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Abstract Kidneys are complex highly organized paired
organs of nearly one million nephrons each. They rigorously
process about 180 l of plasma daily to keep whole body
homeostasis. To effectively perform such a titanic work,
kidneys rely on mechanisms able to sense dynamic changes
in composition and flow rates of protourine along the renal
tubule. It is envisioned that Ca2+-permeable transient receptor
potential (TRP) channels, and specifically mechanosensitive
TRPV4, can serve to interpret these external mechanical cues
in the form of elevated intracellular Ca2+ concentration. This, in
turn, initiates multiple cellular responses and adaptation mech-
anisms. The current review summarizes up-to-date knowledge
about the sites of TRPV4 expression in renal tissue as well as
discusses the functional role of the channel in cellular responses
to hypotonicity and tubular flow. We will also provide insights
as to how TRPV4 fits into classical polycystin mechanosensory
complex in cilia and will speculate about previously underap-
preciated clinical implication of pharmacological TRPV4 tar-
geting in treatment of polycystic kidney disease.
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Introduction

Mechanosensitivity is a pivotal interface employed by living
organisms to survey the surrounding environment. Many cell
membranes are equipped with mechanosensitive ion channels
that respond to osmotic gradients, shear stress, touch, vibra-
tion, and texture. These channels are present in a great variety
of life forms: from bacteria to higher plants and vertebrate
animals (reviewed in [42, 63]). A number of discovered
mechanosensitive channels belong to a broad family of tran-
sient receptor potential (TRP) channels [13, 63, 67, 80, 102,
118]. They share the common feature of six transmembrane
domains and are repeatedly reported to participate in cellular
responses to a vast array of stimuli, including temperature,
chemical agents, and mechanical forces [13, 57, 63, 66, 67,
80, 102, 118]. According to their sequence similarity, TRPs
can be subdivided into seven subfamilies: classical or canon-
ical (TRPC), vanilloid (TRPV), melastatin (TRPM), ankyrin
(TRPA), no mechanoreceptor potential (TRPN), polycystin
(TRPP), and mucolipidin (TRPML) [102, 118]. TRPV4 (ini-
tially named VROAC, VRL-2, TRP12, and OTRPC4) is the
fourth member of TRPV subfamily, which was originally
identified as a mammalian homolog of the Caenorhabditis
elegans osmosensory protein OSM-9 [16, 22, 47, 64, 84, 115].
Since then, TRPV4 is, perhaps, one of the most recognized
mammalian mechanosensitive TRP channels, which was rou-
tinely showed to be activated by hypoosmotic challenges and
mechanical shear stress arising from fluid flow [6, 22, 27, 48,
49, 53, 56, 84, 91, 115, 117].While direct gating of TRPV4 by
mechanical stimuli is debatable [11, 63, 65, 66], substantial
evidence argues that TRPV4 is indispensable for a wide
variety of mechanosensitive processes [1, 6, 27, 47–49, 53,
56, 64, 80, 84, 91, 117]. The channel has a tetrameric subunit
arrangement and possesses a modest selectivity to Ca2+ [22,
68, 69]. TRPV4 expression is detected in many tissues includ-
ing the lung, heart, brain, endothelial cells, sensory ganglia,
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and kidney [6, 16, 22, 47, 84, 93, 115]. In the present review,
we will discuss recent advances in our understanding of a role
for TRPV4 in conferring mechanosensitive properties to renal
epithelial cells with a special emphasis on the distal nephron.

TRPV4 expression pattern in the kidney

Initial studies revealed that TRPV4 transcript is abundantly
expressed in the kidney [16, 47, 84, 115]. High levels of
TRPV4 mRNA were found in the inner cortex with only
punctate distribution in the outer cortex [84]. Early immuno-
localization experiments demonstrated that TRPV4 is con-
fined to the apical border of cells lining the distal tubules
[16, 84]. Further study systematically characterized TRPV4
expression pattern in mouse and rat kidneys. Abundant
TRPV4 expression was detected in the cortex, medulla, and
papilla. TRPV4 immunofluorescent signal indicated that the
protein might be restricted to nephron segments constitutively
or conditionally impermeant to water [93]. Specifically, strong
immunoreactivity was observed in the thin ascending limb,
thick ascending limb, and distal convoluted tubule, while
moderate levels of TRPV4 were detected in the collecting
duct and papillary epithelium. TRPV4 subcellular distribution
in these nephron segments was regarded as predominantly
basolateral [93].

