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Abstract Glutamate excitotoxicity is a hypothesis that
states excessive glutamate causes neuronal dysfunction
and degeneration. As glutamate is a major excitatory
neurotransmitter in the central nervous system (CNS), the
implications of glutamate excitotoxicity are many and far-
reaching. Acute CNS insults such as ischaemia and
traumatic brain injury have traditionally been the focus of
excitotoxicity research. However, glutamate excitotoxicity
has also been linked to chronic neurodegenerative disorders
such as amyotrophic lateral sclerosis, multiple sclerosis,
Parkinson’s disease and others. Despite the continued
research into the mechanisms of excitotoxicity, there are
currently no pharmacological interventions capable of
providing significant neuroprotection in the clinical setting
of brain ischaemia or injury. This review addresses the
current state of excitotoxic research, focusing on the
structure and physiology of glutamate receptors; molecular
mechanisms underlying excitotoxic cell death pathways and
their interactions with each other; the evidence for
glutamate excitotoxicity in acute neurologic diseases;
laboratory and clinical attempts at modulating excitotox-
icity; and emerging targets for excitotoxicity research.
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Overview

Glutamate excitotoxicity is a hypothesis that states exces-
sive glutamate causes neuronal dysfunction and degenera-
tion. As glutamate is a major excitatory neurotransmitter in
the central nervous system (CNS), the implications of
glutamate excitotoxicity are many and far-reaching. Acute
CNS insults such as ischaemia and traumatic brain injury
have traditionally been the focus of excitotoxicity research.
However, glutamate excitotoxicity has also been linked to
chronic neurodegenerative disorders including amyotrophic
lateral sclerosis (ALS), multiple sclerosis, Parkinson’s
disease, and others. The focus of this review, however, will
be the mechanisms of excitotoxicity, the role of excitotox-
icity in acute CNS insults and developing areas of
excitotoxic research.

The mechanisms underlying glutamate excitotoxicity are
complex. However, especially in the acute pathologies,
glutamate excitotoxicity is not thought to be the result of a
genetic mutation or structural deficit in the channel. Unlike
most of the other topics in this chapter, glutamate
excitotoxicity is not considered a channelopathy. Instead,
glutamate excitotoxicity can be thought of as a normal
physiological response to a CNS insult.

Historical context

The toxic effects of glutamate was first observed by Lucas
and Newhouse [123] who described degeneration of the
inner layers of the retina following subcutaneous injections
of glutamate in infant mice. Olney [153] later coined the
term “glutamate excitotoxicity” in a landmark paper
describing intracranial brain lesions in response to subcu-
taneous injections of glutamate in infant and adult mice.

A. Lau :M. Tymianski (*)
Division of Applied and Interventional Research,
Toronto Western Research Institute,
399 Bathurst Street,
Toronto, ON, Canada M5T 2S8
e-mail: mike_t@uhnres.utoronto.ca

Pflugers Arch - Eur J Physiol (2010) 460:525–542
DOI 10.1007/s00424-010-0809-1



Olney and Sharpe [154] were able to repeat these findings
in a primate model shortly thereafter, albeit requiring higher
doses of glutamate. In these studies, it was also noted that
the hypothalamus and periventricular areas of the brain
were particularly sensitive to systemic glutamate. A similar
neuroanatomical pattern of degeneration was observed
following cerebral anoxia [100], which led some to believe
that glutamate excitotoxicity may play a role in ischaemic
neuronal death. Supporting evidence was provided by
Rothman [172] who demonstrated reduced susceptibility
to anoxic insult in hippocampal cell cultures using gamma-
D-glutamyglycine, a non-specific postsynaptic excitatory
amino acid (EAA) inhibitor. Glutamate excitotoxicity has
since been inextricably linked to ischaemic CNS injury and
other CNS pathologies thought to have similar mechanisms,
such as secondary injury following traumatic brain injury.
Chronic over-excitation of neurons elicited by glutamate is
newer concept, but has linked glutamate excitoxicity to
neurodegenerative processes in ALS, Huntington’s disease,
Parkinson’s disease and Alzheimer’s dementia. Chronic
excitotoxicity is beyond the scope of this review, which will
focus primarily on the mechanisms underlying acute
excitotoxicity.

Glutamate receptors

NMDA receptor

Of the glutamate receptor types currently known, none have
received more attention than the N-methyl-D-aspartate
receptor (NMDAR). Named for its affinity for N-methyl-
D-aspartate, the NMDAR has been implicated in various
processes across the neurosciences, from learning and
memory to neurodegeneration. The NMDAR channel is
made up of a combination of three different subunits, NR1–
3. When activated, the NMDAR allows the influx of
cations, though most notably calcium. Excessive intracel-
lular calcium concentrations cause the activation of intra-
cellular pathways leading to both physiological (i.e.
learning and memory) and pathological processes (i.e.
excitotoxic injury). The NMDAR exhibits a complex gating
mechanism, requiring not only binding of various ligands
but also cellular depolarisation.

The traditional NMDAR is heterotetramer composed of
two NR1 subunits and two NR2 subunits. The NR1 subunit
is made up of ∼938 amino acids and has eight splice
variants. Together, two NR1 subunits form the ion channel
proper and exhibit all the classical properties attributed to
NMDARs, including glutamate activation, magnesium
block, zinc inactivation, glycine activation, interactions with
polyamines and pH sensitivity. In addition to glutamate
binding, Mayer et al. [131] showed that depolarisation of the

NMDAR-expressing neuron is necessary to electrostatically
remove a magnesium ion normally blocking current entry at
the level of the ion channel pore. Zinc can alternatively
inhibit the NMDAR-mediated currents elicited by gluta-
mate [130]. Physiologically, magnesium is removed by
the activation of other ionotropic glutamate channels
(AMPA and kainate, to be discussed later). Glycine was
shown by Johnson and Ascher [99] as a mandatory
cofactor with glutamate necessary for NMDAR channel
opening. The role of polyamines in NMDAR modulation
is less clear and may participate in both cell growth and
cell death. Spermine, a polyamine, can potentiate
NMDAR currents at low concentrations, but also reduce
currents in a voltage-dependent manner at higher concen-
trations [171]. Spermine has also been shown to increase
the frequency of channel opening and glycine affinity
whilst acting as a voltage-gated NMDAR channel blocker
when applied extracellularly [15]. To add to the complex-
ity of the polyamine/NMDAR interaction, many of these
effects are dependent on the subunit constituents of the
NMDAR channel [221]. As such, the physiological
significance of these interactions is still under investiga-
tion. Protons inhibit NMDAR current via a direct
interaction with the NR1 subunit on a single lysine residue
[208] which may be alleviated by spermidine and other
polyamines [168]. Physiologically, alterations in pH
common after acute neurological insults (such as stroke
and traumatic brain injuries) can modulate NMDAR
function, but also other acid-sensing ion channels (ASICs,
to be discussed later).

