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Abstract The proximal tubule is critical for whole-organism
volume and acid–base homeostasis by reabsorbing filtered
water, NaCl, bicarbonate, and citrate, as well as by
excreting acid in the form of hydrogen and ammonium
ions and producing new bicarbonate in the process. Filtered
organic solutes such as amino acids, oligopeptides, and
proteins are also retrieved by the proximal tubule. Luminal
membrane Na+/H+ exchangers either directly mediate or
indirectly contribute to each of these processes. Na+/H+

exchangers are a family of secondary active transporters
with diverse tissue and subcellular distributions. Two
isoforms, NHE3 and NHE8, are expressed at the luminal
membrane of the proximal tubule. NHE3 is the prevalent
isoform in adults, is the most extensively studied, and is
tightly regulated by a large number of agonists and
physiological conditions acting via partially defined molec-
ular mechanisms. Comparatively little is known about
NHE8, which is highly expressed at the lumen of the
neonatal proximal tubule and is mostly intracellular in
adults. This article discusses the physiology of proximal

Na+/H+ exchange, the multiple mechanisms of NHE3
regulation, and the reciprocal relationship between NHE3
and NHE8 at the lumen of the proximal tubule.
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Na+/H+ exchange in biology

Na+/H+ exchangers (NHEs) are universally present in
prokaryotes, lower eukaryotes, and higher eukaryotes, includ-
ing fungi, plants, and animals [1]. In prokaryotes, fungi and
plants, the transmembrane proton electrochemical gradient
(ΔμH+) energizes the extrusion of Na+ from the cytoplasm.
Plasma membrane NHEs characterized to date in animal cells
utilize the inward Na+ gradient created by the activity of Na+/
K+-adenosine triphosphatase (ATPase) to extrude H+ against
its electrochemical gradient in an electroneutral fashion.

All NHEs are members of the very large superfamily of
monovalent cation–proton antiporters (CPA), which is divided
phylogenetically in the CPA1, CPA2, and NaT-DC transporter
families [1, 2]. Nine NHE isoforms (NHE1–9) belonging to
the CPA1 family and having different tissue and subcellular
distribution (Table 1) have been described to date in the
human genome [1, 3, 4]. In addition, the human genome
contains a sperm-specific NHE (a member of the NaT-DC
family) with demonstrated NHE activity [1, 5, 6], as well as
two genes termed NHA1 and NHA2 (members of the CPA2
family) which are more closely related to prokaryotic Na+/H+

exchangers [1] (Table 1). The expression and function of
NHA2 have been recently confirmed [7, 8]. Brett et al. [1]
presented an extensive phylogenetic classification of NHEs
using 118 eukaryotic NHE genes of the CPA1 family. Based
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on sequence, cellular location, ion selectivity, and inhibitor
specificity, NHEs can be divided into two major subfamilies:
intracellular and plasma membrane. The intracellular NHE
subfamily can be further divided into three clades: (1) the
endosomal/trans-Golgi clade, which includes one of the
oldest eukaryotic NHE genes, as well as human NHE6,
NHE7, and NHE9; (2) the NHE8-like clade which includes
eight animal NHE genes and interestingly shows similarity
to Drosophila NHE; (3) the plant vacuolar clade which
includes 32 plant NHE genes and the NHE gene of slime
mold. The plasma membrane NHE subfamily can be divided
into two clades: (1) the recycling clade which includes only
animal genes (24 in total), including human NHE3 and
NHE5; (2) the resident clade which is restricted to vertebrate
NHE genes (25 in total), including human NHE1, NHE2,
and NHE4. This classification is extremely useful for
understanding differences and similarities in NHE localiza-
tion, function, and regulation and for identifying the most
appropriate models for the study of individual NHEs.

Two members of the NHE family will be discussed here in
the context of the renal proximal tubule: NHE3 and NHE8.

Luminal Na+/H+ exchange in proximal tubule
physiology

The existence of Na+/H+ exchange activity in the mamma-
lian kidney was first inferred in the 1940s by Pitts and

coworkers [9, 10] in a series of studies that, in the words of
Gerhard Giebisch, “provided the ground on which modern
renal acid-base physiology is based” [11]. Na+/H+ exchange
activity was definitively demonstrated three decades later
by Murer et al. [12], followed by Kinsella and Aronson
[13]. Another decade passed before the first mammalian
Na+/H+ exchanger, NHE1, was cloned by Sardet et al. [14].
In the early 1990s, several independent groups identified
NHE3 as the main proximal tubular NHE isoform [15–18].