Recently, our group assessed the functional TRPV4 ex-
pression in mouse kidney using a combination of immuno-
histochemical, fluorescent imaging, and genetic tools. We
demonstrated that TRPV4 is abundantly expressed along the
entire length of collecting duct system throughout the me-
dulla and cortex [6]. TRPV4 immunostaining was confined
to aquaporin-2 (AQP2)-positive nephron segments: from the
connecting tubule to the papillary collecting duct. The most
apparent immunoreactivity to TRPV4 was observed near the
apical membrane of principal cells, whereas intercalated
cells had lower levels of TRPV4 protein with more diffuse
subcellular distribution [6].

The observed variations in TRPV4 expression pattern
may be attributable to differences in antibody specificity,
technical aspects of the employed approaches, or animal
preconditioning. As far as subcellular distribution of the
channel is concerned, it should be noted that so far, there
is no experimental evidence demonstrating functional activ-
ity of TRPV4 on the basolateral membrane of renal epithe-
lium. On the other hand, apical localization of the channel is
consistent with previous observations [15, 27] and function-
al assessment of TRPV4 activity in renal cells (see further).
Nevertheless, taken together, the existing data strongly favor
TRPV4 abundance in the distal part of the renal nephron.

Additional evidence for TRPV4 expression in the kidney
comes from the cell lines endogenously expressing the
channel. Thus, TRPV4 mRNA was detected in various

cultured renal cells including smooth muscle-like mouse
mesangial cells and several epithelial cell lines: M-1 cortical
collecting duct (CCD) cells, Madin–Darby canine kidney
(MDCK), and inner medullary collecting duct (IMCD-3)
cells [20, 27, 41, 117].

TRPV4 as an osmosensor in the distal nephron

Renal micropuncture studies demonstrated that tubular fluid
leaving the loop of Henle is typically hypotonic. Indeed, the
osmolality of the fluid entering the latter distal convoluted
tubule is around 100 mOsm/kg [14, 29]. In the absence of
antidiuretic hormone vasopressin, low osmolality can be
maintained along the entire length of the distal nephron from
the cortex to the papillary collecting duct [14, 29, 30]. Thus,
depending on systemic hydration status, distal segments of
renal nephron are partially or completely exposed to hypoton-
ic luminal milieu. Numerous observations suggest that renal
cells respond to hypoosmolarity with elevations of intracellu-
lar Ca2+ [24, 25, 34, 53, 55, 90, 94, 95, 99, 117]. Considering
the fact that renal TRPV4 expression is primarily restricted to
the distal nephron, this strongly suggests that the channel is
perfectly positioned to play an essential role in cellular adap-
tations to decreased osmolality of the tubular fluid.

Our group convincingly demonstrated that hypotonicity
stimulates endogenously expressed TRPV4 inM-1 CCD cells.
Activation of TRPV4 with hypotonic medium was abolished
by TRP channel inhibitor ruthenium red and after siRNA
TRPV4 knockdown [117]. Of interest, hypotonicity is known
to induce ATP release from many epithelia, including that of
the distal nephron [73, 76]. The apically localized connexin 30
hemichannel serves as a conduit for ATP release at this site
[81]. Numerous studies suggest that activation of purinergic
signaling is a critical component of cellular responses to
mechanical stress, such as hypotonicity [73].We have recently
documented a functional link between ATP cascade and
TRPV4 in distal nephron cells [53]. We found that locally
released ATP via P2Y2 receptors and phospholipase C (PLC)
cascade stimulates TRPV4 for sustained elevation of intracel-
lular Ca2+ concentration ([Ca2+]i). Genetic ablation of TRPV4
results only in a transient elevation of [Ca2+]i due to Ca2+

