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Abstract The renin–angiotensin system (RAS) has recently
been extended by the addition of a novel axis consisting of
the angiotensin-converting enzyme 2 (ACE2), the heptapep-
tide angiotensin (1–7) (Ang-(1–7)), and the G protein-coupled
receptor Mas. ACE2 converts the vasoconstrictive and pro-
oxidative peptide angiotensin II (Ang II) into Ang-(1–7)
which exerts vasodilatory and antioxidative effects via its
receptor Mas. Thereby, ACE2 regulates the local actions of
the RAS in cardiovascular tissues and the ACE2/Ang-(1–7)/
Mas axis exerts protective actions in hypertension, diabetes,
and other cardiovascular disorders. Consequently, this novel
RAS axis represents a promising therapeutic target for cardio-
vascular and metabolic diseases.

Introduction

Angiotensin-(1–7) [Ang-(1–7)] was discovered 1988 as a
product of angiotensin I (Ang I) degradation by enzymes
from the brainstem [69]. Angiotensin-converting enzyme
(ACE), which classically generates Ang II from Ang I,
was shown to degrade Ang-(1–7) into inactive peptides, in
particular Ang-(1–5) [86] (Fig. 1). Ang-(1–7) binds and
activates the Ang II AT1 receptor only at supraphysiological
concentrations, and an interaction with the AT2 receptor has
been shown but is still controversial [46, 90]. Thus, this
heptapeptide represented the first molecule of a novel axis

of the renin–angiotensin system (RAS). However, before the
ACE homologue ACE2 and Mas as receptor were described,
it was not clear how the peptide was generated and by which
pathways it signals, not to speak about its physiological func-
tions. This review tries to give a timely appraisal of the large
body of evidence suggesting that the new RAS axis, ACE2/
Ang-(1–7)/Mas, is important for cardiovascular physiology
and beyond.

Ang-(1–7)-generating enzymes

Ang-(1–7) can be generated from Ang I or II. Neprilysin (also
known as neutral endopeptidase 24.11), thimet oligopepti-
dase, or prolylendopeptidase release the last three amino acids
fromAng I [93] and ACE2 [16, 84] or prolylcarboxypeptidase
(PRCP) [78] remove the C-terminal phenylalanine from Ang
II, all liberating the heptapeptide (Fig. 1). ACE2 can also first
generate Ang-(1–9) from Ang I followed by the action of
ACE which releases the last two amino acids. It has to be
noted that all these enzymes are not specific for the angioten-
sin peptides. For example, ACE2 also metabolizes kinins,
apelins, and neurotensin [88], and PRCP degrades kinins,
alpha melanocyte-stimulating hormone [89] and activates
plasma prekallikrein [102]. Furthermore, ACE2 and its homo-
logue collectrin are involved in amino acid transport in the
kidney and gut and have, thus, additional functions beyond
proteolysis [43]. Importantly, ACE2 and PRCP (also called
angiotensinase C) not only generate Ang-(1–7) but at the same
time degrade the potent effector peptide of the RAS, Ang II.
Therefore, any alteration in expression or activity of these
enzymes switches the net effect of the RAS between the two
sides of the coin, leave alone their other functions. The relative
contribution of the different Ang-(1–7)-generating enzymes
may vary from tissue to tissue [18, 86]. Nevertheless, in the
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brain and kidney, Ang-(1–7)may even be the major product of
angiotensin metabolism [18, 86].

In the following chapters, I will reduce the enzymes
generating Ang-(1–7) to ACE2, since most studies have
been done with this protein, but it is by no mean excluded
that other enzymes, in particular PRCP, may be even more
important in certain tissues or situations. A major problem
to distinguish the enzymes and their functional relevance is
the lack of specific inhibitors.