To date, two NHEs have been described at the luminal
membrane of proximal tubule cells: NHE3 is predominant
in adults [17–19], and NHE8 is highly expressed in
neonates [20–22]. A developmental switch between the
two transporters has been proposed as part of postnatal
renal maturation [22, 23] and will be discussed later in this
article. NHE1 and to a lesser extent NHE4 are present at the
basolateral membrane [24, 25], but their specific roles in
proximal tubule function are not known. Most of what we
know today about the molecular physiology and regulation
of proximal Na+/H+ exchange pertains to NHE3, which is
by far the best-studied luminal isoform.

Luminal membrane Na+/H+ exchange in the mammalian
proximal tubule mediates the isotonic reabsorption of
approximately two thirds of the filtered NaCl and water,
the reabsorption of bicarbonate, and the secretion of
ammonium (NH4

+) and contributes to the reabsorption of
filtered citrate, amino acids, oligopeptides, and proteins.
The mechanisms are summarized in Figs. 1 and 2. The

Table 1 Mammalian Na+/H+ exchangers

Protein Tissue expression Cellular distribution Renal distribution

NHE1 Ubiquitous Plasma membrane; basolateral
membrane of epithelial cells

Basolateral; throughout the nephron, with the
exception of the macula densa and intercalated
cells of the cortical collecting duct

NHE2 Gastrointestinal tract, skeletal
muscle; less in kidney, brain,
testis, uterus

Plasma membrane; apical membrane
of epithelial cells

Apical; thick ascending limb and distal
convoluted tubule

NHE3 Gastrointestinal tract, kidney, gall
bladder, epididymis; much less
in brain

Plasma membrane; apical membrane
and recycling endosomes of epithelial
cells

Apical; proximal tubule and thick ascending
limb

NHE4 Stomach; less in kidney and brain Plasma membrane; basolateral
membrane of epithelial cells

Basolateral; throughout the nephron; highest
expression in thick ascending limb

NHE5 Brain Plasma membrane and recycling
endosomes (synaptic vesicles)

Very-low-level transcript

NHE6 Ubiquitous Intracellular (recycling endosomes) Transcript present
NHE7 Ubiquitous Intracellular (trans-Golgi network) Transcript present
NHE8 Ubiquitous (intracellular); luminal

surface of renal and intestinal
epithelia

Intracellular (trans-Golgi network);
apical membrane and recycling
endosomes of epithelial cells

Apical; proximal tubule

NHE9 Ubiquitous Intracellular (recycling endosomes) Transcript present
Sperm-NHE Spermatozoa Sperm flagellum Absent
NHA1 Testis (?) Unknown Absent
NHA2 Ubiquitous Mitochondria, endosomes,

plasma membrane
Distal convoluted tubule
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regulation of proximal tubule Na+/H+ exchange bears
relevance to the regulation of these physiological functions.

Net apical reabsorption of NaCl involves coupling of
Na+/H+ exchange with Cl−/base exchange and acid recy-
cling or triple coupling of Na+-sulfate cotransport, sulfate–
anion exchange, and Cl−/anion exchange [26–28] (Fig. 1,
left). In addition, the transcellular cotransport of Na+ with
organic solutes coupled to paracellular Cl− transport results
in net transepithelial NaCl reabsorption [29, 30]. The
reabsorption of water results principally from the small
osmotic gradient created across the proximal tubular
epithelium by NaCl reabsorption. Although water flux can
theoretically occur through transcellular and/or paracellular
routes, the surface area of the luminal membrane far
exceeds that of the paracellular junctions and is endowed
with aquaporin water channels [31, 32]. Water is thus
mostly reabsorbed via the proximal tubule cell [33, 34].