release from the endoplasmic reticulum [53]. Similar mecha-
nism was also reported in the perfused thick ascending limbs,
where decreased osmolality of tubular fluid resulted in
TRPV4-mediated ATP release leading to elevation of [Ca2+]i
[79]. It appears that reciprocal coupling between purinergic
signaling and TRPV4 activation is essential for proper mecha-
nosensitive response in kidney cells. Indeed, distal nephrons
from P2Y2−/− mice have markedly impaired responses to
hypotonicity [53]. Activation of P2Y2 receptors by ATP or
adenosine A1 receptors by ATP breakdown product—adeno-
sine—inhibits vasopressin-dependent water transport in the
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collecting duct [76]. Consistently, P2Y2−/− mice display in-
creased urinary concentrating ability and develop prominent
hypertension associated with augmented sodium and water
transport in the distal nephron [70, 76, 83, 124]. However,
the precise role of TRPV4-mediated [Ca2+]i elevations in
water reabsorption in the distal nephron and urinary concen-
trating ability remains elusive. Interestingly, in C. elegans
mutants devoid of the endogenous TRPV isoform—OSM-9,
TRPV4 expression restores avoidance responses to hyperto-
nicity [49], while in mammalian cells, the channel is activated
by hypotonic solutions [1, 9, 10, 25, 38, 53, 117]. This exciting
discrepancy merits further investigation and, perhaps, can be
attributed to different pathways regulating TRPV4 functioning
in various species.

The significance of TRPV4 osmosensitivity in the col-
lecting duct epithelium is further emphasized by an impor-
tant role played by the channel in cell volume regulation and
maintenance of the intracellular osmotic homeostasis. As
mentioned before, the apical membrane of distal nephron
cells typically faces a hypotonic tubular fluid, which can be
further diluted under conditions of high water intake and
subsequent water diuresis [14, 29, 30]. Exposure to a hypo-
osmotic environment induces cell swelling as a result of
water entry along the osmotic gradient. The latter can be
dramatically increased by water channels akin to AQP2
expressed on the apical membrane of principal cells in the
collecting duct [24]. Dilution of the cytoplasm significantly
alters the functioning of intracellular macromolecular ma-
chinery, while elevated hydrostatic pressure may compro-
mise the integrity of the cell. Regulatory volume decrease
(RVD) is a pivotal adaptation mechanism employed to pre-
serve cellular osmotic balance in response to hypotonicity.
In most cells, osmotic stress induces Ca2+ entry, which is
followed by the efflux of ions and osmotically active organ-
ic solutes (reviewed in [36, 43, 44, 113]). Recent studies
proposed that in renal cortical collecting duct, cell associa-
tion of AQP2 and TRPV4 is required for Ca2+ entry induced
by hypotonicity and subsequent RVD response [25]. Both
elevation of [Ca2+]i induced by hypotonic solutions and the
following RVD response were impeded after depolymeriza-
tion of tubulin microtubules with colchicine and actin
microfilaments with cytochalasin. This points to the impor-
tance of cytoskeleton integrity for hypotonicity-induced
TRPV4-mediated [Ca2+]i increase and volume regulation
in collecting duct epithelium [24, 25]. Consistently,
microtubule-associated protein 7 was shown to interact with
TRPV4 both in vitro and in renal cortex. This interaction
enhances the channel expression on the cellular membrane
[87]. A few observations indicate that N-terminal ankyrin
repeat domain (ARD) is responsible for correct TRPV4
trafficking to the plasma membrane [22, 47]. It might anchor
the channel to cytoskeleton or establish/constitute a mechan-
ical link necessary for proper gating. Interestingly, deletion

of ARD dramatically impairs TRPV4 mechanosensitivity
[22, 47]. TRPV4 also significantly improves RVD, when
expressed in Chinese hamster ovary (CHO) cells, which
normally have a poor response to decreased osmolarity
[5]. A functional interaction between TRPV4 and F-actin
is critical for sensing hypotonicity and the onset of RVD in
this model [4]. Another study demonstrated that functional
interplay between TRPV4 and aquaporin-5 observed in
salivary gland epithelia is critical for RVD induced by
hypotonic swelling in this tissue [50].

