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Abstract Angiotensin II (Ang II), the central product of
renin-angiotensin system, has a role in the etiology of
hypertension and in pathophysiology of cardiac and renal
diseases in humans. Other functions of Ang II include
effects on immune response, inflammation, cell growth and
proliferation, which are largely mediated by Ang II type 1
receptor (AT1). Several experimental studies have demon-
strated that Ang II acts through AT1 as a mediator of normal
aging processes by increasing oxidant damage to mito-
chondria and in consequences by affecting mitochondrial
function. Recently, our group has demonstrated that the
inhibition of Ang II activity by targeted disruption of the
Agtr1a gene encoding Ang II type 1A receptor (AT1A) in
mice translates into marked prolongation of life span. The
absence of AT1A protected multiple organs from oxidative
damage and the alleviation of aging-like phenotype was
associated with increased number of mitochondria and
upregulation of the prosurvival gene sirtuin 3. AT1 receptor
antagonists have been proven safe and well-tolerated for
chronic use and are used as a key component of the modern
therapy for hypertension and cardiac failure, therefore Ang
II/AT1 pathway represents a feasible therapeutic strategy to
prolong life span in humans.
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Abbreviation
RAS renin-angiotensin system
Ang II angiotensin II
ACE angiotensin converting enzyme
AT1 Ang II type 1 receptor
AT2 Ang II type 2 receptor
NO nitric oxide
eNOS endothelial nitric oxide synthase
ROS reactive oxygen species
ACEi angiotensin-converting enzyme inhibitors
ARBs angiotensin II receptor blockers
SIRT sirtuin
Nampt nicotinamide phosphoribosyltransferase
IGF-1 insulin growth factor-1

Introduction

The mean life span has been increasing steadily over the
course of human evolution, and in the last century, the
human life expectancy in developed countries has nearly
doubled as indicated by an increase from around 50 to 75–
80 years [12]. Before 1950, most of the gain in life
expectancy was due to marked decrease in death rates at
younger ages. In the second half of the 20th century, the
observed reduction in mortality at ages above 65 years
could be ascribed to the delay in the onset of several age-
related disorders and to the increased capacity to prevent
organ damage, as a consequence of improved biomedical
and nutritional conditions [47]. Therefore, ensuring disease-
free survival and not merely survival per se represents an
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attractive and desirable goal for society as a whole. Healthy
aging and longevity depend on the dynamic interaction
between biological and environmental factors, including
medical care, healthy diet, and lifestyle. However, emerging
evidence from model organisms has indicated that several
genetic factors might play a role in longevity, putting the
attention on several molecular candidates involved in
pathways contributing to protect organs from degeneration
and diseases.

In the last 20 years, one of the main goals of our research
was to find out therapeutic strategies to protect the kidney
from progressive renal injury with the final aim to reduce
the need of dialysis in patients. To this aim, our efforts have
been devoted to identify factors implicated in the progres-
sion of chronic kidney disease, whose incidence is
increasing worldwide at an alarming rate. Experimental
and clinical evidence is available that blockade of the renin
angiotensin system (RAS) by angiotensin converting
enzyme inhibitors (ACEi) and angiotensin II receptor
blockers (ARB) is effective in slowing the progression of
kidney disease due to the drugs’ ability to reduce
proteinuria [53]. When ACEi and ARB were given in
combination to rats genetically predisposed to progressive
nephropathy, reduction of glomerular sclerosis was even
more evident, particularly in those glomeruli that had less
severe lesion to begin with. This shows that remodeling of
glomerular architecture is possible, which would imply
some form of regeneration of the capillary network [53].
Recent clinical trials suggested that inhibition of RAS
might actually prevent nephropathy in patients with chronic
renal failure of nondiabetic origin (the Ramipril Efficacy in
Nephropathy study) [57]. The effectiveness of ACEi in
protecting the kidney against the development of micro-
albuminuria, which is a major risk factor for cardiovascular
events and death, has been also documented in patients with
type 2 diabetes (the Bergamo Nephrologic Diabetes Com-
plications Trial study) [56].

Strategies able to reduce renal disease progression could
translate into a decreased incidence of cardiovascular
events. A tremendous body of research, both experimental
and clinical, has unequivocally shown that pharmacologic
blockade of RAS, beyond the renal protection, reduces
cardiovascular risk more effectively than other antihyper-
tensive treatments [54]. Inhibition of RAS prevents end-
organ damage associated with aging [14], in line with
evidence that angiotensin II (Ang II) promotes the onset
and the progression of vascular senescence, associated with
vascular, functional, and structural changes contributing to
age-related vascular disease [43].

