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Abstract Endothelium-derived nitric oxide (NO) is a
paracrine factor that controls vascular tone, inhibits platelet
function, prevents adhesion of leukocytes, and reduces
proliferation of the intima. An enhanced inactivation and/or
reduced synthesis of NO is seen in conjunction with risk
factors for cardiovascular disease. This condition, referred
to as endothelial dysfunction, can promote vasospasm,
thrombosis, vascular inflammation, and proliferation of
vascular smooth muscle cells. Vascular oxidative stress
with an increased production of reactive oxygen species
(ROS) contributes to mechanisms of vascular dysfunction.
Oxidative stress is mainly caused by an imbalance between
the activity of endogenous pro-oxidative enzymes (such as
NADPH oxidase, xanthine oxidase, or the mitochondrial
respiratory chain) and anti-oxidative enzymes (such as
superoxide dismutase, glutathione peroxidase, heme oxy-
genase, thioredoxin peroxidase/peroxiredoxin, catalase, and
paraoxonase) in favor of the former. Also, small molecular
weight antioxidants may play a role in the defense against
oxidative stress. Increased ROS concentrations reduce the
amount of bioactive NO by chemical inactivation to form
toxic peroxynitrite. Peroxynitrite—in turn—can “uncouple”
endothelial NO synthase to become a dysfunctional
superoxide-generating enzyme that contributes to vascular
oxidative stress. Oxidative stress and endothelial dysfunction
can promote atherogenesis. Therapeutically, drugs in clinical
use such as ACE inhibitors, AT1 receptor blockers, and statins

have pleiotropic actions that can improve endothelial
function. Also, dietary polyphenolic antioxidants can reduce
oxidative stress, whereas clinical trials with antioxidant
vitamins C and E failed to show an improved cardiovascular
outcome.
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Introduction

The endothelial cells of our vasculature—if functional—
protect us against thrombosis and atherosclerosis. A key
regulator of endothelial function is endothelium-derived
nitric oxide (NO) generated by endothelial NO synthase
(eNOS) [28]. Vascular NO relaxes blood vessels, prevents
platelet aggregation and adhesion, limits oxidation of low-
density lipoprotein (LDL) cholesterol, inhibits proliferation
of vascular smooth muscle cells, and decreases the
expression of pro-inflammatory genes that advance athero-
genesis [26–28].

Cardiac risk factors and cardiovascular disease impair
endothelial function. An increased production and/or
impaired inactivation of reactive oxygen species (ROS),
i.e., oxidative stress, leads to reduced bioactivity of NO. A
dominant mechanism reducing bioavailability of vascular
NO is rapid oxidative inactivation by the ROS superoxide
(O2

−·). In addition, there is evidence that persisting
oxidative stress will render eNOS dysfunctional such that
it no longer produces NO, but O2

−· [26, 27]. This review
discusses the interrelationship between vascular disease and
vascular oxidative stress, as well as therapeutic approaches,
to reduce oxidative stress and restore endothelial function.

U. Förstermann (*)
Department of Pharmacology,
Johannes Gutenberg University Medical Center,
Obere Zahlbacher Strasse 67,
55101 Mainz, Germany
e-mail: ulrich.forstermann@uni-mainz.de

Pflugers Arch - Eur J Physiol (2010) 459:923–939
DOI 10.1007/s00424-010-0808-2



Structure and enzymatic function of eNOS

Structurally, all NOS isozymes are homodimers (Fig. 1). In a
functional NOS, the C-terminal reductase domain of one
monomer (with binding sites for NADPH, FMN, and FAD)
is linked to the N-terminal oxygenase domain of the opposite
monomer (Fig. 1). This oxygenase domain carries a
prosthetic heme group. Theoxygenase domain also binds
(6R-)5,6,7,8-tetrahydrobiopterin (BH4), molecular oxygen,
and the substrate L-arginine [1, 19]. All NOS isoforms show
a zinc thiolate cluster formed by a zinc ion that is
tetrahedrally coordinated to two CXXXXC motifs (one
contributed by each monomer) at the interface of the NOS
dimer [46, 73, 86, 107]. All NOS isozymes catalyze flavin-
mediated electron transfer from the C-terminally bound
NADPH to the heme in the N-terminal oxygenase domain.
Calmodulin (CaM), upon calcium-induced binding to the
NOS, increases both the electron transfer within the
reductase domain (from NADPH to the flavins; Fig. 1) and
the electron transfer from the reductase domain to the heme
center in the oxygenase domain (Fig. 1) [45]. At the heme,

the electrons are used to reduce and activate O2. In a first
step, NOS hydroxylates L-arginine to NG-hydroxy-L-arginine
(which remains largely bound to the enzyme). In a second
step, NOS oxidizes NG-hydroxy-L-arginine to citrulline and
NO [96, 123]. In human eNOS, cysteine99 (Cys99, which is
part of the zinc thiolate cluster) is thought to represent (or
largely contribute to) the binding site for BH4. Mutation of
the homologous Cys331 in nNOS to alanine (Cys331Ala)
led to an enzyme that lost its binding affinity for BH4 and
became catalytically inactive [81]. Interestingly, the estimat-
ed Kd for L-arginine binding to the Cys331Ala-mutated
nNOS was >100 μmol/L [81] compared with 2–3 μmol/L
for the wild-type enzyme, suggesting cooperativity between
L-arginine and BH4. binding (Fig. 1) [81, 85].