NR2 subunits have more of a regulatory and refining
role in NMDAR function. Currently, four NR2 subtypes
exist (NR2A–D), with NR2A widely distributed in the
brain, NR2B expressed primarily in the forebrain, NR2C
found predominantly in the cerebellum and NR2D
localised to the thalamus [29]. Within the NMDAR
complex, NR2 subunits modulate the characteristics of
the NR1 ion channel pore mentioned above, though
recently, NR2 subunits have been ascribed another role in
postsynaptic architecture. Specifically, NR2B subunits
have been shown to bind and link postsynaptic proteins,
creating specialised postsynaptic microenvironments
[177]. This close association is accomplished by postsyn-
aptic densities comprising scaffolding proteins which
allow the spatial approximation of intracellular enzymes
(e.g. neuronal nitric oxide synthase) with ionic second
messengers (e.g. Ca2+ influx from NMDARs). The
physiological effect of this spatial relation can be dramatic
and has been shown in animal studies to reduce histolog-
ical damage as well as neurological dysfunction after
stroke [2].

Recent studies have shown a third subunit associated
with the NMDA receptor gene family [33]. The NR3
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subunit is expressed in two isoforms: NR3A, which is
expressed throughout the CNS, and NR3B, which is
expressed primarily in motor neurons. Preliminary evidence
suggests that NR1/NR3A and NR1/NR3B complexes are
not activated by NMDA or glutamate, but rather elicit an
excitatory Ca2+-impermeant response via glycine.

AMPA/kainate receptors

The AMPA and kainate classes of glutamate receptors
belong to the same superfamily as the NMDARs and share
approximately 25% homology. AMPA receptors (AMPARs)
are made up of a combination of four subunits (GluR1–4)
and require only glutamate application for activation. The
specificity of cation influx of AMPARs is variable, however,
and is governed primarily by subunit composition. GluR1,
GluR3 and GluR4 all display strong inwardly rectifying
current–voltage and calcium permeability, whereas the
GluR2 subunit removes calcium permeability [30, 73, 88].
Physiologically, AMPARs are thought to regulate the fast
excitation required to remove the magnesium block of
nearby NMDARs.

Kainate receptors are made up of subunits from GluR5–
7 (also known as GluK5–7) and KA1–2 (also known as
GluK1–2). The properties of kainate channels are similar to
AMPARs in that they allow ion flux directly following
glutamate application, though they are mostly impermeant
to calcium ions. Although AMPARs are localised mostly in
the postsynaptic membrane, studies have shown that
kainate receptors may be localised in both the pre-
synapse [36] and post-synapse [32, 213]. Some studies
have shown that the application of kainate can stimulate
glutamate release [179], whereas others have shown that
kainate application inhibits presynaptic glutamate release
[68]. Postsynaptically, kainate channels serve a similar
purpose as AMPARs in alleviating magnesium block in
NMDARs.

Metabotropic glutamate receptors

Metabotropic glutamate receptors (mGluRs) are single-
peptide seven-transmembrane spanning proteins linked to
intracellular G-proteins. It was originally believed that all
metabotropic glutamate receptors used G-proteins as a
transduction molecule, though recent evidence suggests
that G-protein-independent signalling can occur [85].
Currently, eight different mGluRs (mGluR1–8) are known
and are classified into three groups (groups I, II and III)
based on sequence homology and their intracellular effects.

Group I metabotropic glutamate receptors include
mGluR1s and mGluR5s. Activation of group I mGluRs
are linked via G-proteins to the activation of phospholipase
C whose downstream effects include inositol triphosphate

production and subsequent intracellular calcium mobilisa-
tion [3, 9]. This group of mGluRs also modulates excitatory
postsynaptic potentials at hippocampal synapses via tyro-
sine kinases in a G-protein-independent fashion [85]. Group
II mGluRs include mGluR2s and mGluR3s. These mGluRs
cause a decrease in adenylyl cyclase signalling, resulting in
downstream inhibition of voltage-dependent calcium chan-
nels [34, 202]. These receptors are found at both the pre-
synapse and the post-synapse [152]. Since presynaptic
calcium is integral to neurotransmission, group II mGluRs
modulate neurotransmission via their action on voltage-
gated calcium channels. Group III mGluRs include
mGluR4s, mGluR6s, mGluR7s and mGluR8s. These
mGluRs have similar properties to the group II mGluRs
and are also associated with a decrease in adenylyl cyclase
signalling, resulting in downstream inhibition of voltage-
dependent calcium channels [202]. These mGluRs are also
found in both the presynaptic and postsynaptic terminals
[22], and similar to group II receptors, these mGluRs
modulate neurotransmission by functioning as autorecep-
tors and modulating calcium channel influxes.

With respect to excitotoxicity, the group I family of
mGluRs is associated with the post-synapse and appear to
potentiate NMDAR-mediated Ca2+ influx [26]. The remain-
ing metabotropic glutamate receptor heterodimers compris-
ing mGluR2,3 and mGluR4,6,7,8 subunits are linked to the
inhibition of cAMP formation. These receptors are primar-
ily found in the pre-synapse and reduce Ca2+ influx via
NMDARs [25].

The above evidence shows that alterations in the amino
acid sequences of glutamate receptor subunits could alter
calcium permeability or other properties which could lead
to worsening excitotoxicity. However, whilst there are
currently no known channelopathies attributable to gluta-
mate receptor mutations directly, some recent evidence has
suggested that mutations in postsynaptic proteins bound to
AMPARs may exert a channelopathy-like effect in epilepsy
[69]. Improved knowledge of the pharmacology and
distribution of glutamate receptors may also lead to the
development of improved receptor antagonists for the
treatment of neurologic disease. Finally, the linkage of
ionotropic receptors to intracellular enzymes may provide
alternative targets for pharmacological neuroprotection
following excitotoxic insults.

Mechanisms of excitotoxicity

Despite intense research into the mechanisms of excitotox-
icity, the actual intracellular mechanisms responsible for
neuronal death are still being elucidated. One major
obstacle is in the heterogeneity of neurodegeneration
following glutamate application. In neuronal cultures, both
apoptosis-like and necrosis-like cell death is seen depend-
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ing on the severity of NMDA insult [20]. In vivo, the
morphology of cell death may be dependent on the receptor
subunit composition of neurons [163]. This heterogenous
population of cell death is also apparent in whole animal
models of stroke [192] and traumatic brain injury [191].

At one end of the spectrum, neurons displaying necrotic
morphology are seen following intense glutamatergic insult
[20]. The mechanisms underlying neuronal necrosis are
similar to those governing other cell types and include
loss of cellular homeostasis with acute mitochondrial
dysfunction leading to massive energy failure. Milder
glutamatergic insults, however, have been shown to cause
cell death ascribed to various cell death pathways. Though
these cell death pathways include a gamut of molecular
players including cysteine proteases, mitochondrial endo-
nucleases, peroxynitrite, PARP-1 and GAPDH in excito-
toxic neurodegeneration, no single pathway has emerged
dominant.