In the present review, we focus on the recent emerging
data suggesting a role of Ang II in aging. In addition we
highlight the mechanisms by which Ang II via AT1 could
affect life span in mammals.

The renin-angiotensin system

Renin-angiotensin system is considered to be the major
regulator of blood pressure and fluid homeostasis. The
main effector molecule of the RAS, Ang II, is produced
from the substrate angiotensinogen through sequential
enzymatic cleavages by renin and angiotensin converting
enzyme (ACE). In particular renin cleaves angiotensinogen,
forming Ang I that in turn is converted to Ang II by ACE
(Fig. 1). ACE is a circulating enzyme found in the
endothelial cells of the lung, vascular endothelium, and
cell membranes of the kidney, heart, and brain. ACE also
degrades bradykinin to inactive fragments, reducing the
serum levels of endogenous vasodilators [8].

Ang II causes increases in systemic and local blood
pressure via its vasoconstrictive effect, influences renal
tubuli to retain sodium and water, and stimulates aldosterone
release from adrenal gland [69]. Besides being a potent
vasoconstrictor, Ang II exerts several prominent nonhemo-
dynamic effects including proliferative, proinflammatory,
and profibrotic activities [58].

At the cellular level, responsiveness to Ang II is
conferred by the expression of two classes of pharmaco-
logically distinct rhodopsin-like G protein-associated recep-
tors, the type 1 and the type 2 receptors (AT1 and AT2)
[61, 69]. AT1 has been cloned in a number of species and
two subtypes [59], named AT1A and AT1B, have been
identified in rat and mouse. AT1A is the predominantly
expressed receptor in different body districts including
kidney, liver, heart, blood vessels, adrenal glands, and
cardiovascular control centers in the brain [11], and is
considered the closest murine homolog to the single human
AT1. AT1A confers most of the classical actions of Ang II
such as blood pressure increase [36], aldosterone release
from the adrenal zona glomerulosa [1], salt retention in
renal proximal tubuli [42], and stimulation of the sympa-
thetic nervous system via receptors in the brain [17]. The
expression of the AT1B appears to be more prominent in the
anterior pituitary gland and the adrenal zona glomerulosa.
AT1B regulates blood pressure when AT1A is absent [48].

The expression of the AT2 is high in the fetus, but low in
adult tissues. AT2 is expressed in the adrenal medulla,
uterus, ovary, vascular endothelium, and distinct brain
areas [65]. AT2 interacts with and modulates actions
perpetuated by the AT1, possibly antagonizing many of its
effects. The binding of Ang II to the AT2 activates
vasorelaxation of conduit and resistant arteries and
improves resistance artery remodeling, promotes cardio-
vascular protection against ischemia-reperfusion injury and
acute myocardial infarction, inhibits cardiac fibrosis, and
protects the kidney from ischemic injury [60]. In a mouse
model of renal ablation, the lack of AT2 aggravates renal
injury and reduces survival [6].
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Link between angiotensin II and oxidative stress

Angiotensin II is known to contribute to oxidative stress
damage by stimulating the generation of both nitric oxide
(NO) and NAD(P)H oxidase-derived superoxide in the
cytosol of different cell types including endothelial,
vascular smooth muscle, fibroblast and tubular epithelial
cells [51, 55]. The interaction between NO and superoxide
generates peroxynitrite, a cytotoxic anion that inhibits
mitochondrial electron transport, destroys DNA and cellular
proteins, leading to oxidative stress damage [52]. Further-
more, Ang II can induce endothelial nitric oxide synthase
(eNOS) uncoupling, switching from NO to superoxide
production [46]. Ang II stimulates both cytosolic and
mitochondrial reactive oxygen species (ROS) generation
[64] (Fig. 2). The direct interaction between Ang II and
mitochondrial components has been suggested by the
presence of Ang II in mitochondria of brain, heart, and
smooth muscle cell in rodent [22]; moreover, renin,
angiotensinogen, and ACE were also detected within
intramitochondrial dense bodies [50].

One of the most prominent theories to explain aging is
the “free-radical theory” of aging which was initially
proposed by Harman in 1950 s [30]. It postulates that the
loss of cell functional capacity associated to senescence
results from the accumulation of ROS-inflicted oxidative
stress damage to different molecules, leading to lipid
peroxidation, protein oxidation and oxidative modifications
in nuclear and mitochondrial DNA [21].