Regulation of eNOS activity

When intracellular Ca2+ is enhanced, eNOS activity
markedly increases; eNOS synthesizes NO in a pulsatile,
Ca2+/CaM-dependent manner. Ca2+ induces the binding of

Fig. 1 Scheme of a functional eNOS. eNOS is a homodimeric
enzyme; each subunit consists of a reductase domain and an oxygen-
ase domain. NADPH donates electrons for NOS; the flow of electrons
is only shown from the reductase domain of one monomer (left) to the
oxygenase domain of the other monomer. The enzyme contains a zinc
(Zn) thiolate cluster at the dimer interface. This site is of major
importance for the binding of the cofactor (6R-)5,6,7,8-tetrahydro-
biopterin (BH4) and the substrate L-arginine (L-Arg). Interestingly,
there is evidence for a mutual enhancement of BH4 and L-arginine
binding, which may be of therapeutic relevance in vivo. Electron
transfer from the reductase domain (*) enables NOS ferric (Fe3+)
heme to bind O2 and form a ferrous (Fe2+)-dioxy species. This species
may receive a second electron preferentially from BH4 (or alterna-

tively from the reductase domain) (**). This activates oxygen and
allows the catalysis of L-arginine hydroxylation. The oxidized species
formed from BH4 is trihydrobiopterin radical (BH3·) or trihydropterin
radical cation protonated at N5 (BH3·H

+). The BH3· radical (or radical
cation) can be recycled to BH4 by eNOS itself (using an electron
supplied by the flavins) or by L-ascorbic acid (which is present in cells
in millimolar concentrations). This function of L-ascorbic acid can
explain its stimulatory effect on eNOS activity. The BH3· radical can
be converted to the quinonoid 6,7-[8H]-H2-biopterin (BH2), which
can also be reduced by L-ascorbic acid back to BH4. BH4 is likely to
also play a redox role in the second reaction cycle, i.e., the conversion
of Nw-hydroxy-L-arginine to NO. AscH ascorbic acid, Asc ascorbate
radical
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CaM to the enzyme, which in turn increases the rate of
electron transfer from NADPH to the heme center [45].

However, eNOS can also be activated by stimuli that do not
produce sustained increases in intracellular Ca2+, but still
induce a long-lasting release of NO. The best established
such stimulus is the shear stress of the flowing blood, which
can increase enzyme activity at resting Ca2+ levels. This
activation is mediated by phosphorylation of the enzyme
[25] (Fig. 2).

The eNOS protein can be phosphorylated on several
serine (Ser), threonine (Thr), and tyrosine (Tyr) residues;
however, major changes in enzyme function have been
reported for the phosphorylation of amino acid residues
Ser1177 and Thr495 (in the human eNOS sequence).
Phosphorylation of Ser1177 stimulates the flux of electrons
within the reductase domain, increases the Ca2+ sensitivity
of the enzyme, and represents an additional and indepen-
dent mechanism of eNOS activation [25]. Several protein
kinases can phosphorylate eNOS at Ser1177 can participate
in eNOS activation following mechanical and/or hormonal
stimulation of endothelial cells. These kinases include Akt/
protein kinase B, protein kinase A (PKA), 5′-AMP-

activated protein kinase (AMPK), and calmodulin-
dependent kinase II (CAMKII) (Fig. 2).

The amino acid residue Thr495, on the other hand, is a
negative regulatory site whose phosphorylation decreases
enzymatic activity. This site tends to be phosphorylated
under non-stimulated conditions (most probably by protein
kinase C, PKC). Phosphorylation of Thr495 is likely to
interfere with the binding of CaM to the CaM-binding
domain. In fact, dephosphorylation of Thr495 is associated
with stimuli such as histamine or bradykinin that elevate
intracellular Ca2+ concentrations and increase eNOS
activity markedly. In endothelial cells stimulated with
such Ca2+-elevating agonists, substantially more CaM
binds to eNOS when Thr495 is dephosphorylated [25]
(Fig. 2).

In vascular disease, oxidative stress reduces
the bioavailability of vascular NO

Oxidative stress in vascular disease (i.e., a relative
overproduction of ROS), contributes markedly to endothelial

Fig. 2 Regulation of eNOS activity by intracellular Ca2+ and phosphor-
ylation. An increase in intracellular Ca2+ (as produced by agonists such
as histamine or bradykinin) leads to an enhanced binding of CaM to the
enzyme, which in turn displaces an auto-inhibitory loop and facilitates
the flow of electrons from NADPH in the reductase domain to the heme
in the oxygenase domain. There are several potential phosphorylation
sites in eNOS, but most is known about the functional consequences of
phosphorylation of Ser1177 (human eNOS sequence) in the reductase
domain and Thr495 (human eNOS sequence) within the CaM-binding
domain. In resting endothelial cells, Ser1177 is usually not phosphor-
ylated. Phosphorylation is induced when the cells are exposed to fluid
shear stress, estrogens, VEGF, insulin, or bradykinin. The kinases
responsible for phosphorylation depend on the primary stimulus. Shear

stress elicits the phosphorylation of Ser1177 by activating protein kinase
A (PKA), estrogen and VEGF phosphorylate eNOS mainly via Akt,
insulin probably activates both Akt and the AMP-activated protein
kinase (AMPK), and the bradykinin-induced phosphorylation of
Ser1177 is mediated by CaMKII. Phosphorylation of the Ser1177
residue increases the flux of electrons through the reductase domain and
thus enzyme activity. The Thr495 residue of human eNOS tends to be
constitutively phosphorylated in endothelial cells. Thr495 is a negative
regulatory site, and its phosphorylation is associated with a decrease in
enzyme activity. The constitutively active kinase that phosphorylates
eNOS Thr495 is most probably protein kinase C (PKC). The
phosphatase that dephosphorylates Thr495 appears to be protein
phosphatase1
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dysfunction. In the state of oxidative stress, the production of
ROS exceeds the available antioxidant defense systems. As a
consequence, bioactivity of NO is reduced. A dominant
mechanism reducing bioavailability of vascular NO relates to
its rapid oxidative inactivation by the ROS superoxide (O2

−).
In addition, there is evidence that persisting oxidative stress
will render eNOS dysfunctional such that it no longer
produces NO, but O2

−· (see below).

