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Abstract There is a strong and growing literature showing
that key aspects of brain development may be critical ante-
cedents of adult physiology and behavior or may lead to
physiological and psychiatric disorders in adulthood. Many
are significantly influenced by sex-dependent factors.
Neurons of the paraventricular nucleus (PVN) of the hypo-
thalamus occupy a key position in regulating homeostatic,
neuroendocrine, and behavioral functions. This brain area is
a critical link for our understanding of the etiology of a
number of disorders with components ranging from mood
to feeding and energy balance and to autonomic nervous
system regulation. Thus, based on common brain circuitry,
the PVN may be a critical anatomical intersection for un-
derstanding comorbidities among depression, obesity, and
cardiovascular risk. Historically, the majority of approaches
to brain development examine neuronal, glial, and vascular
factors independently, with notably less emphasis on vascu-
lar contributions. The realization that the PVN undergoes a
unique vascular developmental process places added value
on discerning the cellular and molecular mechanisms that
drive its late-onset angiogenesis and further implications for

neuronal differentiation and function. This has ramifications
in humans for understanding chronic, and sometimes fatal,
comorbidities that share sex-dependent biological bases in
development through functional and anatomical intersec-
tions with the hypothalamus.
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Introduction

The comorbidity of major depressive disorder (MDD) and
risk for cardiovascular disease (CVD) have a prevalence of
approximately 20 % [5, 25, 48, 76] and are expected be the
leading cause of disability worldwide by 2020 [68, 90].
Although CVD is generally considered a “man’s disease,”
since the overall rate is higher in men [59], in fact, CVD is
the number 1 cause of death in women in the USA, and the
comorbidity of MDD and CVD is twice the rate in women
than men [27, 67]. MDD has a significantly higher prevalence
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in women (twofold) than men [51, 52] and MDD is an inde-
pendent risk factor for the development and progression of
coronary artery disease [5, 25, 50, 69]. Numerous prospective
studies indicate significantly elevated risks of coronary heart
disease, myocardial infarction, or cardiac death among partic-
ipants with depression [74, 75, 91]. Depression predicts first
cardiovascular events even among otherwise healthy people,
particularly in women [91], with a risk of 1.5-fold to 6-fold.

Obesity is associated with MDD and CVD, although the
direction of effects is controversial. Elevated body mass
index (BMI) is significantly associated with anhedonia and
depression, particularly in women, even when controlling
for other demographic variables [6, 13, 36]. Individuals with
MDD typically have a higher BMI prior to the onset of
depressive symptoms and a history of weight fluctuation,
with some evidence that these individuals, particularly
women, demonstrate increased appetite, overeating, and
craving of carbohydrates, particularly in response to stress
[7, 79, 82].

Although population-level studies have demonstrated
substantial sex differences in comorbidities with major pub-
lic health implications worldwide, the pathways to
explaining comorbidity is unclear. In part, this may be due
to a lack of investigative focus in general on explaining sex
differences in diseases. However, it also may be due to the
fact that many investigators studying the heart and associ-
ated vascular system and/or adiposity rarely think about the
brain and neuroscience perspectives and vice versa.
Moreover, studies focused on CVD and MDD generally
begin in adulthood.

This review argues the position that sex differences in
MDD–CVD comorbidity (and associated metabolic syn-
drome disorders arising from conditions such as obesity)
originate in part from pathogenic processes initiated in fetal
development that involve shared pathophysiology between
the brain, the vascular system, and the central nervous system
control of the heart, food intake, and energy balance. Fetal
origins of MDD, CVD, and obesity independently implicate
“prenatal stress models” of hypothalamic–pituitary–adrenal
(HPA) axis circuitry disruption. At the population-level, there
is higher risk in women regarding shared fetal antecedents to
comorbidity of MDD and poor autonomic nervous system
(ANS) deficits (a significant CVD risk factor) [27], which
implicates prenatal inflammatory and adrenal hormonal ab-
normalities. At the in vivo brain imaging level, fetal disrup-
tions of HPA circuitry development are significantly
associated with sex differences in adult brain activity deficits
and hormonal dysregulation in MDD alone [28] that, in pilot
work, were significantly associated with ANS dysregulation
[41]. Previous work on the fetal programming of CVD risk
alone, although not focused on sex differences, suggested that
adverse fetal exposures cause HPA abnormalities and elevated
blood pressure and blood glucose levels, implicating