Reactive oxygen species are generated in multiple
compartments and by multiple enzymes within the cells,
including NAD(P)H oxidases on plasma membranes, lipid
metabolism within the peroxisomes, and various cytosolic
enzymes such as cyclooxygenase. The majority of intracel-
lular ROS production derives from mitochondrial matrix

and the space between the inner and outer mitochondrial
membrane. Mitochondria utilize more than 90% of cellular
oxygen to produce energy. While most oxygen is trans-
formed into water, 1–2% of it forms superoxide [7].
Reactive oxygen species compromise mitochondrial integ-
rity and function, leading to a decreased mitochondrial ATP
generation, with a subsequent increased release of ROS by
the mitochondria themselves, initiating a vicious cycle of
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Fig. 2 Schematic representation of Ang II-induced oxidative stress
damage. Ang II via AT1 promotes oxidative stress by activating
NAD(P)H oxidase-derived superoxide generation and by inducing
eNOS uncoupling switching from NO to superoxide production. Ang
II may also have a direct action on mitochondrial ROS production,
independent of AT1 signaling
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progressively increasing oxidative stress [23]. The aging
process is frequently associated to a reduction in mitochondrial
number and several changes inmitochondrial structure, such as
swelling, shortening of the cristae, and matrix vacuolization
[10, 31, 67].

Under normal physiological conditions, the capacity of
Ang II to promote oxidative stress is tightly regulated [20,
27]. By contrast, in conditions associated with RAS
overactivation, such as aging [3, 68, 70], the dysregulation
of Ang II-dependent ROS generation may become a
significant contributor to cell oxidation and tissue damage.
RAS overactivation exerts deleterious effects on renal and
cardiac functions documented by the increase of Ang II
peptide in urines [25] and increased generation of Ang II in
the heart [28] of old animals. A recent in vitro study has
demonstrated that the production of ROS induced by Ang II
via AT1 led to DNA damage, and consequently to
accelerated aging of human vascular smooth muscle cells
[32]. Cell senescence following ROS production has been
proposed to be mediated by two different mechanisms of
DNA damage: a telomere-independent pathway via the
induction of stress induced premature senescence (SIPS)
and a telomere-dependent mechanism via accelerated
attrition of telomeres. This hypothesis has been confirmed
by data showing that the critical DNA damage induced by
AT1-mediated ROS production both increased SIPS expres-
sions that promoted cell cycle arrest and markedly
accelerated the rate of telomere loss that is associated with
reduced cellular proliferation and premature cell senescence
[32].

All these findings demonstrate the crucial role of
oxidative stress on the aging process and strongly support
the involvement of Ang II in tissue senescence by virtue of
its ability to mediate the release of oxidant species.

Protective effect of inhibiting angiotensin II on aging

Angiotensin-converting enzyme inhibitors and ARBs are
two widely used classes of anti-hypertensive drugs that
inhibit RAS at different levels. ACEi inhibit Ang II
formation by binding to the active site of the enzyme that
converts Ang I into Ang II, and ARBs prevent Ang II from
binding to its receptors.

In aging animals, the cardiovascular protective effects
occurred after RAS inhibition was associated with an
increased NOS activity [26]. Moreover, in old animals,
both enalapril and losartan treatments significantly in-
creased NO production in heart homogenate, while reduced
hydrogen peroxide formation [15]. In spontaneously hyper-
tensive rats, the inhibition of RAS was able to reverse the
naturally age-related and advanced myocardial hypertro-
phy and fibrosis by attenuating Ang II-mediated oxidative

stress, as documented by reduced expression of NAD(P)H
oxidative components p22phox, p47phox, and gp91phox
in old hearts [37]. Furthermore, oxygen radicals mediated
the accelerated cerebral endothelial dysfunction that
occurs with age, and more importantly, old mice lacking
AT1 did not develop these age-related cerebral circulation
damages [45].

Other studies performed in normal adult rats have clearly
shown that chronic treatment with ACEi or ARB reduced
kidney damage associated with age. Old animals treated
with enalapril and losartan presented lower glomerular and
tubulointerstitial fibrosis, reduced monocyte or macrophage
infiltrates, and decreased tubular atrophy than untreated
aged animals [24].

The beneficial effect of RAS inhibition involves the
preservation of renal mitochondria from aging in rats.
Enalapril and losartan treatments prevented the age-
associated decline in the renal mitochondrial capacity for
energy production and attenuated the age-associated in-
crease in mitochondrial oxidant production [19].