Cardiovascular risk factors and vascular disease
are associated with an increased production of reactive
oxygen species in the vascular wall

Risk factors for cardiovascular disease include (but are not
limited to) hypertension [75], diabetes mellitus [48],
hypercholesterolemia [142], and atherosclerosis [115].
These risk factors lead to dramatic increases in reactive
ROS in the vascular wall, a situation that culminates into
oxidative stress. ROS include free oxygen radicals, oxygen
ions, and peroxides (Fig. 3a). There are several enzyme
systems that can potentially produce ROS in the vessel
wall, with four systems being of major importance. These
include NADPH oxidase, xanthine oxidase, a dysfunctional
eNOS (in which oxygen reduction is uncoupled from NO
synthesis), and enzymes of the mitochondrial respiratory
chain [92] (Fig. 3a).

NADPH oxidases

NADPH oxidases are multicomponent enzymes functional
in membranes of various cell types including endothelial
cells, smooth muscle cells, and fibroblasts. Several iso-
forms of O2

−·-producing NADPH oxidase exist in the
vascular wall. Evidence for an activation of NADPH
oxidase in the vasculature has been provided in animal
models of vascular disease such as angiotensin II-induced
hypertension [31, 83], genetic hypertension [76], diabetes
mellitus [48], and hypercholesterolemia [142]. In athero-
sclerotic arteries, there is evidence for increased expres-
sion of the NADPH oxidase subunits gp91phox (Nox2)
and Nox4 [115]; angiotensin II leads to an overexpression
of Nox1 [83]. A confirmation of the role of NADPH
oxidase-derived ROS in hypertension and atherosclerosis
came from studies with genetic disruption of subunits of
the enzyme. Knockout of the p47phox subunit reduced
blood pressure responses to angiotensin II and diminished
atherogenesis in apolipoprotein E (apoE)−/− mice [6, 65].
Similarly, Nox1-deficient mice show smaller blood pres-
sure increases to angiotensin II [83], whereas mice
overexpressing Nox1 in smooth muscle showed greater
blood pressure responses to angiotensin II and increased
O2

−· production [21].

Involvement of the renin–angiotensin system

The inflammatory cells present in the atherosclerotic vessel
wall are capable of producing angiotensin II. Angiotensin-
converting enzyme activity, as well as local angiotensin II
concentrations, is increased in atherosclerotic plaques [20,
100]. In addition, in hypercholesterolemia, local renin–
angiotensin systems may be activated. The stimulating
effects of angiotensin II on the activity of NADPH oxidases
suggests that an activated renin–angiotensin system could
cause increased vascular O2

−· production and thus vascular
dysfunction [35]. In vessels from hypercholesterolemic
animals [133] and in platelets from hypercholesterolemic
patients [95], the angiotensin II receptor subtype AT1 has
been found to be upregulated.

Xanthine oxidase

The enzyme xanthine oxidase is generated from xanthine
dehydrogenase by proteolysis. Xanthine oxidase readily
donates electrons to molecular oxygen, thereby producing
O2

−· and hydrogen peroxide. Oxypurinol, an inhibitor of
xanthine oxidase, has been shown to reduce O2

−· produc-
tion and improve endothelium-dependent vascular relaxa-
tions to acetylcholine in blood vessels from hyperlipidemic
animals [98]. This suggests a contribution of xanthine
oxidase to endothelial dysfunction in early hypercholester-
olemia. The source of xanthine oxidase is not completely
clear, but increased cholesterol levels have been shown to
stimulate the release of the enzyme from the liver into the
circulation. This circulating xanthine oxidase can then
associate with endothelial glycosaminoglycans [147]. Un-
like NADPH oxidases, the relative importance of xanthine
oxidase for endothelial dysfunction is less certain. Recent
experimental evidence has suggested that endothelial cells
themselves can express xanthine dehydrogenase (and thus
xanthine oxidase) and that this expression is regulated in a
redox-sensitive way, dependent on the endothelial NADPH
oxidase [84]. However clinical data relative to xanthine
oxidase are controversial. Whereas some investigators
reported an improvement of endothelial dysfunction in
hypercholesterolemic and diabetic patients with xanthine
oxidase inhibitors such as oxypurinol and allopurinol [14,
15], others failed to show an effect with allopurinol [97].

Respiratory chain of the mitochondria

About 1% of the O2 consumed by mitochondria is reduced
by only a single electron thereby forming O2

−·. O2
−· can

be produced in at least two locations within the respiratory
chain; in the NADH dehydrogenase (complex I) and in the
ubiquinone–cytochrome b–c1 region (complex III) [129].
However, the actual amount of O2

−· released by the
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mitochondria also depends on the activity of Mn-
containing superoxide dismutase2 (SOD2) located in the
mitochondrial matrix (see below). There is evidence to
suggest that some cardiovascular diseases are associated
with mitochondrial dysfunction [106] and that mitochon-

drial production of ROS may be linked to the development
of early atherosclerotic lesions [5]. Mitochondrial dys-
function, e.g., resulting from SOD2 deficiency, increases
mitochondrial DNA (mtDNA) damage and accelerates
atherosclerosis in apoE−/− mice [99]. However, a causal

Fig. 3 Enzymes involved in the generation and inactivation of
reactive oxygen species (ROS). There are numerous enzyme systems
that generate and degrade ROS; a relative overproduction of ROS
results in oxidative stress (light red box, a). Molecular oxygen (O2)
reacts with an impaired electron (e−) to form the superoxide anion
(O2

−·). Numerous studies implicate NADPH oxidases, xanthine
oxidase, “uncoupled” eNOS (in which oxygen reduction has been
uncoupled from NO synthesis), and the “leakage” of activated oxygen
from mitochondria during oxidative respiration as important sources
of O2