Calcium: a key to excitotoxicity

Calcium influx was shown to be essential to glutamate
excitotoxicity in a paper by Choi [37]. In this study,
glutamate excitotoxicity in neuronal cultures was potentiat-
ed in a calcium-rich extracellular solution, whereas a
calcium-free extracellular solution markedly reduced neuro-
degeneration. Subsequent studies by Choi [38] proposed
that NMDARs may be primarily responsible for this
calcium entry, but it was Tymianski et al. [210] who
demonstrated that the path of calcium influx, and not the
calcium load, was important in the NMDAR-mediated
neurodegenerative process. Sattler et al. [176] later demon-
strated higher lethality with lower calcium influxes via
NMDARs compared to higher calcium influxes via other
calcium-permeant channels. Subsequent work by the same
group showed that NMDARs are spatially linked to
neuronal nitric oxide synthase (nNOS) which can produce
toxic levels of nitric oxide (NO) [177].

Other lines of evidence suggest that the majority of
intracellular calcium is sequestered into mitochondria in
glutamate excitotoxicity [205, 218]. In these studies, it was
demonstrated that the calcium-buffering capacity of neu-
rons was dramatically reduced using a mitochondrial
protonophore or removal of sodium from the extracellular
solution. These studies also suggested a low affinity, high
capacity sodium/calcium exchanger buffering calcium into
mitochondrial stores. In this scenario, calcium sequestration
can lead to metabolic acidosis and free radical generation
via mitochondrial toxicity.

The timing of calcium entry following glutamate
application was elucidated by Randall and Thayer [167]
who showed three phases of intracellular calcium concen-
tration changes in cultured hippocampal neurons: an initial

phase of increased intracellular calcium lasting 5–10 min, a
2-h latent phase with normal calcium concentrations and
finally a gradual sustained rise in intracellular calcium
associated with cell death. Taken together, increased
intracellular calcium causing cell death may involve several
mechanisms including activation of nitric oxide synthase,
calcium-sensitive proteases and mitochondrial damage.

Nitric oxide: intricately linked to NMDAR-mediated
calcium influx

One of the hallmarks of excitotoxic neurodegeneration is
the production of nitric oxide. Early work by Dawson et al.
[48] supported the role of NO in glutamate-mediated
neurodegeneration by preventing cell death in vitro with
nitric oxide synthase (NOS) inhibitors. In nNOS knockout
mice studies, NMDA-mediated excitotoxicity was marked-
ly reduced, demonstrating that nNOS is the NOS isoform
primarily responsible for excitotoxic neurodegeneration
[49]. NMDARs and nNOS were eventually connected by
a study by Sattler et al. [177] who determined that the
postsynaptic density protein of 95 kDa (PSD-95) provided
a structural link between nNOS and NMDARs. In these
experiments, it was shown that NMDARs are bound to
nNOS via a postsynaptic density protein of molecular
weight 95 kDa (PSD-95). PSD-95 binds to the C-terminus
of the NR2B subunit via a PDZ1 domain and the N-
terminus of nNOS via a PDZ2 domain. In this model, a
microenvironment is formed in the post-synapse whereby
Ca2+ entering the neuron preferentially activates nNOS via
calmodulin.

Once formed, NO has a number of intracellular targets
[193]. However, nitric oxide can also interact with the free
radical superoxide to form peroxynitrite, a potent oxidant
that can cause protein nitration, protein oxidation, lipid
peroxidation and direct DNA damage [164, 165] leading to
cell death. More recently, NO has been shown to be directly
neurotoxic through an interaction with GAPDH [83].

Free radicals: a mitochondrial contribution to excitotoxicity

The first indirect evidence for the role of free radicals in
glutamate excitotoxicity was provided by Dykens [56] who
showed that cerebellar neurons cultured in mannitol- or
superoxide dismutase-rich medium were resistant to
kainate-induced excitotoxicity. Subsequently, cultured cor-
tical neurons overexpressing superoxide dismutase were
shown to be resistant to glutamate and ischaemia-induced
neurotoxicity [76]. Various groups other have shown
neuroprotection against glutamate excitotoxicity in cultures
using various antioxidant compounds including nitrone-based
scavengers, free radical spin traps and 21-aminosteroids/
lazaroids (to be discussed later).
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Direct detection of free radical production following
excitotoxicity was demonstrated in cerebellar granule cells
[110] and cortical cultures [54, 170]. Using paramagnetic
resonance imaging, Lafon-Cazal et al. [110] demonstrated a
dose-dependent increase in superoxide production following
increasing concentration of NMDA application. Reynolds
and Hastings [170] further provided cell culture evidence
that free radicals were generated in mitochondria by
attenuating free radical production with mitochondrial
uncouplers.

The mechanism of free radical production was linked to
calcium in by Dykens [55], demonstrating that isolated
mitochondria exposed to increasing calcium and sodium
concentrations result in a feed-forward system of increasing
free radical production. In cortical cultures, Dugan et al.
[54] showed that the removal of extracellular calcium
attenuated free radical production following NMDA appli-
cation, but was unaffected by nitric oxide synthase
inhibitors. Reynolds and Hastings [170] demonstrated a
similar reliance on calcium entry.

Taken together, the evidence supports free radical
generation in mitochondria secondary to calcium influx
via NMDARs. Cytoplasmic free radicals, especially super-
oxide, can interact with other radicals, such as nitric oxide,
to form powerful oxidants [90].

Zinc: another divalent ion in glutamate excitotoxicity

Within neurons, Frederickson [66] proposed dividing zinc
into three distinct pools: protein-associated zinc, vesicle-
associated zinc and free intracellular zinc. Normally, the
majority (∼80%) of zinc is protein-bound, with very low
levels of free intracellular zinc [155]. Vesicle-associated
zinc is largely associated with glutamatergic neurons
[128], which can contain up to 300 μM concentrations
of zinc [228].

Initial in vivo evidence for zinc involvement in CNS
neurodegeneration was demonstrated in kainate-treated
rodents [67] where depletion of zinc at presynaptic
terminals with simultaneous zinc accumulation at cell soma
of degenerating neurons was observed. Following cerebral
ischaemia in rats, Tonder et al. [207] reported dentate hilar
degeneration in the hippocampus with a similar depletion of
presynaptic terminal zinc in mossy fibres coupled with the
accumulation in postsynaptic neurons. In addition, zinc
accumulation in degenerating neuronal soma was noted in a
forebrain ischaemia rodent model where neuroprotection
was observed with zinc chelators [107]. Similar histological
evidence was provided in rodent models of traumatic brain
injury, which also demonstrated neuroprotection with pre-
injury zinc chelation [196].