glucocorticoid receptors [77, 94]. Much of the work in model
animals, including our own [12, 23, 65, 101], demonstrated
possible pathways in MDD involved in the disruption of
maternal gestational glucocorticoids on nerve and angiogenic
growth factors [brain derived nerve growth factor
(BDNF/trkB), vascular endothelial and insulin growth factors
(VEGF and IGF-1)], gonadal hormones, and gamma
aminobutyric acid (GABA) and on neuronal and vascular
development of HPA axis regions, such as the hypothalamic
paraventricular nucleus (PVN). The PVN, which is one of the
most highly vascularized regions in the brain [1], is important
for regulating many homeostatic, neuroendocrine, and behav-
ioral functions and has been associated with the etiology of
affective disorders, such asMDD. Furthermore, the PVN is an
essential component of brain circuitries important for feeding
and energy balance and serves to regulate the ANS which is
critical for appropriate cardiovascular responses. Thus, the
PVN may lie at a critical crossroad for understanding
comorbidities among depression, CVD, and related metabolic
syndromes associated with obesity.

The neurobiological model proposed here (Fig. 1) to
explain sex differences in MDD–CVD comorbidity is that
excess maternal gestational glucocorticoids (an indicator of
“prenatal stress”) disrupt GABA signaling in conjunction
with growth factors (VEGF, IGF-1, and BDNF) and gonadal
hormones, leading to sex-specific alterations in neuronal
and vascular development in HPA axis brain regions (such
as the PVN) that are sexually dimorphic and implicated in
MDD and CVD risk through the ANS and the vasculature.
Given the substantial comorbidity worldwide, a common
fetal cause will have important implications for the preven-
tion or attenuation of disability in many countries, particu-
larly in women.

The problem of comorbidity

It is common to consider various diseases or disorders from
unitary perspectives, i.e., so-called silo’ed investigative ap-
proaches within specific fields of medicine. The missions of
the National Institutes of Health are predicated on the uni-
tary approach to the study of a number of disorders. For
example, the National Institute of Mental Health (NIMH)
focuses on depressive disorders, while the National Institute
of Diabetes and Digestive and Kidney Diseases focuses on
obesity and diabetes and the National Institute of Heart,
Lung, and Blood focuses on CVDs. It is likely that there
are instances where these various disorders occur due to
independent etiologies. However, the central theme of this
review is that the greater risk, and perhaps more prevalent
problem and greater expense to the healthcare system, lies in
the comorbidity of one or more disorders that are found
together in symptom clusters. This view of shared
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pathophysiology has been espoused by NIMH [44], al-
though this view is restricted to disorders of the brain and
not the comorbidities of brain disorders with general medi-
cal disorders. This review addresses the comorbidity of
MDD and CVD and associated syndromes with emphasis
on sex differences in the risk of each, underscoring the fact
that the comorbidity of these disorders occurs more com-
monly in women.

In considering developmental origins of disorders that
cluster together, there are at least two major etiological
pathways to consider. One way is to postulate a general
linear model in which one disorder helps trigger another
one, resulting in several disorders in the same individual
(see Fig. 2a). For example, depression might arise—cause
unknown, leading to overeating and obesity as downstream
consequences. Obesity might then cause a cascade of med-
ical problems leading to CVD. In a similar way, the se-
quence might start with obesity leading to depression,
which may in turn lead to cardiovascular risk. Just as likely
is that a cardiovascular problem that would lead to depres-
sion and then subsequent obesity. An alternative possibility
to a linear model is a nonlinear model which is at the heart
of this review. The perspective of this review is that all of
these disorders have a shared biological substrate that pro-
vides a basis for an increased likelihood of several disorders
arising in the same individual (see Fig. 2b). Shared biolog-
ical substrates could be envisioned on at least three levels:
anatomical, molecular/biochemical, and genetic.

Anatomy as a shared biological substrate for causation

If one were to go through a list of brain structures or regions
to identify those that are linked to a constellation of disor-
ders that included depression, obesity, and cardiovascular
risk, it is likely that the hypothalamus would be one of the
key identified regions. It is also likely that the list would

include the amygdala and/or the hippocampus. These are
not disconnected regions, but rather players in a key brain
circuit described many years ago by Papez [71]. However,
only recently has this circuit become accessible to analysis
by human in vivo magnetic resonance imaging (MRI) tech-
niques that have demonstrated its importance in a number of
disorders of the brain [31, 32, 40, 42, 62].