A similar protective effect of RAS inhibition was also
observed in the liver from old rats. In these animals the
maintenance of an adequate mitochondrial function during
aging was due to the enhanced transcription levels of the genes
nuclear respiratory factor 1 and peroxisome proliferators
activator receptor gamma coactivator-1α that are involved in
mitochondrial respiration and biogenesis, respectively. These
positive effects on mitochondria maintained the integrity of the
hepatocyte system, and prevented liver fibrosis and the
infiltration of inflammatory cells during aging [18].

The development of gene-targeting technology in mice has
provided new insight into the role of RAS genes in regulating
blood pressure, body fluid homeostasis, and fetal develop-
ment. Mice that are unable to generate Ang II because of
targeted mutation in the angiotensinogen (Agt −/−) or
angiotensin-converting enzyme (Ace −/−) genes had a severe
phenotype characterized by reduced survival, low blood
pressure, and abnormal kidney morphology. A similar
phenotype was observed in mice lacking both Ang II type
1 receptors (AT1A

−/− AT1B
−/−) [49].

The disruption of the gene encoding AT1A (Agtr1a)—the
major mouse AT1 receptor isoform—did not cause severe
postnatal mortality or the structural abnormalities seen in
the kidneys of the knockout models described above.
Taking advantage from this mouse model, we have recently
investigated the role of the AT1 in end-stage organ damage.
A prospective observational study was performed in
homozygous mice deficient for the AT1A and wild-type
controls. AT1A

−/− mice substantially outlived their wild-type
littermates by 26% (Fig. 3) and had normal body weight and
physical activity as reflected by their ability to perform on a
rotating system that evaluates motor coordination and
vitality. Reduction in food intake of 20% and 40% in
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laboratory animals extends their life span by up to 50% [29].
Reduced caloric intake did not contribute to prolonged
survival in AT1A

−/− mice, since daily food intake was
virtually identical between AT1A

−/− and wild-type mice.
AT1A

−/− grew up normally, and the body weights increased
comparably to wild-type littermates ruling out the possibility
that small body size could be responsible of extended life
span as previously described [9].

AgingAT1A
−/− mice developed fewer aortic atherosclerotic

lesions and less cardiac injury, as reflected by the reduction of
myocyte size and fibrosis, with lower deposition of interstitial
collagen with respect to wild-type mice [5]. These data point
to a direct effect of Ang II via AT1A on atherosclerotic lesion
generation and on extracellular matrix deposition by cardiac
fibroblasts.

Furthermore, agingmice lacking the AT1A showed reduced
production of peroxinitrite in hearts and aortas, as compared

to wild-type animals, indicating a possible role of Ang II via
AT1A into the production of ROS [5]. Given the crucial role
of mitochondria in producing peroxynitrite during aging
processes [39], ultrastructural analysis of mitochondria was
performed in proximal tubular cells of the kidney of AT1A

−/−

mice that possess a large number of mitochondria and are
highly dependent on mitochondrial energy production for
proper function [33]. The lack of AT1A protected the cells
from the loss of mitochondria during aging [5], demonstrat-
ing that Ang II negatively influences mitochondrial number
and function by promoting oxidative stress, and that the
absence of AT1A strongly attenuated the functional and
structural changes that occur in kidney mitochondria
following oxidative stress increase upon age [5].

Role of sirtuins in longevity associated
with AT1A

−/− mice

Recent evidences have suggested that mitochondrial activity
could be regulated by the expression of enzymes belonging to
the Sirtuin family [16]. Sirtuins are nicotinamide adenine
dinucleotide (NAD)-dependent deacetylases proteins highly
conserved from Escherichia Coli to humans and associated
with longevity, mitochondrial and cell cycle regulation,
apoptosis, and DNA damage repair [29]. In humans and
mice, there are seven different sirtuins (SIRT1-7), and three
are located in the mitochondria (SIRT3, 4, and 5). Among

AT1A
-/- mice

Mean Life span (months)

+ 26 %

Wild-type mice

24 3612 301860

Fig. 3 Mean life span of AT1A-deficient mice (31.20±2.31 mo) and
their wild-type littermates (24.81±3.10 mo)