Although the evidence for zinc involvement in acute
excitotoxic pathologies is strong, the exact mechanism by

which zinc causes neurodegeneration occurs remains
elusive. Direct evidence for zinc neurotoxicity was provid-
ed by extracellular exposure of cortical cultures to zinc
which led to concentration- and time-dependent modes of
apoptotic or necrotic neuronal death [39, 228]. Based on the
histological changes observed in vivo, it was initially
thought that the majority of the postsynaptic neurotoxic
zinc was derived from the presynaptic terminals [107].
However, later studies demonstrated zinc accumulation in
the postsynaptic soma following insults even without
presynaptic zinc stores [118]. Currently, the evidence
supports multiple mechanisms of postsynaptic zinc
accumulation including presynaptic zinc translocation, extra-
cellular zinc influx, mobilisation of zinc from the protein-
bound pool (especially from metallothioneins) via oxidative
mechanisms [4] and release from mitochondrial pools [186].
Zinc entry into neurons has been linked to voltage-gated
calcium channels, sodium exchangers, NMDARs and
AMPA/kainate receptors [185], but most recently, TRMP7
channels have been implicated as a novel route of zinc entry
[95].

Increasing intracellular zinc levels have been associated
with a number of deleterious effects. Firstly, direct
glycolytic dysfunction as a result GAPDH inhibition has
been described, resulting in energy failure in mouse cortical
neurons [189]. Within mitochondria, zinc has long been
known to interfere with the electron transport chain in
isolated mitochondria [146] and more recently has been
shown to directly inhibit the citric acid cycle [24].
Increasing levels of reactive oxygen species are also a
result of increasing zinc levels which can occur through
mitochondrial dysfunction directly [187] or overactivation
of superoxide-generating enzymes such as NADPH oxidase
[148] or LOX-12 [235]. Increasing levels of zinc also cause
signalling changes intracellularly, including p38 phosphor-
ylation or ERK 1/2 activation. p38 MAPK phosphorylation
leads to increased potassium influx and caspase-mediated
cell death [134], whereas ERK 1/2-mediated cell death is
caspase-independent [52].

The relationship of zinc to the NMDA/nitric oxide
excitotoxic cascade was demonstrated by Bossy-Wetzel et
al. [21] who showed zinc accumulation downstream of NO
or NMDA application, requiring reactive nitrogen species
such as peroxynitrite to release intracellular zinc stores.
Under physiological conditions, zinc inhibits neuronal
nitric oxide synthase [159], but can increase nNOS activity
under pathological conditions [104], possibly potentiating
neuronal damage. More recent studies have shown that zinc
accumulation following glutamate application is almost
completely dependent on calcium entry and subsequent
ROS generation [51].

Taken together, the evidence strongly supports the role
of zinc in excitotoxic injury in animal and cell culture
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models. However, the significance of modulating zinc
pathways to human diseases remains to be seen.

Caspases: a classical cell apoptotic pathway

Caspases, a set of cysteine proteases implicated in classical
apoptotic death, were initially shown to play a role in
delayed excitotoxic injury in cerebrocortical [203] and
cerebellar cultures [53]. In these studies, the pre-application
of various caspase inhibitors provided neuroprotection from
NMDA-mediated neurodegeneration. These studies also
suggested that caspase activation occurs downstream of
calcium influx and mitochondrial dysfunction as caspase
inhibitors did not affect these events. Subsequent studies by
Tenneti and Lipton [204] further elucidated on the down-
stream effects of caspases by demonstrating cytosolic
activation of caspases at 20 min post-NMDA application
with caspase activity in the nucleus at 18–24 h post-insult.
Nuclear caspase activity is indicative of cleaved ICAD, a
protein inhibiting the activity of caspase-3-activated DNase
(CAD) and results in DNA fragmentation and cell death [57].

Peroxynitrite: simple, but powerful

Nitric oxide can interact with a huge number of proteins
[194], but is also capable of forming highly oxidative
molecules when combined with superoxide. Superoxide, an
oxygen molecule with a free electron, is produced physi-
ologically during normal cellular respiration, which is then
catalysed by superoxide dismutase into oxygen and
hydrogen peroxide. In glutamate excitotoxicity, this buffer-
ing system is overwhelmed (see above), and superoxide
spills into the cytoplasm possibly via a number of anion
channels including the voltage-dependent anion channel in
the mitochondria [81]. The reaction between NO and
superoxide is essentially diffusion-limited [90] and, like
nitric oxide, can cause protein nitrosylation via direct [211]
and indirect [180] mechanisms. However, peroxynitrite is
also a powerful oxidative molecule additionally capable of
causing lipid peroxidation, direct DNA damage and protein
dysfunction. Specific interactions of peroxynitrite with
proteins include protein oxidation [164] and protein
nitration of tyrosine residues [14, 96], though protein
oxidation occurs at higher rates than nitrosylation [8].
Peroxynitrite has also been demonstrated to directly oxidise
and damage genetic material in plasmids [175] and in cells
[174], leading to either to modified bases or DNA strand
cleavage. Finally, peroxynitrite can induce lipid peroxida-
tion [165], directly damaging the plasma membrane or
causing the production of damaging aldehydes.

Physiologically, peroxynitrite has been reported to
inhibit the mitochondrial electron transport chain at

complex I and complex II [166]. Moreover, peroxynitrite
can inhibit the normal function of cytochrome c in the
electron transport chain [145] as well as manganese and
iron superoxide dismutase in scavenging superoxide [96]
via protein nitration [227]. This interaction can potentiate
caspase-mediated cell death and an eventual apoptotic cell
death. Peroxynitrite-mediated DNA damage can cause
overactivation of poly(ADP)-ribose polymerase (PARP-1),
a nuclear repairing enzyme requiring NAD [237], leading to
energy failure and necrotic cell death. Peroxynitrite can also
interact with proteases in other cell death pathways [115, 137]
(to be discussed later).

Similar to NMDA application, the intensity of perox-
ynitrite insult dictates the observed neurodegenerative
morphology [20]. Thus, peroxynitrite is an intriguing
candidate to simply and eloquently explain the heterogene-
ity of neurodegeneration observed in excitotoxicity.

Calpains/PARP-1/AIF: still under investigation

As described above, evidence suggests that calcium is
sequestered relatively quickly following glutamate applica-
tion. However, transient increases in cytoplasmic calcium
do occur, and as such, calpains, cytoplasmic calcium-
sensitive cysteine proteases have been implicated in the
pathogenesis of excitotoxicity. Brorson et al. [23] demon-
strated modest neuroprotection in hippocampal cell cultures
from NMDA insults with calpain inhibitors even when
treated as late as 1 h post-insult. However, unlike the
caspase family of proteases, the role of calpains remains
less clear and may actually play a reparative role in axons
with low, sublethal doses of NMDA [60].