Proximal tubule bicarbonate reabsorption is in part
mediated by apical Na+/H+ exchange, which provides the
H+ to titrate luminal filtered HCO3

− [35–37] (Fig. 1, right).
The catalytic action of luminal carbonic anhydrase results
in generation of CO2, which traverses the apical cell
membrane by free diffusion and possibly via water
channels, and is reverted to H+ and HCO3

− by intracellular
carbonic anhydrase [37, 38]. The resulting intracellular
protons are extruded, in part via apical Na+/H+ exchange,
thus making HCO3

− available for basolateral transport. In
addition, apical Na+/H+ exchange contributes to the

Fig. 2 Model of how apical Na+/H+ exchange participates in the
proximal tubule reabsorption of amino acids, oligopeptides, and
proteins. Apical NHE3 provides the H+ used for H+-coupled
cotransport of filtered amino acids and oligopeptides. Apical NHE3
also interacts with megalin, which is responsible for receptor-mediated
endocytosis of some proteins in the proximal tubule. The interaction
with megalin may recruit NHE3 to endocytic vesicles. After
endocytosis, NHE3 (and possibly other intracellular NHEs, not
shown) utilizes the outward transvesicular Na+ gradient of endocytic
vesicles and early endosomes to drive inward movement of protons
and endosomal acidification, which is important for further processing
of reabsorbed proteins. This model requires further experimental
validation

Fig. 1 Model of how apical Na+/H+ exchange mediates NaCl
absorption (left) and luminal acidification (right). The electrochemical
driving force (Δμ) is the low cell [Na+] and negative interior voltage
generated by the Na+/K+-ATPase. The apical Na+/H+ exchanger
NHE3 is highlighted in gray. Coupling of Na+/H+ exchange with
Cl−/base (B−) exchange and acid (HB) recycling or triple coupling of
Na+-sulfate cotransport, sulfate–anion (X−) exchange and Cl−/anion
exchange constitutes net apical NaCl entry. The Na+ that enters with
organic solutes (Org) also results in net NaCl entry when coupled to
paracellular Cl− transport. Basolateral transcellular Cl− exit is achieved
via diverse mechanisms (Cl− channel, Na+-dependent Cl−HCO3

−

exchange, and KCl cotransport). Luminal acidification by NHE3

titrates filtered HCO3
− which results in HCO3

− absorption. As luminal
[HCO3

−] falls with isotonic fluid absorption, luminal Cl− is concen-
trated (graph in middle panel) along the length of the proximal tubule,
which enhances the Δμ for paracellular Cl− diffusion (TF–P, tubular
fluid to plasma concentration ratio). The H+ extruded by NHE3 also
titrate filtered trivalent citrate to bivalent citrate, which is taken up by
the Na+-citrate cotransporter. Citrate reabsorption is tantamount to
base equivalent absorption. The metabolism of neutral glutamine
(Gln) generates NH4

+ (acid) and HCO3
− (base). NH4

+ secretion is
mediated by NHE3 either by luminal trapping of diffused NH3 or by
NH4

+ traversing as a substrate. Base exit is mediated by the Na+-
HCO3

− cotransporter
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generation of new HCO3
− in the proximal tubule by

extruding NH4
+ (acid equivalent) resulting from the

mitochondrial metabolism of glutamine, thereby “freeing”
HCO3

− (base equivalent) generated through the same
metabolism [39–41]. Reabsorbed as well as intracellularly
generated bicarbonate is extruded to the basolateral side
mainly via a Na+–HCO3

− cotransport mechanism [35, 42].
Of note, transport of solutes and water by the proximal

tubule is not homogenous. The early proximal tubule
reabsorbs preferentially HCO3

− and organic solutes, and
the resulting concentration of luminal Cl− facilitates
downstream paracellular Cl− diffusion [43–46] (Fig. 1,
middle). Na+ and water reabsorption by the proximal tubule
also varies axially: while fractional reabsorption of volume
stays relatively constant, absolute volume reabsorption
decreases along the length of the proximal tubule (linear
tubular fluid to plasma inulin ratio, middle panel of Fig. 1)
[43–45].

Apical Na+/H+ exchange is also important for proximal
tubule ammonium secretion, by providing the H+ required
for luminal trapping of the freely diffused ammonia (NH3),
as well as by directly mediating Na+/NH4

+ exchange [40,
41, 47, 48]. In addition, H+ extruded by NHE3 titrate
filtered trivalent citrate to its bivalent form, thus facilitating
the reabsorption of citrate via a sodium-coupled cotransport
mechanism [49–51] (Fig. 1, right).

In accordance with these physiological roles, NHE3-null
mice are hypovolemic and hypotensive and have mild
metabolic acidosis, decreased renal reabsorption of Na+,
fluid, and HCO3

−, and markedly increased mortality when
fed a low-salt diet [52]. These abnormalities are improved
but not reversed when the expression of NHE3 is rescued
by transgenic expression at the other major site of NHE3
action, the small intestine [53, 54].