Of particular interest for this review, one location within
the hypothalamus is notable for its role in signaling from the
brain directly to the periphery. This locus, the PVN, contains
neurons that control behavior, neuroendocrine, and auto-
nomic function. Specifically, neurons in regions of the
PVN direct the HPA axis that controls much of what is
considered the stress response. Other neurons in the PVN
are considered preautonomic and project to brainstem and
spinal cord areas that control the ANS. Still other PVN
neurons project to sites that can control behaviors, such as
feeding. These features are discussed further below.

The PVN lies at the dorsal limit of the classical hypo-
thalamus flanking the top of the third ventricle. It has been
implicated in a broad array of homeostatic and behavioral
functions ranging from neuroendocrine and cardiovascular
functions to affective, ingestive, and defensive behaviors
(reviewed in [38, 85]). Depending upon the species, func-
tional groups of PVN neurons can be defined based on
cellular characteristics, position, or chemical phenotype.
Each of these subdivisions has been associated with specific
functions (e.g., [10]). While there is some controversy re-
garding the degree to which the PVN may be subdivided in
humans, it seems likely that subdivisions exist based on
several criteria [53, 62]. This is consistent with findings of
subgroup-selective cell loss in particular human disorders
(e.g., [4, 9]).

Neurons of the PVN express a number of receptors for
steroid hormones and from this arises the potential for sex
differences in PVN function that could be driven by circu-
lating sex steroid hormones. Moreover, steroid hormone

Fig. 1 Prenatal stress model of sex-dependent risk for comorbidity.
This figure shows schematically the progressive influence of external
stressors to the mother on her HPA axis function (a), in addition to
maternal–fetal interactions to influence adult susceptibility to disorder
(b). Mechanisms that may play roles in the fetal compartment include
steroid hormone receptors that could impact sex differences (estrogen

and androgen receptors (ER and AR) and glucocorticoids (and their
receptors)). These transcription factors may impact the function of
neurotransmitters (e.g., GABA), neuromodulators (nitric oxide [NO]),
or growth factors (e.g., BDNF, VEGF, IGF) on neuronal, glial, or
vascular compartments in the PVN (c)
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receptors are among the markers that indicate different
zones within the PVN.

For example, cell groups reportedly contain immunore-
active estrogen receptors-α (ir-ERα), ERβ, androgen re-
ceptors, or glucocorticoid receptors (e.g., [80, 83, 84]).
Immunoreactive neurotransmitters (e.g., corticotropin-
releasing hormone (CRH), arginine vasopressin (AVP), oxy-
tocin (OXY) [2, 85]) and other proteins, including calbindin
and nNOS [65], also characterize specific regions of the
nucleus (see Fig. 3). To the extent that the neurons express-
ing these molecules are stereotypic for particular zones in
the developing PVN and controlled by key developmental
factors, they may be useful biomarkers for future analyses of
pathology as well as normal function.

Defects in the healthy development of the PVN provide
an anatomical basis to predict shared comorbidity for disor-
ders related to the functions of neurons normally located in
or around the PVN. A number of mechanisms may lead to
potential long-term alterations in PVN function that may or
may not also be sex-dependent. These include changes in
gene expression, cell death, connectivity, neuronal pheno-
types or positions thereof, or relationships to unique vascu-
lature. Further, environmental stimuli in development (e.g.,
obstetric complications or chronic social/psychological
stress) may cause changes in gene expression within neu-
rons of the PVN, in response to a common circulating factor
(such as glucocorticoids), and perhaps as a function of
epigenetic marks that are placed on DNA in response to
such stimuli [11, 12]. For example, we and others demon-
strated that perinatal exposure of rats to the synthetic glu-
cocorticoid, dexamethasone, change the methylation state of
the BDNF gene [11, 43] and/or the levels of prepro-
thyrotropin-releasing hormone (TRH) [12]. In a similar
fashion, levels of maternal behavior can alter the adult
expression of glucocorticoid receptor [93] and ER [16]. In
many cases, such influences may be sex-dependent with
responses more prevalent in females.

Disruptive events in development can also lead to apo-
ptotic (or possibly necrotic) cell death within specific sub-
divisions of the PVN or the neighboring region [101].
Changes in the incidence of cell death, whether increases
or decreases, can have long-lasting effects on neural circuit-
ry. For example, it has been demonstrated that prenatal
exposure of rats to stress caused an increase in cell death
in the fetal PVN [89], with greater levels in the female.
Correspondingly, fetal exposure to dexamethasone caused
increases in apoptotic cell numbers in areas that project to
the PVN, such as CA1, CA3, and peri-PVN [101]. There are
many connections into the PVN and the surrounding region,
and increased or decreased stimulation along any of these
pathways, either during development or relative to later
plasticity, may cause long-term changes in PVN function.
This can be due to changes in inputs from intrahypothalamic
or extrahypothalamic areas or changes in synaptogenesis in
the PVN itself. For example, chronic variable stress may
impact synapse formation in the PVN [22, 37] that might
also be reflected as sex differences in synaptophysin-
containing terminals [14].