Recently, mu-calpain proteolytic activity has been shown
to be necessary in the cleavage and release of apoptosis-
inducing factor (AIF) from mitochondria in a cell-free
system [162]. Further support for the calpain/AIF pathway
in excitotoxicity comes from studies in neuronal cultures
subjected to oxygen–glucose deprivation which showed
that calpain inhibition prevented AIF translocation and
subsequent neuronal death [31]. AIF release from the
mitochondria and translocation into the nucleus causes
chromatin condensation, DNA fragmentation and cell death
[199]. An alternative excitotoxic mechanism proposes that
the activation of PARP-1, a nuclear DNA repair enzyme,
causes the release of AIF in excitotoxicity. In these studies,
cortical cultures derived from PARP-1 knockout mice
demonstrated markedly reduced AIF translocation and
neurodegeneration after NMDA treatment [230]. Moreover,
the PAR polymer generated by overactivation of PARP-1 is
required to release AIF [229]. PARP-1 itself appears to
require NO formation to become overactivated [233],
perhaps through an intermediate like peroxynitrite. Recent-
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ly, a potential link between the calpain/AIF and PARP-1/
AIF pathways has been proposed. In these studies, it was
shown that PARP-1 activation is essential for calpain
activation in cells treated with a DNA alkylating agent
[141], but the mechanism by which calpains are activated
remains unclear. However, more recent studies have
suggested that calpains cause the release of an inactive
form of AIF and may not be required at all PAR-mediated
cell death [219]. These studies showed that the inhibition of
calpains does not prevent AIF translocation following
NMDA application.

Taken together, these studies suggest a model in which
glutamate excitotoxicity causes calcium-mediated NO
production and mitochondrial failure. The superoxide
produced by mitochondrial dysfunction interacts with NO
to produce peroxynitrite, a highly oxidant molecule capable
of directly damaging DNA. DNA damage causes the
overactivation of PARP-1 which releases PAR polymers
into the cytoplasm. The PAR polymers activate calpains by
some unclear mechanism, leading to AIF release from
mitochondria and subsequent cell death. Although the
PARP-1/AIF/calpain is a tantalising model, more research
is needed to clarify the role of calpains in AIF-mediated cell
death.

GAPDH/Siah1 pathway: a novel apoptotic pathway

The GAPDH/Siah1 pathway is a novel pathway linking
nitric oxide to a form of apoptotic-like death [83]. GAPDH
is a ubiquitous housekeeping enzyme that, under normal
conditions, participates in glycolysis. However, with in-
creasing intracellular concentrations, NO can nitrosylate
GAPDH and bind Siah1, an ubiquitin ligase. The newly
formed heterodimer translocates to the nucleus by virtue of
the Siah1 nuclear translocation domain and enhances p300/
CBP-associated acetylation of nuclear proteins within
[184]. The downstream activation of nuclear proteins such
as p53 leads to pyknotic nuclei and morphological
characteristics indicative of apoptosis. To complicate
matters, a novel cytosolic protein named GOSPEL has
recently been shown to provide neuroprotection by com-
peting with Siah1 binding to GAPDH. However, the
GAPDH-GOSPEL binding is also mediated by NO [183].
Currently, it is unclear whether NO is capable of (and how
if it is) selectively targeting GAPDH or GOSPEL.

Finally, it is interesting to note that the interaction of
GAPDH with nitric oxide also causes a functional loss
[212]. As GAPDH is an active participant in glycolysis, it is
possible that this same mechanism can result in necrotic
morphology via energy failure. Like peroxynitrite, the
GAPDH-Siah1 cascade remains an interesting candidate to
explain some degree of the heterogeneity observed in
glutamate excitotoxicity.

Excitotoxicity in neurologic disease

Various lines of evidence have supported the role of
NMDARs and excitotoxicity in ischaemia Initial evidence
supporting the role of excitotoxicity in ischaemia comes
from Jorgensen and Diemer [100] who recognised a similar
pattern of neuroanatomical degeneration compared to rats
treated systemically with monosodium glutamate [153].
Subsequent studies demonstrated increased extracellular
glutamate concentrations in response to ischaemia as
measured by microdialysis [74], whereas still other studies
demonstrated an association in regional sensitivity to
ischaemic damage with NMDAR distribution in developing
rats [91]. The increase in glutamate concentrations were
observed in the striatum, hippocampus, cortex and thala-
mus, though interestingly, only the hippocampus was
significantly damaged by the 10-min global ischaemia
[75]. Focal ischaemic models demonstrated similar patterns
of elevated extracellular glutamate [87].

Perhaps the most clinically significant evidence comes
from studies showing neuroprotection from ischaemic
injury by antagonising glutamate receptors. Both compet-
itive and non-competitive NMDA antagonists are effective
in focal models of ischaemia, but show little effect in
global models of ischaemia where non-NMDA antago-
nists appear more effective. Metabotropic glutamate
receptors have also been implicated in the pathogenesis
of global ischaemia; group I antagonists and group II
agonists have been shown to be neuroprotective in
gerbils subjected to transient global ischaemia [105]. A
different line of evidence was provided by Aarts et al. [2]
who showed direct evidence of excitotoxic involvement in
ischaemic injury with disruption of the NMDAR-PSD-95-
nNOS complex. Rats subjected ischaemic stroke were
treated with a polypeptide designed to disrupt the
NMDAR-nNOS interaction, and marked neuroprotection
was observed. Other indirect evidence comes from the
neuroprotection observed using various effectors of gluta-
mate excitotoxicity in ischaemia, including caspase inhibi-
tion [58], calpain inhibition [89], free radical scavengers
and others.

The role of excitotoxicity in traumatic brain injuries has
also received considerable experimental support. Concus-
sive brain injury results in marked increases in extracellular
glutamate concentrations in animals [61, 147] and in
humans [11, 108], directly demonstrating excessive gluta-
mate levels in vivo. Glutamate receptor inhibition studies
have also demonstrated neuroprotection from traumatic
injuries, further supporting the role of excitotoxicity in
traumatic brain injuries. MK-801, a NMDAR channel
blocker, reduced edema following fluid percussion brain
injury in rats [133], whereas Riluzole, a sodium channel
blocker and glutamate release inhibitor, also provided
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histological benefits [232]. Treatments aimed at down-
stream mechanisms of excitotoxicity were also shown to be
beneficial in animals. Kynurenate and indole-2-carboxylic
acid reduce cerebral edema and improve cognitive and
motor dysfunction induced by trauma whilst protecting
against hippocampal cell loss induced by fluid percussion
injury [86]. Other indirect lines of evidence include the
detection of caspases and their characteristic proteolytic
fragments [82, 225], calpain activation and their fragments
[101], AIF translocation into the nucleus [31, 234], protein
nitration [78] and other effectors implicated in excitotox-
icity. These studies demonstrating the neuroprotective
efficacy of glutamate receptor antagonists directly, and
effector inhibition indirectly, support the role of excitotox-
icity in traumatic brain injury.