Mas

In 2003, Santos et al. finally solved two problems, by
describing the long-sought receptor for Ang-(1–7) and
deorphanizing Mas [74]. Before this discovery of Mas as
Ang-(1–7) receptor, it had been shown to be a receptor for
Ang II [41], but this was soon unveiled to be an artifact of
the frog oocytes used. Probably the known interactions
between Mas and the AT1 receptor [9, 42, 73] had changed
the response of the oocytes to Ang II when Mas was
expressed [2]. Originally, Mas had been discovered as
proto-oncogene, but also the transforming activity could
later not be confirmed and may have been due to a unique
genetic rearrangement in the transformed cells which may
have affected the imprinting of the neighboring genes [1,
53]. Alternatively, these cells may have dramatically over-
expressed Mas and then its described ligand-independent
activity may have transformed them [99]. However, this
issue has never been totally solved. Interestingly, Mas ago-
nism is now even discussed as antitumor strategy [29].

Mas is predominantly expressed in brain and testis, but
was also detected in the kidney, heart, and vessels [56]. Mas

belongs to the family of G protein-coupled receptors with
seven transmembrane domains; however, its G protein cou-
pling is still debated. At high concentrations in cells using
synthetic agonists and antagonists, a coupling to Gq proteins
has been described [99]. However, Ang-(1–7) does not elicit
such a response. At more physiological receptor concentra-
tions and with Ang-(1–7) as ligand, Mas induces arachi-
donic acid release from cells and intracellular Akt
phosphorylation [67, 74]. A recent phosphoproteomic study
identified several signaling pathways induced by Ang-(1–7)
in human endothelial cells again including Akt [87].
However, the complete signaling pathways employed by
Mas still await clarification. It is even not clear whether
Ang-(1–7) has more receptors or whether Mas binds
other natural ligands.

ACE2/Ang-(1–7)/Mas in vessels

Ang-(1–7) has been reported to be vasodilatory [47, 63],
antithrombotic [27, 44], and antiproliferative [45, 79]. Most
of these actions are mediated by changes in the redox
balance in the vascular wall initiated by Ang-(1–7) via
Mas [96]. Ang-(1–7) triggers NO release by Akt phosphor-
ylation inducing the activation of endothelial NO synthase
and inhibits Ang II-induced reactive oxygen species (ROS)
production in endothelial cells [66, 67]. Accordingly, ves-
sels of Mas-deficient mice produce more ROS and less NO
leading to an impaired in vivo endothelial function and
increased blood pressure [62, 96]. In the opposite, an im-
proved endothelial function was observed in stroke-prone
spontaneously hypertensive rats (SHRSP) expressing a hu-
man ACE2 transgene in vascular smooth muscle cells [64].

Angiotensin-(1-9)

AT1 receptor AT2 receptor Mas

Renin

ACE2

ACE

Angiotensinogen

Angiotensin I

Angiotensin II Angiotensin-(1-7)

ACE

ACE2, PRCP
Angiotensin-(1-5)

ACE

NEP, PEP

Fig. 1 Metabolic pathways of angiotensin peptides. Angiotensin pep-
tides are metabolized by several subsequent enzymatic steps: First,
renin cleaves angiotensinogen, into angiotensin I (Ang I). Ang I can
be metabolized by angiotensin-converting enzyme (ACE) resulting in
the production of the bioactive octapeptide angiotensin II (Ang II),

which interacts with AT1 and AT2 receptors. Alternatively, it can be
processed first by ACE2 to the inactive peptide Ang-(1–9) and then by
ACE to Ang-(1–7) or by neutral endopeptidase 24.11 (NEP) or proly-
lendopeptidase (PEP) directly to Ang-(1–7). Ang-(1–7) can also be
generated by ACE2 from Ang II and interacts with its receptor Mas
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Increased Ang-(1–7) generation in the vascular wall appears
to be the main mediator of this effect since also an improved
endothelial function in the renal artery could be elicited in
diabetic SHR by chronic treatment with Ang-(1–7) again by
the reduction of oxidative stress [5].