−· in the cardiovascular system (red boxes). O2
−· can be

converted to hydrogen peroxide (H2O2, the two-electron reduction
state of O2) by the enzyme superoxide dismutase. H2O2 can undergo
spontaneous conversion to hydroxyl radical (OH·, the three-electron
reduction state of O2) via the Fenton reaction. OH· is extremely
reactive and will attack most cellular components. H2O2 can be
detoxified via glutathione peroxidase, catalase, or thioredoxin (Trx)
peroxidase to H2O and O2 (green boxes). The enzyme myeloperox-
idase can use H2O2 to oxidize chloride to the strong oxidizing agent

hypochlorous acid (HOCl). Blood levels of myeloperoxidase have
been found to correlate with endothelial dysfunction and the risk for
myocardial infarction. HOCl can chlorinate and thereby inactivate
various biomolecules, including lipoproteins and the eNOS substrate
L-arginine. Besides HOCl generation, MPO can oxidize NO to nitrite
(NO2

−) in the vasculature. Also inducible heme oxygenase 1 and its
products function as adaptive molecules against oxidative stress (b).
Heme oxygenase is the first rate-limiting enzyme in heme breakdown
to generate equimolar quantities of carbon monoxide (CO), biliverdin,
and free ferrous iron. For mechanisms by which heme oxygenase
reduces oxidative stress, see text. Other enzymes with antioxidant
properties are paraoxonases. Paraoxonase isoforms 1 and 3 are
circulating in serum residing on high-density lipoprotein, decreasing
high- and low-density lipoprotein lipid peroxidation. Paraoxonase 2 is
cell-associated and seems to represent a novel endogenous defense
mechanism against vascular oxidative stress. The biochemical mech-
anism is still largely unclear
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role of mitochondrial O2
−· for vascular disease in vivo

remains to be established.

eNOS itself can be a source of superoxide

NOS enzymes contain four redox active prosthetic groups
(FAD, FMN, heme, and BH4) that could—in principle—
pass electrons to O2 [40, 82, 104, 150]. Thus, electron
transfer in NOS enzymes needs to be tightly controlled to
prevent uncoupling of O2 reduction from NO synthesis that
will turn a functional NOS into a dysfunctional O2

−·-
generating enzyme [123].

Evidence for eNOS uncoupling has been obtained in
peroxynitrite-treated rat aorta [69], in endothelial cells
treated with low-density lipoprotein [105], and in isolated
blood vessels from animals with pathophysiological con-
ditions such as SHR [18], stroke-prone spontaneously
hypertensive rats (SHRSP) [60], angiotensin II-induced
hypertension [90], deoxycorticosterone acetate (DOCA)–
salt hypertension [66], streptozotocin-induced diabetes [48],
or nitroglycerin tolerance [43].

eNOS uncoupling has also been seen in patients with
endothelial dysfunction due to hypercholesterolemia [121],
diabetes mellitus [41] or essential hypertension [47], and in
chronic smokers [43].

Antioxidant enzymes potentially protecting
against vascular oxidative stress

Important antioxidant enzymes include superoxide dismutase
(SOD), glutathione peroxidase (GPx), catalase, heme oxy-
genase (HO), and the thioredoxin (Trx) peroxidase (Fig. 3a, b)
and perhaps also paraoxonases (PON).

Superoxide dismutase

SOD catalyzes the dismutation of O2
−· into oxygen and

hydrogen peroxide, thereby serving a key antioxidant role
(Fig. 3a). In humans, three forms of the enzyme are present.
SOD1 (Cu–Zn–SOD) is located in the cytoplasm, SOD2
(Mn–SOD, see above) in the mitochondria, and SOD3 (Cu–
Zn–SOD) is extracellular. In the cardiovascular system, the
action of SOD3 lowers O2

−· and maintains vascular NO
levels [59]. Mice with a deleted SOD1 gene develop
normally and show no marked phenotype under normal
conditions. However, they are more susceptible to myocar-
dial ischemia–reperfusion injury [155]. A common gene
variant of human SOD3, present in approximately 5% of
humans, shows decreased SOD activity, oxidative stress,
and accelerated NO inactivation. This variant is indeed
associated with an increased risk of ischemic heart disease
[55].

Catalase

The enzyme catalase catalyzes the decomposition of
hydrogen peroxide to water and oxygen (Fig. 3a). The
overall biological significance of catalase is not completely
clear. Homozygous catalase knockout mice develop nor-
mally and show no gross abnormalities, indicating that this
enzyme is dispensable for animal life [50]. Interestingly,
overexpression of catalase has protective effects in the
cardiovascular system such as delayed development of
atherosclerosis [154] and inhibition of angiotensin II-induced
aortic wall hypertrophy [161].

Glutathione peroxidase

GPx reduces free hydrogen peroxide to water and lipid
hydroperoxides to their corresponding alcohols (Fig. 3a).
There are several isozymes, and GPx1 is the most abundant
version, found in the cytoplasm of many mammalian
tissues. Mice genetically engineered to lack GPx1 are
apparently healthy and fertile, but exhibit a pronounced
susceptibility to myocardial ischemia–reperfusion injury
[156]. In patients with coronary artery disease, the activity
of red blood cell GPx1 is inversely associated with the risk
of cardiovascular events [10]. In apoE-deficient mice, the
deficiency of GPx1 accelerates and modifies atherosclerotic
lesion progression [127]. GPx4 knockout mice are not
viable; they die during early embryonic development.

Heme oxygenase

HO catalyzes the first step in heme breakdown to generate
equimolar quantities of carbon monoxide, biliverdin, and
free ferrous iron (Fig. 3b). There is ample evidence that
HO1 can protect against vascular remodeling and athero-
genesis [119]. HO1 is induced by oxidative stress, probably
as an adaptive response. The proposed mechanisms by
which HO1 may protect cells include its abilities to degrade
the pro-oxidative heme to biliverdin. This gets subsequently
converted to bilirubin, which has radical-scavenging prop-
erties. Moreover, bilirubin seems to directly inhibit fully
functional NADPH oxidase and can also interrupt assembly
and activation of the enzyme [57]. In addition, a decrease in
heme content caused by HO1 limits heme availability for
maturation of the Nox2 subunit of NADPH oxidase
prevents assembly of a functional enzyme and reduces
cellular ROS generation [126]. Carbon monoxide generated
by HO has antiproliferative and anti-inflammatory as well
as vasodilator properties [91]. The potential cytotoxic
effects of iron (e.g., stimulation of the Fenton reaction;
Fig. 3a) are limited by the simultaneous enhancement of
intracellular ferritin [91]. Genetic models of HO1 deficien-
cy or overexpression of HO1 suggest that the actions of
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HO1 are important in modulating the severity of athero-
sclerosis [51].