Modulating excitotoxicity

NMDAR antagonists

Since the association of glutamate excitotoxicity with
stroke and trauma, various attempts have been made to
attenuate neuronal damage by glutamate receptor function.
The NMDAR in particular has a number of sites to exploit
pharmacologically, including the ion channel pore, the
glutamate-binding site, the glycine-binding site and the
polyamine interaction site as described above.

MK-801 (dizolcipine), Memantine, Cerestat, dextrome-
thorphan and its metabolite dextrorphan are all drugs that
block the NMDAR at the level of the channel pore, thereby
reducing calcium entry. Each of these drugs has been
shown in animal models to provide histological and
behavioural neuroprotection following focal ischaemia
[18, 156, 182, 195]. Many other studies exist expounding
upon the effect of these drugs on cell death pathways in
various animal models, but it would be cumbersome to
outline all the evidence to supporting their use in stroke. In
the end, most of the clinical development was abandoned
for safety concerns, except Memantine. Dizocilpine pro-
vided marked reductions in infarct volumes in cat models of
ischaemia [156], but subsequent work in rats showed that
subcutaneous injections of >5 mg/kg showed retrosplenial
cortical vacuolisation and necrosis [64]. Koek et al. [106]
showed in three different animal species (pigeons, rats and
rhesus monkeys) that MK-801 induced PCP-like effects,
including cataplexy, locomotor disturbances and reduced
spatial learning. Moreover, they estimated the potency of
MK-801 at about two to ten times stronger than PCP.
Transient hypotension [157] and decreased level of con-
sciousness [27] were also concerns with Dizocilpine, which

eventually resulted in the discontinuation of clinical
development. Similarly, an initial small trial using dextro-
rphan demonstrated a variety of symptoms in patients
including nystagmus, nausea, vomiting, somnolence, hallu-
cinations and agitation. High rates of infusion loading in the
200-mg/h range resulted in severe hypotension, and high
rates of maintenance infusion caused apnea and stupor in 3
of 22 subjects [5]. The clinical development of dextrorphan
has since been abandoned. More recently, the efficacy of
Cerestat (CNS 1102) was tested in a multicentre trial
involving 628 patients with low-dose, high-dose, and
placebo treatments. No neurological benefits were observed
at 90 days post-treatment, but was stopped because of a
lack of effect as well as a potential imbalance in mortality
with high-dose Cerestat compared to placebo [7]. Mem-
antine, a low-affinity drug, has shown a much better side
effect profile in humans [10], but has yet to be clinically
developed for stroke and is currently approved for use only
in moderate to severe Alzheimer’s disease [169].

Competitive NMDA antagonists include Selfotel (CGS
19755) and D-CPP-ene. Both compounds have been shown
to reduce hippocampal damage in gerbil models of
ischaemia, though CGS 19755 exhibited more neuropro-
tection even with longer delays in administration [19].
Although promising at first, two phase III trials were
abandoned after showing increased rates of mortality in
patients with severe stroke [44]. Clinical trials in severe
head injury were similarly abandoned when no difference
in mortality between treatment arms was observed [140].

Other non-competitive NMDAR blockers fared no
better. Clinical development on ACEA 1021, a compound
aimed at inhibiting glycine binding to the NMDAR, was
halted on phase I in 1997, citing “crystals of ACEA 1021 in
the urine of some subjects” despite an otherwise well-
tolerated drug [6]. Another glycine antagonist, Gavestinel,
followed through to phase III clinical trials, only to
demonstrate no difference in morbidity or mortality rates
following treatment [119]. Ifenprodil and eliprodel, drugs
aimed at the NMDAR polyamine site, were abandoned
after phase III clinical trials in 1997 for similar reasons
[92].

Taken together, the clinical experience with glutamate
receptor manipulation has been poor. Toxicity remains a
large obstacle with the ion channel and competitive
antagonists, though low-affinity ion channel blockers (i.e.
Memantine) appear more tolerable. The same applies to the
non-competitive inhibitors as they are generally tolerated
well. Unfortunately, even though animal models demon-
strate dramatic histological and behavioural neuroprotec-
tion, no pharmacological intervention has yet been shown
to provide benefit in humans [142].
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AMPAR and kainate receptor antagonists

Other research has focused on the non-NMDA glutamate
receptors. In contrast to NMDAR antagonists, AMPA recep-
tor antagonists, such as NBQX, initially appeared more
effective in preventing neuronal loss in animal models of
global ischaemia [188]. Specific for AMPARs, NBQX was
later to shown to be effective in reducing histological dam-
age in focal ischaemia models as well by approximately
30% [28]. YM872, another AMPAR antagonist, demon-
strated similar neuroprotective effects in animal models of
focal ischaemia [200] and traumatic brain injury models
[70]. However, tolerability trials in humans showed
sedation and euphoria in the elderly, with phase III trials
in ischaemic stroke abandoned due to a lack of efficacy in
2006.

Glutamate release blockers

After the failure of several NMDAR antagonists, com-
pounds aimed at inhibiting presynaptic release of glutamate
were developed. Lamotrigine is a sodium channel blocker
currently approved for use in bipolar disorder and epilepsy.
Its proposed mechanism of action suggests inhibiting
presynaptic voltage-dependent sodium channels, reducing
overall excitability and neurotransmitter release [117]. This
study also demonstrated reduced glutamate, GABA, and
acetylcholine release in cortical slices with lamotrigine,
though glutamate release inhibition was two and five times
more potent, respectively. In animal models, lamotrigine
failed to provide neuroprotection in focal ischaemia [209],
but showed a reduction of CA1 hippocampal loss of 50%
following global ischaemia [42]. BW619C89, a derivative
of lamotrigine, underwent phase II trials that showed
various neuropsychiatric effects (reduced consciousness,
agitation, confusion, visual perceptual disturbance or frank
hallucinations) in 16 of 21 stroke patients [143]. Clinical
development was halted in 2001. Riluzole is another drug
in the same class that has been shown to reduce infarct
volumes and improve behavioural outcomes in ischaemic
injury [124, 216] and traumatic brain injury [217, 232].
Riluzole is currently indicated for use in ALS [136], but no
clinical trials for stroke or traumatic brain injury are
currently underway.

Free radical scavengers and antioxidants

Other approaches to neuroprotection moved intracellularly
to the generation of free radicals. There are three major
classes of free radical scavengers under development: free
radical spin traps (nitrone-based), the 21-aminosteroids

(also known of lazaroids) and glutathione peroxidase
mimics. Unfortunately, like the compounds described
above, despite promising animal studies, these drugs have
not yet been proven efficacious in humans.