Furthermore, activation of bradykinin signaling [49, 60]
and attenuation of Ang II actions have been implicated in
the vasculoprotective actions of Ang-(1–7). The known
interactions between Mas and the AT1 receptor may have
contributed to the latter effects [9, 42, 73].

In atherosclerosis, the ACE2/Ang-(1–7)/Mas axis was also
shown to be protective. The genetic ablation of ACE2 signif-
icantly increases [81, 83], and transgenic vascular ACE2 over-
expression decreases [51, 100] plaque formation in
atherosclerotic apolipoprotein E or LDL receptor-deficient
mice. In one study, the transfer of ACE2-deficient bone mar-
row into LDL receptor-deficient mice was already sufficient to
aggravate plaque formation indicating that the enzyme on
leukocytes is particularly beneficial in the atherosclerotic pro-
cess [82]. Moreover, long-term Ang-(1–7) treatment induces
protective effects in such animals [80]. In these cases again, an
improvement of the redox balance by Ang-(1–7) has been
reported to be pivotal for the anti-atherogenic effect.

ACE2/Ang-(1–7)/Mas in kidney

ACE2 and Mas are expressed in the kidney. ACE2 was found
in endothelial cells of vessels, but the mesangium and glomer-
ular endothelium were negative for ACE2. However, ACE2 is
most highly expressed in the brush border of proximal tubular
cells, while epithelial cells from other parts of the nephron
showed weak cytoplasmic staining [36]. Mas is localized to
the proximal and distal tubules, but also found in the glomer-
ulus [11]. The majority of studies describe ACE2, Ang-(1–7),
andMas as protective factors in different kidney diseases [22]:
Ang II-induced kidney damage and diabetic nephropathy are
aggravated in ACE2-deficient mice, and the Ang II effects are
ameliorated by recombinant ACE2 in wild-type animals [94,
101]. Ang-(1–7) infusion reverts diabetic renal damage in
mice and rats [5, 33, 57], and Mas agonists protect the kidney
from ischemia/reperfusion damage [3]. The mechanism
involved in most of these cases seems to be a reduction
in oxidative stress and reduced fibrosis by the compo-
nents of the ACE2/Ang-(1–7)/Mas axis. Accordingly,
Mas-deficient mice develop a spontaneous nephropathy with
microalbuminuria [61]. Nevertheless, there have also been
reports about aggravation of renal damage by Ang-(1–7) and
Mas [7, 19]. The reasons for this discrepancy are not yet
clarified.

Ang-(1–7) has also been shown to be involved in the
normal function of the kidney by influencing sodium reab-
sorption. The effects of the peptide seem to be biphasic with

an antidiuretic action at low concentration and diuretic
effects at high levels [22, 30].

ACE2/Ang-(1–7)/Mas in heart

In the heart, ACE2 is mainly localized to the vascular endo-
thelium and smooth muscle but was also detected in
cardiomyocytes [8], and Mas was mainly described on cardi-
omyocytes [70]. Mice deficient for Mas and ACE2 show a
reduced cardiac contractile function aggravating with age [10,
70]. Infusion of Ang-(1–7) rescues this phenotype in mice
lacking ACE2 indicating that the loss of this peptide is an
important component of the pathophysiology [59]. Diabetic
cardiomyopathy is also exacerbated in the absence of ACE2,
again based on increased oxidative stress [58]. In the opposite,
local overexpression of ACE2 in the heart by lentiviral gene
transfer elicited cardioprotective actions in several disease
models [13, 15, 37]. A cardioprotective role of Ang-(1–7)
was also observed in cardiac damage models, such as isopro-
terenol or Ang II-induced hypertrophy or ischemia/reperfu-
sion injury, when the peptide was either infused or
overexpressed from transgenes [4, 24, 35, 55, 72]. Besides
NO-releasing, antioxidative, NO-increasing, and direct anti-
hypertrophic effects on cardiomyocytes, the main actions of
Ang-(1–7) in the heart seem to be the regulation of genes
involved in fibrosis in cardiac fibroblasts via Mas [14, 31, 34,
40, 58, 59]. Accordingly, Mas agonists attenuate heart failure
after myocardial infarction [50, 54].