The aforementioned experiments resonate with the initial
observations in heterologous cellular systems demonstrating
that TRPV4 is highly sensitive to changes in extracellular
osmolality [47, 84]. Cells transfected with TRPV4
responded to hypotonic solution with elevations of [Ca2+]i.
Even minor (as low as 1–10 %) fluctuations of extracellular
osmolality significantly altered Ca2+ influx [47, 84]. On the
contrary, increased osmolality (above 300 mOsmol/l) de-
creased [Ca2+]i levels and currents in the cells exhibiting
spontaneous activity [84]. TRPV4-mediated currents in
CHO cells were significantly increased by inflation of cell
volume, achieved by positive pressure through a patch pi-
pette [88]. The latter closely resembles cell swelling induced
by hypotonicity. Subsequently, TRPV4 has been suggested
to act as an osmolality sensor in the airway smooth muscle
cells [38] and function as an osmotransducer in primary
afferent nociceptive nerve fibers [1].

Consistent with the osmosensitive properties of the chan-
nel, TRPV4−/− mice exhibit abnormal osmotic regulation
[48, 56]. Initially, these abnormalities were attributed to
disruption of central TRPV4 signaling, specifically, in the
sensory neurons of organum vasculosum lamina terminalis
(OVLT) [48]. This hypothalamic brain nucleus, which is
located outside the blood–brain barrier, regulates the secre-
tion of antidiuretic hormone and controls the osmolality of
extracellular fluid [80]. Subsequently, it was shown that
modulation of OVLT neurons by tonicity or mechanical
stimulation was unaffected by deletion of TRPV4, but rather
requires TRPV1 [12]. The exact mechanism, by which
hypertonicity modulates the activity of OVLT neurons,
remains to be determined, and it is unclear whether TRPV1
and TRPV4 both contribute to this process. Finally, a recent
study demonstrated that TRPV4-expressing thoracic dorsal
root ganglia neurons innervating hepatic blood vessels de-
tect physiologically pertinent decreases in blood osmolality.
These hepatic sensory neurons respond even to small
changes in osmolality (~15 mOsm). The evoked ionic cur-
rents have a pharmacological and biophysical profile similar
to that of TRPV4 channel [45]. In TRPV4−/− mice, hepatic
sensory neurons do not exhibit osmosensitive inward cur-
rents and activation of peripheral osmoreceptors is abolished
[45]. The important osmosensitive role of peripherally
expressed TRPV4 is further underscored by the observation
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that patients with liver transplants, which are, presumably,
denervated, have a significantly higher baseline blood os-
molality compared to a healthy control cohort [45]. Interest-
ingly, genetic ablation of TRPV4 also significantly
attenuates sensitization of nociceptive nerve fibers to me-
chanical and hypotonic stimuli induced by inflammatory
mediators [9]. Endothelial cells in TRPV4 knockouts show
a decreased response to hypotonic solutions as well [106].
Since the existing evidence arguing for the involvement of
renal TRPV4 in systemic osmoregulation is scanty, future
studies testing this highly probable mechanism are granted.