Alpha-phenyl-N-tert-butyl-nitrone (PBN) and N-tert-bu-
tyl-alpha-(2-sulfophenyl)-nitrone) (S-PBN) are related spin
trap scavengers, with S-PBN being less permeable through
the blood–brain barrier. PBN was shown early on to be
effective in preventing hippocampal damage following
global ischaemia [41, 231]. Moreover, studies in traumatic
brain injury demonstrated histological and behavioural
neuroprotection with the cortical contusion model, though
interestingly, no difference in effect was seen between S-
PBN and PBN, suggesting that its effect may be extracere-
bral [126]. Subsequent studies in the weight-drop model
[71] and fluid percussion injury models [125] demonstrated
similar neuroprotective effects. PBN treatment also appears
to have a wider therapeutic window than glutamate
antagonists, with efficacy in cell cultures even 6 h post-
insult [181]. Of the nitrone-based antioxidants, none of the
blood–brain barrier-permeant scavengers were tested in
stroke. However, there has been considerable research
around NXY-059 (also known as Cerovive), a nitrone-
based antioxidant that does not permeate the blood–brain
barrier. Although this property suggests that NXY-059 does
not act directly on intracellular neuronal oxidants, animal
studies have shown neuroprotective efficacy in trauma [40]
and stroke [109]. In clinical trials, the SAINT1 trial
examining the efficacy of NXY-059 in clinical stroke was
promising [120], but a subsequent SAINT2 trial showed no
clinical benefit with treatment [190].

Another group of compounds which held promise as a
free radical scavenger are the 21-aminosteroids or lazaroids.
Although these compounds demonstrated cell culture [63]
and animal [80, 132] neuroprotection in traumatic brain
injury models, human clinical trials with Tirilazad in head
injury resulted in decreased mortality only in males with
severe head injury patients and subarachnoid haemorrhages
[127]. Subsequent trials with Tirilazad in the treatment of
subarachnoid haemorrhages [113, 114] showed a reduction
in mortality only with the highest grades on arrival. Recent
meta-analysis of Tirilazad in the treatment of subarachnoid
aneurysmal haemorrhage demonstrated no clinical outcome
differences, but reduced symptomatic vasospasm [97]. A
similar story exists with ischaemic strokes and Tirilazad.
Despite efficacy in many animal models [79, 224], a
Cochrane Review demonstrated increased death or disability
in stroke victims treated with Tirilazad compared to placebo
in a review of six clinical trials without any statistically
significant difference in overall mortality [13]. Studies in
ischaemic stroke using Tirilazad have since been abandoned.
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A final class of antioxidants is derived from a family of
enzymes called glutathione peroxidase which rely on a
selenocysteine moiety to reduce hydrogen peroxide into
water. Ebselen is a glutathione peroxidase mimic also capable
of interacting with peroxynitrite and inhibiting enzymes
involved in inflammation [178]. In animal studies, Ebselen
has been shown to reduce cortical infarct size in a number of
rodent models of focal ischaemia [47, 93, 201]. However,
clinical trials in Japan demonstrated no significant differ-
ences in 3-month clinical outcome in patients with complete
middle cerebral artery occlusion [226] and no significant
improvement in clinical outcome despite a reduction in
infarct size [150]. Phase III clinical trials in Japan focused on
patients with cortical infarctions are currently underway.

Nitric oxide synthase inhibitors

Initial studies examining general NOS inhibitors in animal
models were complicated by the opposing effects of the
different isoforms of NOS. These studies showed that
general NOS inhibition using L-NAME at high doses of
30 mg/kg resulted in no reduction in cortical infarcts
following focal ischaemia [46], but later reported histolog-
ical neuroprotection with 3 mg/kg L-NAME [45]. Other
groups showed that the intravenous application of L-
arginine, a nitric oxide precursor, was neuroprotective
following focal ischaemia [138], which was later explained
by its effect on the eNOS isoform [139]. Attempts to
localise NOS inhibition led to the development of nNOS-
specific inhibitors such as 7-nitroindazole (7-NI). Animal
studies with 7-NI has shown neuroprotection in global
[149] and focal ischaemia [59]. 7-NI has also been shown
to reduce neurological deficits in animals following
traumatic brain injuries [215], though currently, there are
no attempts at clinical development.

A novel class of drugs named membrane-associated
guanylate kinase (MAGUK) inhibitors has recently been
proposed in the treatment of excitotoxicity. These peptides
are competitive antagonists designed to bind postsynaptic
scaffolding proteins. Specifically, the MAGUK inhibitor
NA1, aimed at dissociating the spatial relationship between
nNOS and NMDARs, has demonstrated neuroprotection in
various animal models of stroke [2, 197]. In theory, NA-1
can reduce NO production from nNOS specifically without
otherwise affecting NMDAR or nNOS function which may
avoid much of the toxicity observed previously. NA1 is
currently undergoing phase II clinical trials.

Future directions of excitotoxicity

Despite the intensive research into excitotoxic mechanisms,
very few pharmacologic treatments have been shown to be

successful in related disorders. This failure has been
recently suggested to be a result of an overly simplistic
NMDA-AMPA model of excitotoxicity [16]. As such,
alternative targets for attenuating excitotoxic injury have
recently been the focus of considerable attention.

Sodium–calcium exchangers

The sodium–calcium exchanger (NCX) is a transmembrane
protein that exchanges one calcium ion per three sodium ions.
The direction of ion flux is dependent on a number of factors
including pH, sodium concentrations, Ca2+ concentrations
and ATP levels. Under physiological conditions, the major
driving force of these exchangers is the Na+ gradient created
by the Na+/K+ ATPase. However, the direction of ion flux is
reversible, and high intracellular Na+ levels can cause Ca2+

influx with Na+ extrusion. Increasing intracellular Ca2+ can
lead to cell death through mechanisms described above. In
cells, the NCX is found in the plasma membrane, mitochon-
dria and the endoplasmic reticulum. Various isoforms of
NCX exist, including NCX1, NCX2, NCX3 and NCX4.
These isoforms present with different expression profiles in
neurons, with forebrain neurons expressing NCX1 and
cerebellar neurons expressing NCX3 [103].

In excitotoxic insults, NMDAR-mediated Na+ influx
may be sufficient to reverse NCX function, causing calcium
accumulation in neurons. However, this phenomenon
occurs only in the presence of Na+/K+ ATPase dysfunction
[43]. These results suggest that the NCX plays a dual role
in ischaemia. In severe insults, where the Na+/K+ ATPase is
dysfunctional, inhibition of the NCX may prevent Ca2+

entry into the cell as a result of excessive depolarisation.
However, in milder insults, the NCX may be necessary to
maintain calcium homeostasis so long as the Na+/K+

ATPase continues to maintain the Na+ gradient. Accord-
ingly, animal studies employing NCX inhibitors have
shown both neuroprotection [129] and worsening of the
infarct area after stroke [161]. Whether dissociating the
neuroprotective and neurodegenerative effects of NCX are
possible remains to be determined.