Fig. 4 Different pathways
involved in life span regulation
preserve mitochondrial and
cellular wellness and promote
longevity by modulating
ROS production and sirtuin
expression
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them, SIRT3 has an apparent direct link to extended life span
in humans, in fact mutations in an enhancer region of the
Sirt3 gene that potentially upregulate its expression were
found at a high frequency in long-lived individuals [4].
Under oxidative stress, SIRT3 overexpression protects the
cardiomyocytes against Bax-mediated apoptosis by deacety-
lating the substrate Ku70, promoting the binding of Ku70 to
Bax, and hence blocking the Bax activation [66]. Of note,
SIRT3 regulates adaptive thermogenesis and decreases
mitochondrial membrane potential and reactive oxygen
species production, while increasing cellular respiration
[62]. For these reasons SIRT3 acts as sensor of small
reactive oxygen species that could lead to mitochondrial
damage and activates specific cellular signaling pathway to
counteract oxidative stress such as the expression of MnSOD
antioxidant protein [38]. The recent identification of the two
substrates such as acetyl coenzyme A synthetase and
glutamate dehydrogenase as targets of SIRT3 revealed that
this molecule controls a regulatory network involved in
energy metabolism and in mechanisms of caloric restriction
and life span determination [40, 41].

SIRT3 could exert its action only in the presence of the
cosubstrate NAD+, and the concentration of NAD+ deter-
mines cell survival. In the context of nutrient restriction,
mitochondria dictate cell survival through the upregulation
of nicotinamide phosphoribosyltransferase (Nampt) that
boosts mitochondrial NAD+ concentration [71]. Altogether
these findings prompted us to study Sirt3 and Nampt
survival genes in AT1A

−/− mice. Transcript levels of both
Nampt and Sirt3 were increased in kidneys from AT1A

−/−

mice with respect to wild-type animals. The finding that
candesartan, an AT1 receptor antagonist, prevented Ang II-
induced Nampt and Sirt3 mRNA reduction in cultured
tubular epithelial cells suggested a possible biochemical
link between Ang II and survival genes, which conceivably
operates via the AT1A. Furthermore, experiments showing
that Nampt gene silencing by siRNA limited the reduction
of Sirt3 mRNA induced by Ang II would indicate a
causative role of Nampt in modulating Sirt3 gene transcrip-
tion in response to Ang II [5].

Caloric restriction prolongs the life span through an
increase of sirtuins [29, 63]. In rodents and humans the levels
of Sir2 ortholog SIRT1, that targets numerous regulatory
factors affecting stress management and metabolism, increase
in response to caloric restriction and this increase causes
favorable changes in metabolism and stress tolerance [13].

The sirtuins are also involved in prolonged survival
induced by resveratrol [2], a small molecule found in red
wine which activates SIRT1 and mimics the anti-aging
effect of caloric restriction. The effect of resveratrol on life
span is associated with increased mitochondrial number and
is dependent on the upregulation of Sir2 [35]. Moreover,
resveratrol downregulates AT1 through SIRT1 activation in

cultured vascular smooth muscle cells and mouse aorta
implying that inhibition of the AT1 contributes to
resveratrol-induced longevity [44].

In the kidney from AT1A
−/− mice the levels of SIRT1

were comparable to wild-type mice, suggesting that the
increased longevity of this mouse strain is independent from
the SIRT1 pathway.

All these findings support a role of SIRT3 in the
prolongation of life span, and the manipulation of the
RAS system provides a remarkable beneficial effect on
longevity by reducing oxidative stress and upregulating
survival genes (Fig. 4).

Conclusions

Chronic activation of RAS plays an important role in the
promotion of end-stage organ damage associated with aging
by increasing tissue and mitochondrial oxidative stress.
Therapies targeting RAS (ACEi and ARBs) reduce age-
associated cardiovascular and renal damage and preserve the
number and the function of mitochondria. A stronger
protective effect, demonstrated by a significant prolongation
of life span, was observed in genetically modifiedmice, which
lack the AT1A gene. In these mice, the longevity is the
consequence of reduced mitochondrial damage due to the
attenuation of oxidative stress and the upregulation of Nampt
and Sirt3 survival genes.

The extension of the life span observed in AT1A
−/− mice is

comparable to that of mice lacking the insulin growth factor-
1 (IGF-1) receptor [34]. However the manipulation of the
latter pathway in humans is not imminently feasible. In
contrast, Ang II type 1 receptor antagonists have been
proven safe, well-tolerated for chronic use and represent a
key component of the modern therapy for hypertension and
cardiac failure. Thus, the inhibition of AT1 could represent a
possible therapeutic strategy for diseases of aging and
possibly for extending the life span. Further studies are
necessary to deepen the role of AT1 in humans and to
understand whether the receptor function is similar to that
found in animals.
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