Extensive studies provide insights into the mechanisms
underlying regulation of TRPV4 activity by hypoosmolality.
The accrued evidence suggests that hypotonicity does not
directly result in channel opening, but rather leads to stim-
ulation of intracellular signaling cascades to activate TRPV4
[69, 86, 107, 111, 117]. Production of arachidonic acid
metabolites—epoxyeicosatrienoids, through phospholipase
A2 (PLA2)–cytochrome P450 epoxygenase (CYP450) path-
way, appears to be a dominant mechanism inducing hypo-
tonic activation of the channel [107]. Consistently,
activation of TRPV4 by osmotic cell swelling is virtually
abolished by four structurally unrelated PLA2 inhibitors
[107]. CYP450 blockers also strongly diminish [Ca2+]i ele-
vations induced by hypotonicity [107]. Yet, other studies
indicate that phosphorylation by Src-family tyrosine kinase
could also be involved in TRPV4-mediated response to
anisotonic stress [112, 119]. N-terminal proline-rich domain
of TRPV4 interacts with PACSIN3 protein, which strongly
inhibits the basal activity of the channel and its activation by
cell swelling [15, 18]. The interaction with PACSIN3 affects
both the expression of the channel on the plasma membrane
and its gating properties [15, 18, 22]. TRPV4 sensitivity to
hypotonicity is greatly augmented at physiological temper-
ature (+37 °C) [27, 107]. However, robust [Ca2+]i elevations
in response to hypotonic solution were also observed at
room temperature [53, 84, 107]. Intact intracellular environ-
ment and cytoskeleton structure appear to be important
prerequisites for TRPV4-mediated responses to reduced
osmolarity [4, 25, 87, 109]. Nevertheless, despite this vig-
orous effort, comprehensive understanding of TRPV4 regu-
lation by hypotonicity is just beginning to emerge.

TRPV4 as a sensor of tubular fluid flow

Another focus in the field of TRPV4 functioning in the
kidney is sensitivity of the channel to the tubular fluid flow.
Renal tubule and particularly distal nephron is subjected to a
highly variable flow of the protourine. The variations can be
induced acutely by altered glomerular filtration rate [39, 46,
122], tubuloglomerular feedback [37], renal pelvic peristal-
sis [21], or use of diuretics; and chronically during diabetes

[71], hypertensive states [3, 19], and upon variations of
dietary sodium [59], potassium [8], and protein intake
[78]. Luminal fluid mechanics affects the cells of the tubular
lining exerting shear stress, transmural pressure, and stretch.
Extensive support from the literature suggests that [Ca2+]i
elevations mediate cellular responses to mechanical stimuli
in the distal nephron [28, 51–53, 61, 72, 73, 116]. Indeed,
the distal nephron is a well-recognized flow-sensitive tissue,
where luminal flow is regarded as an important determinant
of vectorial electrolyte transport [52, 58, 60, 77, 116].
Again, taking into consideration predominantly distal neph-
ron TRPV4 expression, this strongly favors the idea that
TRPV4 can participate in flow sensing.

Virtually all aspects of electrolyte transport, including K+

secretion [60, 77], Na+ reabsorption [58] and, importantly,
Ca2+ influx [52, 116] were shown to be flow sensitive both
in native collecting duct and cultured cells. A subsequent
study demonstrated that luminal, but not basolateral, appli-
cation of a TRPV4 agonist—4α-PDD—significantly enhan-
ces flow-dependent Na+ reabsorption and K+ secretion in
perfused murine collecting ducts [91]. The effects of flow
and 4α-PDD were abolished in TRPV4−/− mice. Interest-
ingly, enhanced urinary K+ excretion was diminished in
TRPV4 knockouts following intravenous injection of a loop
diuretic—furosemide [91]. Furthermore, Ca2+ influx
through TRPV4 was shown to be a critical component of
purinergic response in aldosterone-sensitive distal nephron
[53]. Since ATP release from distal nephron cells is known
to be stimulated by mechanical stress [79, 81], purinergic
signaling serves as an important facilitator of TRPV4-
mediated [Ca2+]i elevations in response to flow. The most
compelling evidence for a flow-sensitive nature of TRPV4
was provided by our group using ratiometric Fura 2 Ca2+

imaging in individual cells of split-opened distal nephrons.
We showed that elevated fluid flow induced a rapid and
sustained influx of Ca2+ in both collecting duct and con-
necting tubule cells [6]. Principal cells exhibited larger
responses to flow when compared to intercalated cells. This
is consistent with higher levels of TRPV4 expression in the
former cell type [6]. Elevations of [Ca2+]i were abolished by
the TRP channel inhibitor—ruthenium red, or in tubules
isolated from TRPV4-deficient animals [6]. These data are
in full agreement with our previous studies, demonstrating
that heterologously (in HEK293 and CHO cells) and endog-
enously (in M-1 CCD cells) expressed TRPV4 is activated
by increased flow [27, 117]. Transfection of M-1 CCD and
TRPV4-expressing HEK cells with siRNA specific to TRPV4
leads to a loss of flow-induced Ca2+ influx [117]. Consistently,
shear stress produced by increased viscous load activates
TRPV4 in hamster oviductal ciliary cells, which natively
express the channel, and TRPV4-transfected HeLa cells [2].
Endogenously expressed TRPV4 also exhibits sensitivity to
flow in carotid artery endothelial cells [40, 54]. Therefore, an
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emerging body of evidence demonstrates that TRPV4
functions as a sensor/transducer of flow-induced me-
chanical stimuli in collecting duct and, likely, in other
epithelia.