Neurogenesis and neuron migration are classic mechanisms
for neural development in general. Specific stimuli may cause
changes in the location of neuron phenotypes within the PVN
because of altered birth or migration [65]. For example, we
demonstrated that loss of GABAB receptor function by either
genetic or pharmacological means (during fetal development)
resulted in cells that express ERα being located more laterally
in the PVN in females only. Such a change (like for phenotype
or apoptosis) might be useful in predicting alterations in PVN-
mediated functions that underlie the development of a sex-
related disorder. Interestingly, the loss of GABAB receptor
functioning also disrupted the positions of cells containing ir-
ERα in and around the ventromedial nucleus [64], but not in a
sex-dependent manner. These findings suggest the importance
of developmental timing and region-specificity for the identifi-
cation of sex-specific outcomes.

Fig. 2 Sequential (a) versus shared (b) biological pathways to comor-
bidity. a Sequential pathways to comorbidity in which one disorder
may lead to others. The disorders are such that any one of them may be

able to trigger steps towards the others. b Shared biological pathway to
comorbidity in which an underlying biological problem can contribute
to the onset of each of the disorders at the same time
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The vast majority of approaches to brain development
examine neuronal, glial, and vascular factors independently,
with notably less emphasis on vasculogenesis. Surprisingly,
the extensive vascularity of the PVN [1, 92] occurs late in
hypothalamic development. Thus, changes in vascular den-
sity or function within the PVN [23] provide another ana-
tomical substrate to help explain shared comorbidities. The
healthy development of brain vasculature proceeds through
the invasion of vascular sprouts from the pial vessels to-
wards the central ventricles. Subsequently, finer branches
form via secondary angiogenic processes. Hypoxia is con-
sidered a major driving force in promoting the formation of
new vessels. However, for PVN development, the region is
fully vascularized at birth similar to the rest of the forebrain.
By the second postnatal week, a striking increase in vascu-
larization is readily discernible [23, 66]. Whatever drives the
increased vascularity does so over a period of time when the
PVN receives similar blood flow as the rest of the hypothal-
amus and presumably sufficient oxygen. Thus, postnatal
angiogenesis in the PVN (which is associated with later
prenatal human development) may be driven by neural
signals as suggested by the term “angioneurins” [99], but
intrinsic to the unique environment and components of the
PVN. Our preliminary studies in mice (Frahm et al.,
unpublished observations) suggest that the mRNAs of
known angiogenic factors or receptors, such as VEGF,
BDNF, and the BDNF receptor TrkB, have a postnatal

developmental time course in the neonatal PVN in
rodents (and prenatal in humans), consistent with a role
in driving angiogenesis. Important for the PVN is the
fact that neural activity may impact the development of
the vasculature, since GABAB receptor signaling caused
a 20 % decrease in vascular characteristics of length or
branch points [23].

Studies of the neurovascular unit suggest that the blood–
brain barrier (BBB) may be a variable that may be particu-
larly important in highly vascularized regions like the PVN.
Given the several-fold greater density of blood vessels in the
PVN, any disruption of BBB function will make the PVN
appear selectively vulnerable compared to many other brain
regions. In development, there is debate as to when the BBB
“closes” or begins to regulate the flow of macromolecules
into and out of the brain parenchyma. In general, signifi-
cantly more information is needed on the maturation and
regulation of BBB function in all brain areas, including
the PVN. Studies are just beginning to illuminate regu-
lators of BBB development in the region of the PVN.
Our results suggest that perinatal GABAergic [23] or
glucocorticoid (Frahm and Tobet, unpublished results)
treatments may influence BBB development. Evidence
currently exists for both sex-dependent glucocorticoid
[73] and reproductive hormone [96] influences on some
aspects of BBB function, such as permeability and ex-
pression of molecular pumps.