Thioredoxin

Also Trx has been recognized as critical protective system
acting via direct (antioxidant) and indirect (regulation of
signal transduction) effects [153]. Trx is present in
endothelial cells and vascular smooth muscle. Trx seems
to exert most of its ROS-scavenging properties through Trx
peroxidase (peroxiredoxin), which uses endogenous SH
groups as reducing equivalents (Fig. 3a). Trx reduces the
oxidized form of Trx peroxidase and the reduced Trx
peroxidase scavenges ROS (such as H2O2; Fig. 3a) and also
ONOO− [153].

Paraoxonase

The PON family of enzymes (Fig. 3b) seems to contribute
to vascular antioxidant defense and protect against coronary
artery disease [3]. The PON1 and PON3 enzymes are
synthesized in the liver and circulate in plasma associated
with the high-density lipoprotein (HDL) fraction. The
capacity of HDL in decreasing HDL and LDL lipid
peroxidation largely depends on its PON1 content [3].
Deletion of the PON1 gene increases oxidative stress in
mouse macrophages and aortae [110], and apoE−/− mice
overexpressing PON1 developed fewer atherosclerotic
lesions [130]. PON2 is expressed in many cell types.
Polymorphisms of the PON2 gene have been reported to be
associated with cardiovascular diseases [70]. The enzyme
has been shown to reduce ROS in human endothelial cells,
vascular smooth muscle cells, and fibroblasts [53]. The
ROS species removed by PON2 is O2

−, not H2O2 (Horke
and Förstermann, unpublished). PON2-deficient mice with
an apoE−/− background developed more atherosclerotic
lesions, whereas PON2-overexpressing mice were protected
against those lesions [93].

Molecular mechanisms contributing to reduced levels
of bioactive NO in vascular disease

Endothelial dysfunction is largely equivalent to the inability
of the endothelium to generate adequate amounts of
bioactive NO (and to produce NO-mediated vasodilation).
Endothelial dysfunction has been shown for patients with
all common types of cardiovascular risk factors. Several
possible defects could account for reductions in bioactive
NO. These include an increased depletion of NO due to its
reaction with O2

−, a decreased NO production due to
changes in the activity of eNOS (e.g., eNOS uncoupling),
or a decreased NO production due to changes in the

expression of the enzyme. Also, a depletion of the NOS
substrate L-arginine, e.g., due to enhanced arginase activity,
could contribute to endothelial dysfunction.

Oxidative stress produced by NADPH oxidase induces
eNOS uncoupling

There is a growing body of evidence that vascular NADPH
oxidase plays a crucial role in the phenomenon of eNOS
uncoupling (Fig. 4a). An important hint came from experi-
ments with NADPH oxidase (p47phox) knockout animals
[66]. When hypertension was induced in normal mice with
a combination of the mineralocorticoid DOCA and salt,
these animals showed an increased production of vascular
ROS. This was significantly reduced by the NOS inhibitor
L-NAME, demonstrating a marked contribution of
uncoupled eNOS to oxidative stress in vascular tissue.
p47phox knockout animals showed much less oxidative
stress upon DOCA–salt treatment, and levels of ROS could
no longer be reduced with L-NAME [66]. These findings
demonstrate that NADPH oxidase-derived ROS can indeed
represent the trigger leading to eNOS uncoupling and that
uncoupled eNOS significantly contributes to oxidative
stress [66]. The detailed mechanism of how NADPH
oxidase-derived ROS can trigger eNOS uncoupling is
described below (Fig. 4a).

Molecular mechanisms triggering eNOS uncoupling

Oxidation of BH4 is likely to represent a major mechanism
for eNOS uncoupling

NO and L-citrulline production by eNOS in endothelial
cells correlates closely with the intracellular concentration
of BH4 [108, 146]. In isolated arteries [17] or rats in vivo
[152], a BH4 depletion produced endothelial dysfunction.
Conversely, supplementation with BH4 is capable of
correcting eNOS dysfunction in several types of patho-
physiology: In isolated aortas from prehypertensive SHR,
BH4 supplementation diminished the NOS-dependent gen-
eration of O2

−· [18]. Administration of BH4 restored
endothelial function in animal models of diabetes [102]
and insulin resistance [113], as well as in patients with
hypercholesterolemia [121], diabetes mellitus [41], essential
hypertension [47], and in chronic smokers [43].

Intracellular BH4 levels depend on the balance of its de
novo synthesis and its degradation or oxidation. BH4 is one
of the most potent naturally occurring reducing agents. It is
therefore reasonable to hypothesize that oxidative stress
may lead to excessive oxidation and depletion of BH4 [69,
87]. As oxidative stress occurs in cardiovascular patho-
physiology (see above), oxidation of BH4 may be the
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common cause of eNOS dysfunction in these situations. In
agreement with this concept, BH4 levels have been found
decreased in the aorta from insulin-resistant rats [112], in
plasma of SHR compared with age-matched WKY rats
[52], in aorta of hypercholesterolemic–apoE-knockout mice
[69] and in DOCA–salt-treated hypertensive rats [66].
Conversely, an infusion of the eNOS cofactor BH4 can
restore eNOS functionality as demonstrated by studies in
chronic smokers [43], diabetics [41], hypercholesterolemic
patients [121], and hypertensive individuals [47].