Little is known about the mechanisms underlying TRPV4
activation by flow/shear stress. Slow onset rate of TRPV4
responses to flow [6, 20, 117] may indicate indirect stimu-
lation. However, direct activation of the channel by flow is
not completely ruled out. Similarly to hypotonic stress, flow
activation of TRPV4 in ciliated oviductal cells and cerebral
arteries also seems to involve PLA2-dependent pathway [2,
54]. Increased temperature is a potent enhancer of TRPV4-
mediated response to flow [117], though flow-induced Ca2+

influx via TRPV4 was repeatedly demonstrated at room
temperature [6, 20, 40, 54]. In addition, channel gating is
modulated by tyrosine phosphorylation [112, 119], protein
kinase C [27], external and internal Ca2+ concentrations [85,
86, 105, 110], and PLC activity [23, 53]. However, these
signaling cascades likely sensitize TRPV4 to mechanical
stimuli rather than directly activate the channel.

TRPV4 association with polycystin-2

Recent studies suggest that mechanosensitive nature of
[Ca2+]i elevations in distal nephron cells could be even more
complex since TRPV4 is likely a part of a larger flow-
sensing apparatus. Specifically, it was shown that TRPV4
forms a mechanosensitive complex with another TRP fam-
ily member—polycystin-2 (TRPP1 according to the current
IUPHAR nomenclature, also widely referred to as TRPP2 or
PKD2) [20, 41, 82]. The complex has a putative 2:2 stoi-
chiometry and an alternating subunit arrangement [82]. The
data demonstrate that flow-induced Ca2+ entry into cultured
collecting duct cells is mediated by heteromeric TRPV4-
TRPP2 channels localized to the primary cilium [20, 41].
This multifunctional apical structure is thought to work as a
sensory cellular antenna in the tubular lumen, reporting
velocity of the tubular flow [17, 74, 75]. The expression of
dominant negative constructs for TRPV4 and TRPP2 each
abolished flow-induced Ca2+ influx in M-1 CCD cells [20].
This argues that both proteins are equally important to
maintain mechanosensitive responses in collecting duct re-
nal epithelium. Interestingly, only transient [Ca2+]i
responses to flow are observed in HEK293 cells heterolo-
gously expressing TRPV4 construct alone [20]. However,
simultaneous expression of TRPV4 and TRPP2 results in a
sustained flow-induced Ca2+ influx [20], similar to that
observed by our group in native tissue [6]. This supports
the concept that TRPV4 serves as a valuable component of
mechanosensitive complex on the primary cilium of renal
epithelium. Interestingly, TRPV4 was also shown to be
coexpressed with polycystin-2 and localized to an analogous

ciliary structure in murine oviduct lining cells [92] and
cholangiocytes [31].