ACE2/Ang-(1–7)/Mas in lung

ACE2 was found in type I and type II alveolar epithelial cells
of normal lungs [36]. However, the cellular localization ofMas
in the lung is not yet reported [85]. ACE2-deficient mice are
more prone to lung injury in several disease models [38, 39],
and recombinant ACE2 ameliorates the symptoms in the
bleomycin-induced lung injury model [65]. Since also a lenti-
virally delivered Ang-(1–7) release construct has the same
effect, the generation of this peptide by ACE2 seems to be of
major importance [77] and not only the degradation of Ang II.

ACE2/Ang-(1–7)/Mas in brain

All components of the ACE2/Ang-(1–7)/Mas axis are
expressed in the brain [56, 95, 97]. For Mas, the brain is even
the organ with the highest expression, in particular in the
hippocampus and the piriform cortex [56]. Therefore, it came
to no surprise that Mas affects behavior and electrophysiology
of the hippocampus [48, 91, 92]. Concerning cardiovascular
actions, Ang-(1–7) and Mas have been shown to enhance
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baroreflex sensitivity and influence blood pressure in different
directions depending on the brain area studied [12, 25, 95].
Local overexpression of ACE2 by viral transfection in the
medulla of SHRSP resulted in a decrease in blood pressure
[98]. When the same technology was applied in the subforn-
ical organ of mice, a significant reduction in the pressor effect
of infused Ang II was observed [21]. Local administration of
Ang-(1–7) did not have the same effect, indicating that in this
case, the degradation of Ang II may be a major action of
ACE2. Accordingly, also transgenic mice in which ACE2
was targeted to the brain were protected from Ang II-
induced neurogenic hypertension [20].

ACE2/Ang-(1–7)/Mas in metabolism

The role of Ang-(1–7) and Mas in metabolic regulation has
become increasingly clear in recent years. We have demon-
strated that Mas deficiency in mice induces a metabolic
syndrome-like state, with dyslipidemia, lower glucose toler-
ance and insulin sensitivity, hyperinsulinemia, decreased
glucose uptake in white adipose cells, and an increase in
adipose tissue mass [71]. In accordance, chronically in-
creased Ang-(1–7) levels in transgenic rats reduce the
amount of fat tissue and plasma lipid levels and enhance
glucose tolerance and insulin sensitivity [68]. Insulin sensi-
tivity is increased by an enhancing effect on its intracellular
signaling by Ang-(1–7) leading to an increased Akt phos-
phorylation and GLUT4 translocation to the plasma mem-
brane in different tissues [32, 33]. ACE2 is also involved in
the regulation of insulin secretion in the pancreas [6]. Taken
together, these observations provide strong evidence that the
components of the ACE2/Ang-(1–7)/Mas axis have an im-
portant role in metabolic regulation.

Therapeutic perspectives of the ACE2/Ang-(1–7)/Mas axis

Based on the mainly protective actions of the ACE2/Ang-
(1–7)/Mas axis described in this review, first attempts are
under way to exploit the novel branch of the RAS for
therapeutic purposes [23]. At present, recombinant human
ACE2 is clinically tested for the treatment of lung and heart
diseases. Moreover, ACE2 activating substances have been
discovered and may also be used for pharmacological appli-
cations in the near future [26]. The third group of substances
interfering with the ACE2/Ang-(1–7)/Mas axis are Mas
agonists. These include just the peptide Ang-(1–7) itself in
oral formulations [52], chemically slightly changed versions
including cyclic peptides [17], or peptides with different
sequences [76]. Most of these substances have already
shown beneficial effects in animal models of lung diseases,
hypertension, and diabetes [26, 28, 54, 75]. However, the

first clinical trials are still under way and will finally clarify
whether the other side of the RAS coin can be a successful
therapeutic target.
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