ONOO−—the direct reaction product of NO. and O2
−—

is able to oxidize BH4 (Fig. 4b). Published data show that
ONOO− oxidizes BH4 to the BH3· radical, which is re-
reduced to BH4 by NOS itself or when enough reducing
equivalents such as vitamin C are available [63, 145]
(Fig. 1). BH3. radical can also disproportionate to the
quinonoid 6,7-[8H]-H2-biopterin, which again can be
reduced by vitamin C back to BH4 [44, 145]. The exact
mechanism of action of L-ascorbic acid is unknown, but as
detailed below, the improvement of endothelial dysfunction
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by vitamin C may be due to enhanced regeneration of BH4

rather than the scavenging of O2
−· (see Fig. 1).

Potential role of L-arginine levels for eNOS uncoupling

Beneficial effects of L-arginine supplementation have been
documented in both animal studies and humans under
pathophysiological conditions such as hypercholesterolemia
and hypertension [22, 49, 56, 109]. This raises the question
as to whether L-arginine concentrations can become critical
as a substrate in vivo. At first glance, this appears unlikely.
The Km of eNOS for L-arginine is ∼3 μmol/L [103], normal
L-arginine plasma concentrations are ∼100 μmol/L (even in
pathophysiology they hardly fall below 60 μmol/L), and
there is an up to 10-fold accumulation of L-arginine within
cells [16]. In addition, human endothelial cells are not even
dependent on L-arginine uptake from the extracellular
space; they can effectively recycle L-citrulline to L-arginine
and can also obtain L-arginine from proteolysis [38, 114].

Endothelial cells, however, also express arginases that
can compete with eNOS for substrate and—if highly

expressed—“starve” eNOS. In porcine coronary and rat
aortic endothelial cells, arginase I is constitutively
expressed [13, 159], whereas arginase II can be induced
by lipopolysaccharide [13]. In human endothelial cells,
arginase II seems to be the predominant isozyme [4, 88].
An upregulated expression and activity of arginase II has
been found in human diabetic corpus cavernosum [9] and
in endothelium from patients with pulmonary hyperten-
sion [151]. Evidence for a role of increased enzymatic
activity of arginase in endothelial dysfunction has also
been provided in animal models of cardiovascular disease
such as aging [8], atherosclerosis [88], endothelial
dysfunction following ischemia–reperfusion [39], and
hypertension induced by aortic coarctation or high salt
[58, 160]. In apoE-knockout mice, the expression of
arginase II was unchanged compared with wild-type mice,
but the activity of the enzyme was markedly increased
[88]. Similarly, in human umbilical vein endothelial cells,
arginase II enzymatic activity, but not protein expression,
was enhanced after an 18- to 24-h exposure to thrombin
[88] or a 24-h stimulation with inflammatory cytokines
[4].

Thus, a relative L-arginine deficiency in the vicinity of
eNOS caused by excessive arginase activity is conceivable
and could explain part of the beneficial effects of L-
arginine supplementation. However, also non-substrate
effects of L-arginine could contribute to these effects.
These include potential direct radical-scavenging proper-
ties of the guanidino nitrogen group, the cooperativity
between L-arginine and BH4 binding sites of NOS [34,
81] (see Fig. 1), or the competition of L-arginine with
the derivative asymmetric dimethyl-L-arginine (ADMA),
which is an endogenous inhibitor of eNOS activity
[125].

Contribution of ADMA to eNOS uncoupling?

ADMA represents an independent predictor for all-cause
cardiovascular mortality. The activities (not the expression)
of both protein arginine N-methyltransferase (PRMT), type
I [11], and of the ADMA-degrading enzyme dimethylargi-
nine dimethylaminohydrolase (DDAH) [78] are redox
sensitive (Fig. 4a). In cultured endothelial cells, rat models
and man, oxidative stress has been shown to increase the
activity of PRMT(s) and decrease that of DDAH, thereby
leading to increased ADMA concentrations [11, 78, 125].
Thus, an increased production of ROS could be the reason
for increased ADMA levels. Elevated ADMA inhibits NO
synthesis by eNOS or could even uncouple the enzyme
[125] (Fig. 4). However, it remains to be established
whether ADMA concentrations reached in vivo (even in
pathophysiology) are sufficient to effectively interact with
eNOS.

Fig. 4 a Potential mechanisms by which risk factors for atheroscle-
rosis and various cardiovascular diseases lead to eNOS uncoupling
and endothelial dysfunction. In many types of vascular disease,
NADPH oxidases are upregulated in the vascular wall and generate
superoxide (O2

−·). In experimental diabetes mellitus and angiotensin
II-induced hypertension, this has been shown to be mediated by
protein kinase C (PKC) [48, 90]. Expression of eNOS is also
increased in vascular disease. H2O2, the dismutation product of O2

−·,
can increase eNOS expression via transcriptional and post-
transcriptional mechanisms (SOD superoxide dismutase) [23]. In
addition, also PKC activation can enhance eNOS expression [74],
and PKC inhibitors reduce eNOS expression levels in vascular disease
[48]. The products of NADPH oxidases and eNOS, O2

−· and NO,
rapidly recombine to form peroxynitrite (ONOO−). This can oxidize
the essential cofactor of eNOS (6R-)5,6,7,8-tetrahydrobiopterin (BH4)
to trihydrobiopterin radical (BH3.) [7, 33]. BH3. can disproportionate
to the quinonoid 6,7-[8H]-H2-biopterin (BH2). As a consequence,
oxygen reduction and O2 reduction by eNOS are uncoupled from NO
formation, and a functional NOS is converted into a dysfunctional O2

−·-
generating enzyme that contributes to vascular oxidative stress. The
enhanced eNOS expression (see above) aggravates the situation. Under
oxidative stress, concentrations of asymmetric dimethyl-L-arginine
(ADMA) increase in cells because arginine N-methyltransferase (PRMT,
type I) is upregulated [11], and the ADMA-degrading enzyme
dimethylarginine dimethylaminohydrolase (DDAH) is downregulated
[78]. ADMA in turn may contribute to eNOS uncoupling [124]. b
Scheme of an endothelial NO synthase (eNOS) whose oxygen reduction
is uncoupled from NO synthesis. Oxidative stress is associated with
endothelial dysfunction. ONOO− can oxidize BH4 to biologically
inactive products such as trihydrobiopterin radical (BH3·) or trihydrop-
terin radical cation protonated at N5 (BH3·H