TRPV4 in polycystic kidney disease

Polycystin-2 gained its mere scientific renown as a Ca2+-
permeable channel and a crucial part of the polycystin
mechanosensitive complex, localized to the primary cilium
of renal epithelial cells [61]. Defects in polycystin-2 or its
partnering protein polycystin-1 result in the development of
autosomal dominant polycystic kidney disease (ADPKD)
[33, 97]. With the frequency of 1:400–1,000, ADPKD is
the most common in the family polycystic kidney diseases
(PKD) [33, 89, 97]. PKD are characterized by formation of
numerous fluid-filled cysts within the kidney [33, 89, 96,
114]. Expanding cysts invade the adjacent parenchyma,
causing decline of the kidney function, eventually progress-
ing to the end-stage renal disease (ESRD) [33, 89]. Typical-
ly diagnosed in adults, ADPKD accounts for 5–9 % of the
individuals with ESRD requiring dialysis or kidney trans-
plantation. In approximately 85 % of cases, ADPKD is
caused by mutations in PKD1 gene encoding a large
receptor-like protein—polycystin-1. The remaining 15 %
of ADPKD patients have mutations in PKD2 gene, encod-
ing polycystin-2 [33, 89, 97]. Polycystins were reported
to interact at their carboxyl termini to form a hetero-
multimeric Ca2+-permeable mechanosensitive complex
[32, 100, 101]. Perhaps, defects in either of the proteins
preclude the binding of polycystins or render the complex
inactive.

Another form of PKD closely related to mechanosensitive
properties of renal epithelium is autosomal recessive PKD
(ARPKD). It has the estimated incidence of 1:20,000 and
causes morbidity and mortality in utero and neonates [33,
89]. The genetic basis of the disease lies in the mutations of
PKHD1 gene, encoding a multidomain integral protein—
fibrocystin (or polyductin) [33, 89, 123]. The function of
fibrocystin merits further investigation. However, several
observations suggest that the protein normally interacts with
polycystin-2 as a part of the polycystin multiprotein complex,
regulating [Ca2+]i response to external stimuli [31, 61, 108],
and mutations in the PKHD1 gene prevent these interactions.
Based on the initial studies, polycystin-1 is suggested to be a
primary mechanosensor, which triggers a Ca2+ influx through
polycystin-2 in response to elevated flow, while fibrocystin
serves as a regulator of the mechanosensitive polycystin com-
plex [31, 61, 108]. Nevertheless, the exact role of both poly-
cystins and fibrocystin in the regulation of [Ca2+]i levels
remains to be determined.

Despite different genetic mutations that underlie the two
forms of PKD, cystic epithelia share common phenotypic
abnormalities. During the disease onset and progression,
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renal cysts are predominantly (in ADPKD patients) [98, 103]
or exclusively (individuals with ARPKD) [104, 123] derived
from the collecting duct. At the cellular level, PKD progres-
sion is associated with transformation of well-differentiated
slowly proliferating reabsorptive epithelia to partially dedif-
ferentiated secretory epithelia with polarization defects and
high rates of proliferation and apoptosis [89]. Experimental
evidence suggests that enhanced proliferation observed during
PKD is related to the inability to sense mechanical stimuli and
decreased basal [Ca2+]i levels [26, 33, 61, 62, 120, 121]. This
is consistent with the function of polycystin/fibrocystin com-
plex as a regulator of [Ca2+]i in response to environmental
stimuli and its suggested role in maintaining the differentiated
state of the renal epithelia. However, it is unclear whether the
polycystins serve as a route for Ca2+ influx per se or they
trigger other mechanisms to elevate [Ca2+]i. Interestingly, a
recent study suggests that polycystin-2 fails to respond to
mechanical stimuli on its own and acquires mechanosensitive
properties only after heteromerization with TRPV4 [20, 41].
Coimmunoprecipitation and double-immunostaining studies
demonstrate physical interaction and colocalization of
polycystin-2 and TRPV4 in the primary cilium [20, 41],
whereas Ca2+ imaging in MDCK and M-1 CCD cells shows
that TRPV4 and TRPP2 form a functional complex, which is