Fig. 3 Molecular complexity of PVN neurons. Developmental se-
quence for Nissl (thionin stain) architecture of the PVN of the hypo-
thalamus in mice (left) is contrasted with the complex molecular
heterogeneity of PVN neurons across the nucleus (right). The molecular
phenotypes of many PVN neurons are already in place by embryonic

day 15 (E15), even though the nucleus is not yet viewable based on cell
density (left). The PVN emerges from the background of cells along the
third ventricle (v) as a cell-poor zone opens up around the nascent nucleus
between E15 and E17. By birth at postnatal day 0 (P0), the medial to
lateral extent of the PVN on one side is about 400 μm
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Molecular players as shared biological substrate
for causation

Hypothalamic–pituitary–adrenal axis

The HPA axis is likely best known for its role in controlling
neuroendocrine stress responses [45]. Simply put, it consists
of a series of feedback loops that can be studied from an
anatomical and clinical basis as well as for its molecular
signaling properties. Brain regions implicated in modulating
stress response circuitry provide inputs to the PVN, the
neuroendocrine motor pathway for the HPA axis. The brain
regions that contribute to the higher-order control of HPA
axis function include subregions of the amygdala, hippo-
campus, periaqueductal gray, medial and orbital prefrontal
cortices, and anterior cingulate cortex. In brief, the regula-
tion of the HPA axis response to a number of different
stressful stimuli is gated through these various brain regions,
which we demonstrated in vivo in humans using functional
MRI [29, 30]. Ultimately, CRH is secreted from parvocellular
PVN neurons into the hypothalamic–hypophyseal portal capil-
laries of the median eminence and travel to the pituitary to
regulate the secretion of adrenocorticotropic hormone
(ACTH) from pituitary corticotrophs. Although CRH has been
considered the principal secretagogue driving anterior pituitary
ACTH secretion, studies have shown that AVP can be co-
released from neuroendocrine parvocellular CRH neurons to
amplify the actions of CRH on pituitary release of ACTH [95].
Once secreted into the general circulation, ACTH drives the
adrenal cortex to secrete the principal glucocorticoid hormone,
cortisol in humans, and corticosterone in rodents and many
other vertebrates.

By causing a rapid rise in plasma glucocorticoid concen-
trations, stress has long been considered to play a major role
in causing adrenal hypertrophy, energy mobilization, alter-
ations in the immune system, and gastrointestinal problems
[78, 86]. In concert, rapid activation of preautonomic neu-
rons in the PVN drives chromaffin cells in the adrenal
medulla to rapidly release the catecholamines, epinephrine
and norepinephrine, into the general circulation. These fac-
tors are also involved in the characteristic fight or flight
response to stress and rapidly impact heart rate, blood pres-
sure, and smooth muscle functions throughout the body
[41]. Further, glucocorticoid release also drives adrenal medul-
lary synthesis of the phenylethanolamine N-methyltransferase,
which is the key enzyme responsible for transforming norepi-
nephrine to epinephrine. The combination of glucocorticoids
and epinephrine secreted in the bloodstream generate diverse
responses throughout the body.

In addition to the negative feedback responses at pituitary
and brain levels, glucocorticoids have many other roles in the
brain [39, 57]. Glucocorticoid actions in the brain may be
impacted by sex and/or interactions with hormones of the

hypothalamic–pituitary–gonadal axis [11, 21, 81]. In fact, at
the human in vivo brain imaging level, gonadal hormones
regulate stress response circuitry, including anterior hypotha-
lamic regions, in healthy individuals that contribute to
explaining sex differences in the brain’s response to stress
[29, 30] and were disrupted in depression in tandem with
gonadal hormone deficits [42] and ANS dysregulation [41].
Taken together, animal and human studies of the stress response
circuitry suggest that many of the influences of glucocorticoids
on the brain are based on changes in “chemical anatomy” that
are relevant for considering potential comorbidities.

It is at the level of molecular players that the idea of
shared biological substrates becomes an amplified concept.
For example, one of the first thoughts about what prenatal
stress can do is to provoke a chemical response as outlined
previously. These chemical responses can have wide-
ranging impact in the fetal compartment (see Fig. 4). In that
compartment, there are strong opportunities for interactions
among molecular signaling pathways in different locations.
In addition to CRH, central to stress aspects of the HPA axis,
there are a number of other peptides found in the PVN that
have been associated with either specific or multiple human
disorders and have the potential to act as the biological bases
of comorbidity. For example, vasopressin and OXY have
been implicated in anxiety and depression [70], cardiovas-
cular risk [33, 98], and metabolic issues related to obesity
[20, 87, 97] and eating disorders [56]. Alterations in TRH
have been linked to depression [100] and CVD [54], in
addition to metabolic problems [72]. In support of these
findings in humans, our recent animal studies show that
prenatal dexamethasone exposure can alter homologous
TRH neurons in the PVN of adult rats [12].