+). The BH3· radical can be
converted to the quinonoid 6,7-[8H]-H2-biopterin (BH2), which also
lacks biological activity. When ONOO− overwhelms the cell’s capacity
to re-reduce these products to BH4, eNOS “uncouples” and reduces
oxygen to O2

−·, but does not synthesize NO anymore. eNOS then
contributes to oxidative stress in the cell

R
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A reduced eNOS expression is unlikely to contribute
to endothelial dysfunction

Several studies have shown that cardiovascular risk factors
are associated with an increase rather than a decrease in
eNOS expression [37, 48, 69, 72, 76, 90, 132]. The
increased expression of eNOS in vascular disease is likely
to be a consequence of an increased production of the
ROS H2O2, the dismutation product of O2

−·. H2O2. can
increase eNOS expression through transcriptional and post-
transcriptional mechanisms [23] (see Fig. 4a).

Vascular oxidative stress and endothelial dysfunction
predispose to atherosclerosis

Most risk factors favoring the development of atheroscle-
rosis (such as hypertension, hypercholesterolemia, diabetes,
cigarette smoking, or a positive family history of premature
coronary artery disease) are associated with vascular
oxidative stress and endothelial dysfunction [137]. Patho-
physiological mechanisms are probably best established for
hypertension. Angiotensin II—through stimulation of AT1

receptors—leads to an upregulation and activation of
NADPH oxidases in the vascular wall resulting in oxidative
stress [90, 94, 158]. Angiotensin II can increase NADPH
oxidase activity by inducing a rapid translocation of the
small GTPase rac1 to the cell membrane [143] or by
phosphorylation and translocation of the NADPH oxidase
subunit p47phox to the membrane [128]. Also, mechanical
stretch, characteristic of hypertension, can induce p47phox
membrane translocation and NADPH oxidase activation
[36]; stretch-induced NADPH oxidase activation was
absent in p47phox-deficient cells. A critical role for
oxidative stress has been demonstrated in hypertensive rats.
Treatment of these rats with statins decreased O2

−·
production and reduced blood pressure [144].

Endothelial dysfunction is already found in the preclinical
stage of atherosclerosis and can be detected much earlier than
angiographic or ultrasound evidence of structural coronary
artery disease. In fact, coronary endothelial vasodilator
dysfunction has been described as an independent predictor
of the progression of atherosclerosis and the risk of
cardiovascular events [111]. Interestingly, patients with
impaired endothelium-dependent vasodilation in a peripheral
vascular bed (the human forearm) have a higher risk for
cardiovascular events over a follow-up period of 4.5 years
[42].

However, it ought to be mentioned that hard evidence
that oxidative stress is both necessary and sufficient for
atherosclerosis has been difficult to find. Only if tools
become available that limit oxidative stress at its source
(and ameliorate its secondary phenomena) will we be able

to finally decide what components of atherosclerosis are
directly caused by oxidative stress.

Pharmacological approaches to reduce oxidative stress
and prevent or reverse eNOS uncoupling

Angiotensin-converting enzyme inhibitors and AT1 receptor
antagonists

Angiotensin II activates NADPH oxidases via AT1 receptor
stimulation [35]. In addition, the AT1 receptor is upregu-
lated in vitro by LDL [142]. Therefore, ACE inhibitors and
AT1 receptor antagonists may have indirect antioxidant
effects by preventing the activation of NADPH oxidase [61,
142] and/or increasing the activity of SOD3 [54]. Indeed,
there is clinical evidence for a beneficial effect of inhibition
of the renin–angiotensin system. ACE inhibitors improve
endothelial function in patients with coronary artery disease
and in hypertensive patients. Further, the Heart Outcome
Prevention Evaluation (HOPE) trial [157] showed that
treatment with ramipril greatly reduced the incidence of
death, myocardial infarction, and stroke in high risk
patients without heart failure. Also, the European Trial on
Reduction of Cardiac Events with Perindopril in Stable
Coronary Artery Disease (EUROPA) [29] demonstrated a
20% reduction with perindopril of the relative risk for
cardiovascular endpoints in a patient population with stable
coronary heart disease. In contrast, the Prevention of Events
with Angiotensin Converting Enzyme Inhibition (PEACE)
trial [12] could not show that patients with stable coronary
artery disease and largely intact ventricular function have a
therapeutic benefit from the addition of ACE inhibitors to
modern conventional therapy. The failure of ACE inhibitors
to reduce the cardiovascular events in this trial may have
been attributable to the low overall event rate of hard
endpoints, such as myocardial infarction or death in this
patient population.

Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase
inhibitors)

Much of the clinical benefit obtained with statins is clearly
related to their cholesterol-lowering properties, but effects
unrelated to this effect seem to be beneficial on various
aspects of cardiovascular disease [77]. Statins can inhibit
endothelial O2

−· formation by preventing the isoprenylation
of p21 Rac, which is critical for the assembly of NADPH
oxidase after activation of PKC [138]. In addition, SOD3
activity was more than doubled by simvastatin, and
simvastatin treatment also increased the number of func-
tionally active endothelial progenitor cells [67]. Finally,
statins increase the expression of eNOS by inhibition of
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Rho isoprenylation [68], and statins can also directly
activate eNOS via post-translational mechanisms involving
activation of the phosphatidylinositol 3-kinase/protein
kinase Akt pathway [62]. Taken together, statin treatment
improves endothelial function at least in part by reducing
oxidant stress and improving eNOS function.

Folic acid and 5-methyltetrahydrofolate

Folic acid and its active form 5-methyltetrahydrofolate have
been used successfully to restore endothelial function in
patients with hypercholesterolemia [135], diabetes mellitus
[131], or hyperhomocysteinemia [149] and in healthy
volunteers with postprandial endothelial dysfunction [148].