crucial for flow sensation [20, 41]. This disputes the exclusive
role of polycystin complex as a mechanosensor in CD and is
consistent with cumulative evidence increasingly appreciating
TRPV4 involvement in mechanosensitivity and maintenance
of [Ca2+]i homeostasis in CD epithelium. Interestingly,
ADPKD patients have significant defects in osmoregulation,
affecting the release of vasopressin in response to increased
plasma osmolality upon water deprivation [7, 35]. This phe-
notype is similar to that observed in TRPV4−/− mice showing
a lower increase in circulating vasopressin upon hypertonic
stress and being more hyperosmolar than wild-type littermates
[48]. Finally, recent finding points to TRPV4 involvement in
PKD progression, demonstrating that systemic stimulation of
TRPV4 with a highly selective agonist—GSK1016790A—
significantly inhibits cell proliferation in the liver and
decreases renal cystic area and kidney-to-body weight ratio
pointing to a possible clinical implication of TRPV4 targeting
in PKD treatment [31]. It appears that the relationship between
mechanosensitivity and PKD progression is not as straightfor-
ward, as it was originally thought. Indeed, TRPV4-deficient
zebrafish and mice lack flow-induced [Ca2+]i response, but do
not develop cysts [41]. Therefore, future studies are necessary
to determine the extent of TRPV4 involvement in PKD
progression.

Fig. 1 Proposed scheme, illustrating the involvement of TRPV4 in
mechanosensitivity in the distal nephron cells. PLA2 phospholipase A2,
AA arachidonic acid, CYP450 cytochrome P450 epoxygenase, EETs
epoxyeicosatrienoic acids, PC-1 polycystin-1, PKC protein kinase C,
PLC phospholipase C, P2Y2R P2Y2 receptor, Cx30 connexin 30 hemi-
channel. The blue octagon represents the proline-rich domain. In the
kidney, TRPV4 forms a heteromeric channel with polycystin-2
(TRPP2), which is a part of a larger mechanosensitive complex also
involving of PC-1. Mechanical stress stimulates PLA2–CYP450

pathway, which metabolizes AA to EETs. EETs activate TRPV4 chan-
nel to elicit Ca2+ influx in response to hypotonicity or elevated flow.
This activation can be prevented by interaction of TRPV4 N-terminal
proline-rich domain with PACSIN3 protein. On the other hand, me-
chanical stimuli induce ATP release from distal nephron cells through
Cx30 hemichannels. Locally released ATP binds to purinergic P2Y2
receptors on the apical membrane of renal epithelium. This leads to Gq/

11-dependent activation of PLC and, likely, PKC and further augment-
ing TRPV4 activity
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Concluding remarks

During the last decade, our understanding of the role that
TRPV4 plays in the kidney has greatly advanced. Multiple
studies identified the distal part of the renal nephron as a
primary segment expressing TRPV4. A combination of new
approaches in knockout and transgenic animals with numer-
ous techniques probing TRPV4 expression, subcellular lo-
calization, and function revealed that TRPV4 is paramount
for sensitivity of distal nephron epithelium to decreased
osmolarity and flow-induced shear stress. Substantial evi-
dence argues that the channel is involved in local regulation
of transmural ion transport in the distal nephron by flow and
hypotonicity. Recent studies revise the current scientific
paradigm and shift it towards the idea that TRPV4 is a vital
part of a larger multimolecular mechanosensitive complex,
which requires orchestrated interaction of multiple compo-
nents to maintain a proper mechanosensitive response.
Figure 1 summarizes the evidence supporting this idea. It
includes but, perhaps, is not limited to modulation of TRPV4
sensitivity to hypoosmolarity by epoxyeicosatrienoic acids or
PACSIN3 protein and reciprocal activation of TRPV4 by
purinergic cascade. Finally, heteromerization of TRPV4 with
other proteins akin to polycystin-2 leads to formation of new
complexes with a unique set of features. This opens another
exciting chapter in the field of renal mechanosensitive signal-
ing. It appears that until now, the physiological role of TRPV4
in the kidney was underappreciated as polycystin complex
and, specifically, polycystin-2 was considered to be a major
Ca2+-permeable channel, implicated in mechanosensation.
While direct experimental evidence demonstrating
polycystin-2 mechanosensitive properties is scanty, a mount-
ing body of evidence clearly demonstrates that TRPV4 is
pivotal to mechanosensitivity of CD cells and maintenance
of [Ca2+]i balance under normal physiological conditions.
Moreover, stimulation of the channel in the animals with
ARPKD drastically attenuates renal manifestations of this
devastating disease. Beneficial actions of TRPV4 activation
on disease progression make the channel an attractive phar-
macological target for development of effective therapeutic
approaches in PKD treatment.
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