Genetics as a shared biological substrate for causation

As a shared biological substrate for causation, genetics can
be considered a special molecular/biochemical case. The
search for genetic associations has typically been for specif-
ic disorders, although some have begun to investigate
shared genetic pathways related to comorbidities [63]. One
way to consider genetic predisposition is to consider muta-
tions that either prevent the synthesis of a functional protein
or more often provide for the synthesis of a protein with
suboptimal function. For example, Val66Met is an amino
acid substitution in BDNF that compromises, but does not
eliminate, BDNF signaling [17]. This amino acid substitu-
tion has been linked to CRH homeostatis [46] and to mul-
tiple psychiatric disorders [47]. However, a recent meta-
analysis suggests that, by examining the literature as a
whole, the linkage of BDNF variants alone to MDD may
be less promising than previously thought [34] and may
need to be thought of in the context of epigenetic effects
of environmental exposures on the regulation of BDNF, as
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with studies of gene–environment interactions in MDD with
the serotonin receptor transporter or other genes and early
childhood adversity [15, 49].

Combining biological substrates for causation

The simplest combination of causes for comorbidity might
predict a location in the brain that participates in the regu-
lation of several components of multiple disorders and/or
has some unique molecular/biochemical properties that were
partially accounted for by the expression of specific genes of
interest. There is a long history of research on the interaction
of HPA axis dysregulation and disorders from the perspec-
tive of fetal antecedents to these disorders that includes
MDD, CVD, and obesity [3, 26, 28, 35]. During brain
development, glucocorticoids may influence GABAergic
mechanisms, as has been shown in adulthood [61, 88].
There is a significant link between GABA and morphoge-
netic roles in brain development. Several neurotransmitter
systems have been suggested as neurotrophic factors or
morphogens in various brain regions [8, 55] including
GABA, serotonin, dopamine, and endogenous opiates.
Important for the current discussion, defects in GABA sig-
naling have been found in animal models of depression [18,
19, 60] in addition to humans with MDD [24] and CVD
[58]. Moreover, as we have demonstrated, the distribution of
GABAergic elements may be essential for the final
cytoarchitectural arrangement of cellular elements in the
region of the PVN [65]. Viewed sequentially (as in Fig. 1),
exposure to stressors of any type during development may
cause activation of the HPA axis (Figs. 1a and 4). This will
lead to a number of humoral signals exchanged between the
maternal and fetal compartments that ultimately result in
changes in brain structure and function leading to adult

susceptibility to disorders. These include depression, cardio-
vascular risk, or metabolic imbalances leading to obesity
(Figs. 1b and 4). Potential mechanisms of action operating
in the fetal compartment include the interactions of steroid
hormone receptors regulating responses to neurotransmitters
(e.g., GABA) or growth factors (e.g., BDNF, VEGF, IGF) in
the context of neurons, glia, or vasculature in the PVN
(Figs. 1c and 4).

Currently, there is reasonable evidence to implicate several
key factors in the etiology of comorbid disorders. From the
anatomical perspective, the PVN occupies a notable location
that mediates functions at the heart of a number of disorders. It
is the site in the brain where neurons involved in controlling
HPA function lose negative feedback control in MDD. It may
be interesting to note that other areas of focus for comorbidities
include the hippocampus, amygdala, and portions of the cere-
bral cortex that also signal transsynaptically to regulate PVN
activity, as demonstrated in our studies activating this circuitry
in vivo [29, 30, 42]. From the molecular perspective, brain
GABA and stress-related release of glucocorticoids have nota-
ble ties to fetal antecedent actions with long-term consequences
for neuronal circuitry and function. From the genetic perspec-
tive, it is difficult to find strong gene linkages to particular
disorders. However, there have been several studies to
connect alterations in GABA signaling genes, glucocor-
ticoid signaling related genes, and the BDNF gene to
increased likelihood of several disorders. There is cur-
rently much less evidence relating changes in angiogen-
ic genes to multiple disorders, but the number of studies
is growing as investigators learn to specifically focus on
such markers. Viewing the evidence through a prism
that highlights sex differences will likely help clarify
results that may be conflicting or insufficiently powerful
because genetic sex or differences in sex steroid hor-
mones were not considered in the model.

Fig. 4 Impact of maternal
conditions on sex-dependent
brain development and
outcomes. This schematic
illustrates the tripartite nature of
maternal impact on fetal
development resulting in an
adult offspring that responds
differentially to specific stimuli.
Sex differences arise at multiple
points in the process
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