Hemichannels and gap junctions

Gap junctions are ubiquitously expressed in neurons and
glia and are formed by the binding of hemichannels to one
another. Hemichannels themselves are made up of connex-
ins. Gap junctions also appear to have a dual role in both
neuroprotection and neurodegeneration following excito-
toxic insults [62]. In the neuroprotective model (or the
Good Samaritan effect), opening of gap junctions allows
astrocytes to remove toxic extracellular substances. In the
neurodegenerative model (or the bystander effect), opening
of gap junctions causes the dissipation of ionic accumula-
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tion and/or cytotoxic substances from compromised cells
into otherwise unaffected cells, leading to neurodegenera-
tive spreading [122].

Although gap junctions have been shown to open in
response to ischaemia [206], their overall role in excitotoxic
injury remains controversial. Animal models of focal and
global ischaemia have shown neuroprotection with con-
nexin knockdown animals [65] and gap junction inhibitors
[50]. However, consistent with its proposed dual role,
connexin 43 knockout mice demonstrated increased focal
and global ischaemia damage [151]. Similar to the NCX,
the net effect of gap junction inhibition is still unclear and
requires further investigation.

Acid-sensing ion channels

ASICs are found in the plasma membrane of neurons and
open in response to low pH, mechanical stretch, lactate,
arachidonic acid and decreased extracellular calcium [16].
ASIC3, a calcium-impermeant isoform, binds Ca2+ at an
extracellular site which can be removed by H+ binding or
lactate-induced decreases in extracellular calcium [94].
Although most isoforms are sodium channels, some iso-
forms (i.e. ASIC1a) are also Ca2+-permeant [223].

NMDAR activation has been shown to increase Ca2+

influx via ASIC1a channels [72]. This Ca2+ influx and
subsequent cell death in hippocampal cultures was pre-
vented with NMDAR antagonists and CaMKII inhibitors.
Animal models of stroke have shown that inhibiting ASICs
can provide significant neuroprotection for up to 7 days
post-middle cerebral artery occlusion [160]. Inhibition of
ASICs also increased the therapeutic window for NMDA
inhibition in rodent models of stroke. These results suggest
that ASIC inhibition may be beneficial in neuroprotection
following stroke or as an adjunct to other pharmacological
interventions.

Transient receptor potential channels

Transient receptor potential (TRP) family of channels is
ubiquitously expressed in a variety of tissues. TRP channels
are generally permeant to sodium, calcium and magnesium.
Of particular importance in excitotoxicity are the TRPM
(melastatin) and TRPC (canonical) subfamilies. TRPM7 [1]
and TRPM2 [35] have both been implicated in the third
phase of excitotoxic calcium influx observed by Randall
and Thayer [167]. TRPM7 currents are increased by free
radicals, PIP2 hydrolysis [173] and MgATP levels [144]
intracellularly, whereas TRPM2 currents are enhanced by
reactive oxygen [220] and nitrogen species [84]. Recently,
TRPM7 has also been implicated in zinc-mediated neuro-
toxicity [95].

Both TRPM7 and TRPM2 knockdown have been shown
to be neuroprotective in cell cultures. TRPM7 knockdown
using siRNAs in cortical cultures provides neuroprotection
following oxygen–glucose deprivation [1], whereas
TRPM2 siRNA knockdown demonstrated neuroprotection
in cortical cell cultures treated with hydrogen peroxide
[102]. Conversely, TRPC channels have been shown to be
neuroprotective in cerebellar granule cell cultures possibly
via BDNF and CREB [98]. Most recently, virally mediated
TRPM7 knockdown in adult animals subjected to global
ischaemia was shown to provide both hippocampal and
behavioural neuroprotection [198]. However, the role of
TRP channels in clinical stroke remains to be determined.

Cross talk cell death mechanisms

Certain groups have demonstrated conflicting data with
respect to which cell death pathway takes precedence in cell
cultures and in vivo. Despite the readily available evidence
for the importance of various effectors in excitotoxicity, it is
becoming increasingly evident that cell death pathways do
not exist independently of each other. Cell death pathway
interactions may be either synergistic or competitive, and
these interactions may play a large role not only in
determining the efficacy of neuroprotective drugs but also
in the development of successful drug therapeutics to
attenuate damage mediated by excitotoxins.

Calpains cause an inhibition of caspase-3 activation via
the proteolytic cleavage of procaspase-9, rendering it
inactive [214]. Similar evidence exists using a Huntington’s
disease model of neurodegeneration in rats [17]. In this
model using 3-nitroproprionic acid, it was determined that
mu-calpains could proteolytically cleave and inactivate
caspase-9 and caspase-3. Calpains can also convert cells
otherwise committed to classical apoptosis to a caspase-
independent form of cell death [112]. NO-mediated nitro-
sylation of caspases [137] and calpains [135] cause their
inhibition, though peroxynitrite appears to be a more potent
inhibitor. Li et al. [121] expanded these initial findings into
six other members of the caspase family. However, the
overall effect of oxidative inhibition of caspases in neurons
still results in neuronal death [236]. Caspases can inhibit
PARP-1 [116] and inactivate its DNA repairing ability and
thus its role in PARP-1/AIF-mediated cell death. Calpain-
mediated cleavage and inactivation of nNOS [111] and
NMDARs [77] can also occur. Cleavage of NMDARs by
calpains causes reduced NMDAR-mediated currents [222].
Calpain activation may thus reduce NO and peroxynitrite
levels. Some of the novel targets of neuroprotection have
also been shown to interact with the effectors of excitotox-
icity outlined above. TRPM channels have been shown to be
sensitive to reactive oxygen and nitrogen species, and
TRPM2 can be activated by ADP-ribose, a substrate of
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PARP [158]. Finally, calpains have been shown to inactivate
NCX, leading to further calcium dysregulation [12].

Taken together, these studies demonstrate only some of the
known interactions of cell death pathways. A better appreci-
ation of the complexity of the intracellular effector mecha-
nisms occurring after excitotoxicity may prove useful in
further pharmacological developments for excitotoxic injury.

Conclusions

Our understanding of glutamate excitotoxicity has come a
long way since its proposal in the 1950s. Even within the
last few decades, there has been an exponential growth in
research outlining not only excitotoxic mechanisms but also
the manipulation of these pathways in animal systems.
Unfortunately, we have yet to fully understand all the
complexities involved in excitotoxicity as evidenced by our
failure to provide neuroprotection in the clinical setting.
Whether this is a problem in the animal to human
translation of stroke and brain injury models or overly
complex cell death pathway interactions remains to be
determined. Despite these setbacks, there are exciting new
avenues of research outlining new cell death pathways/
interactions laterally and new receptor targets downstream
of NMDAR activation.
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