In cultured endothelial cells and with recombinant eNOS
enzyme, 5-methyltetrahydrofolate, NO synthesis was en-
hanced and O2

−· production was reduced [122]. This
provides a reasonable explanation for the clinical reports
of positive effects of 5-methyltetrahydrofolate on endothe-
lial function in vivo. The molecular mechanism by which
folate or 5-methyltetrahydrofolate increase eNOS activity is
not completely clear. It has been reported that folic acid
reverses endothelial dysfunction by direct effects on the
eNOS enzyme and independently of either the regeneration
or stabilization of BH4 [89, 122], whereas others have
postulated that folates possess antioxidant properties and may

recouple eNOS by BH4 stabilization or BH4 regeneration
from quinonoid BH2 [134].

Polyphenolic antioxidants

Dietary polyphenolic antioxidants are likely to assist in
preventing ROS damage. Epidemiological evidence sug-
gests a negative correlation between the consumption of
polyphenol-rich foods (fruits, vegetables, and cocoa
contained in chocolate) or beverages (wine, especially red
wine, grape juice, green tea, etc.) and the incidence of
cardiovascular disease [2, 80, 120, 136]. Most polyphenols
are only mild antioxidants, but some can reduce the activity
of pro-oxidative NADPH oxidases, and others can stimulate
anti-oxidative enzymes and eNOS [71, 117, 118, 139–141].
Current evidence suggests that small molecular weight
compounds with indirect mechanisms of action, such as
some dietary antioxidants, may offer more long-term
benefit than directly acting radical scavengers or antioxidant
vitamins (see below).

(6R-)5,6,7,8-tetrahydrobiopterin (BH4)

Acute intraarterial infusion of the eNOS cofactor BH4 can
restore eNOS functionality (i.e., “recouple” eNOS) in
clinical situations as demonstrated by studies in chronic

Fig. 5 Scheme viewing vascular oxidative stress as a cause of
atherogenesis. Cardiovascular risk factors activate ROS-producing
enzyme systems and/or weaken ROS-detoxifying systems. Many of
the underlying mechanisms are still unclear. The resulting oxidative
stress promotes atherogenesis through a number of different mecha-
nisms, including the activation of redox-sensitive transcription factors
(which stimulate the expression of pro-inflammatory genes) and the
activation of signaling cascades (activation of kinases, inhibition of

phosphatases). Elevated levels of ROS can also stimulate mitochon-
drial and nuclear DNA damage (and activate reactive DNA repair
systems). Enhanced DNA damage is found associated with various
types of vascular disease and may be involved in atherogenesis.
However, despite important evidence in favor of the above hypothesis,
the possibility remains that inflammation is the primary process of
atherogenesis and oxidative stress the detrimental secondary response.
The dashed blue arrows indicate this possibility
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smokers [43], diabetics [41], hypercholesterolemic [121],
and hypertensive [47] patients. Also, in coronary arteries of
patients with hypercholesterolemia, BH4 restored endothelial
function [30]. However, the need for parenteral administra-
tion, the short half-life, and the high cost of BH4 restrict its
therapeutic use.

Vitamin C

In cultured endothelial cells, ascorbic acid (vitamin C)
increased eNOS enzyme activity via regeneration of BH4.
Long-term in vivo treatment with vitamin C restored
endothelial function and endothelial NOS activity in aortae
of apoE-deficient mice. Also, in patients, acute infusions of
high doses of vitamin C have been found to improve
endothelial function [42, 64]. Some studies in patients
also demonstrated improvements of endothelial function/
endothelial NO production [32] or reduced levels of ROS in
the vascular wall [24] after longer-term oral treatment with
vitamin C. The exact mechanism of action of L-ascorbic
acid in improving endothelial dysfunction is not clear, but
the most important mechanism may be the enhanced
regeneration or stabilization of BH4 and eNOS “recoupling”
rather than the scavenging of O2

−· (Fig. 1). Disappointingly,
however, long-term epidemiological trials with oral vitamin
C have been ambiguous at best and do not support an
important role for vitamin C in reducing the risk of coronary
disease or other types of cardiovascular morbidity or
mortality [101].

Vitamin E

Because of its antioxidant properties, also vitamin E has
been believed to help prevent diseases associated with
oxidative stress. However, large-scale randomized clinical
trials undertaken to prove this hypothesis failed to verify a
consistent benefit in terms of prevention of coronary heart
disease and death [116]. In fact, there is enough evidence
from large, well-designed studies to discourage the use of
vitamin E in primary prevention of cardiovascular disease
[79].

Conclusions

Endothelial dysfunction and oxidative stress has been
identified as a common denominator of many cardiovascular
risk factors. They support pro-inflammatory, prothrombotic,
proliferative, and vasoconstrictor mechanisms that are in-
volved in the initiation, progression, and complications of
atherosclerosis. Diagnostically, a deficiency in bioactive NO
in coronary or peripheral arteries appears to be predictive of
future cardiovascular events. The pathophysiologic causes of

oxidative stress are likely to involve changes in a number of
different enzyme systems; most importantly, there is an
upregulation of NADPH oxidases and eNOS (Fig. 5).
Together, they lead to an increased production of ONOO−.
This conveys oxidative damage to eNOS and/or its cofactor
BH4 leading to “uncoupling” of the enzyme (Figs. 4 and 5).
As a consequence, an increased production of ROS by
uncoupled eNOS is likely to contribute significantly to
vascular oxidative stress and endothelial dysfunction
(Fig. 4).

Therapeutically, cardiovascular drugs in clinical use such
as ACE inhibitors, AT1 receptor blockers, and statins have
pleiotropic actions that improve endothelial function. In
addition, dietary polyphenolic antioxidants may prevent or
reverse eNOS uncoupling and restore its normal function.
Such compounds either block pathways leading to oxidative
stress and/or upregulate antioxidant enzymes. Despite prom-
ising initial observations, clinical trials with antioxidant
vitamins C and E failed to show an improved cardiovascular
outcome.
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