/R injury to enable the
continued development of these treatments and therapies par-
ticularly for aged, postmenopausal women.
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