Finally, apical Na+/H+ exchange plays a role in the
proximal tubule reabsorption of filtered organic solutes
such as amino acids, oligopeptides, and proteins (Fig. 2). A
number of organic solute transporters in vertebrate epithelia
with their evolutionary roots in prokaryotes or lower
eukaryotes are H+-coupled rather than Na+-coupled [55].
In the proximal tubule, NHE3 generates the proton gradient
necessary for H+-coupled reabsorption of filtered amino
acids and oligopeptides [56, 57]. The reabsorption of
filtered proteins is less well understood. Even the quantity
of protein filtered by the normal glomerulus is still a matter
of debate, but likely to be significant, with proximal
reabsorption being a principal mechanism to render the
final urine low in protein [58]. NHE3 may contribute to
protein reabsorption by directly interacting with the
endocytic receptor megalin at the plasma membrane [59]
and by utilizing the outward Na+ gradient of endocytic
vesicles and early endosomes to drive inward movement of
H+ and endosomal acidification by approximately one pH

unit [60–63]. The role of megalin–NHE3 interaction at the
plasma membrane is not clear, but from a teleological
perspective it can be inferred that NHE3 is brought in the
proximity of megalin before endocytosis to provide the
machinery for acidification of endocytic vesicles and early
endosomes. Experiments showing that megalin mediates the
uptake of albumin and that albumin stimulates NHE3
abundance and turnover at the plasma membrane of cultured
renal cells are compatible with this model [64, 65]. However,
megalin deficiency in both rodents and humans causes low-
molecular-weight proteinuria, not albuminuria [66, 67]. The
current data are also insufficient to attribute the modest
proteinuria of NHE3-null mice [52, 63] strictly to defective
proximal tubule endosomal acidification as a de facto
conclusion because of the severe extracellular fluid volume
depletion and hence the high likelihood of hemodynamically
related proteinuria in these animals. In addition, the role of
NHE3 in proximal tubule endosomal acidification may be
masked by a high degree of functional redundancy, involving
the vacuolar-type H+-ATPase and possibly other NHE
isoforms with intracellular localization (NHE6–NHE9).
Additional research efforts and novel methods are required
in the future to solve the quantitative debate over glomerular
protein filtration [58] and to ascertain the roles of endocytic
receptors, apical NHE3, and intracellular NHE isoforms in
tubular protein reabsorption.

Acute vs. chronic regulation of NHE3

NHE3 is responsible for most of proximal tubule NaCl,
water, and bicarbonate reabsorption, and a consequence of
this high flux transport system is that relatively small
percent changes in NHE3 activity can have significant
quantitative and functional consequences. It is therefore not
surprising that NHE3 is among the most extensively
regulated membrane transport proteins, being directly or
indirectly influenced by a variety of agonists and physio-
logical conditions [68–70]. A list of factors that regulate
NHE3 is presented in Table 2; please note that this list is
continually evolving and is by no means exhaustive.

Before delving into further molecular intricacies, it is
important to discuss the distinction between acute and
chronic NHE3 regulation. Acute (minutes to hours) regula-
tion of NHE3 is better studied, and it could be argued that it
is more important for survival, by ensuring the maintenance
of volume and acid–base homeostasis in the face of rapid
physiological challenges. Acute regulation is via rapid,
transient, and often reversible mechanisms (such as changes
in phosphorylation, trafficking, or membrane locale) acting
on the existing cellular pool of NHE3. Conceptually, acute
regulation relies on signaling pathways which may be both
saturable and refractory poststimulation, is limited in its
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Table 2 Acute and chronic regulation of NHE3

Agonist Acute
regulation

Chronic
regulation

Comments References

α-Adrenergic Unknown Acute α-adrenergic stimulation of NHE3 occurs via the α2 adrenergic
receptor and mitogen-activated protein kinase (MAPK) activation

[67, 68]

Acid Acid activation of NHE3 involves the autocrine–paracrine action of
endothelin-1 and is enhanced by glucocorticoid hormones

[19, 69, 70, 90, 156,
174–177]

Adenosine Acute adenosine has biphasic dosage-dependent effects on NHE3;
chronically, the inhibition of NHE3 by adenosine may constitute a
protective mechanism of the proximal tubule cell in ischemia

[71, 143, 178, 179]

Albumin Albumin stimulation of NHE3 may play a role in proximal tubule
protein reabsorption, but the mechanisms are not clear

[61]

Aldosterone The acute effect of aldosterone may be cell-type-dependent: NHE
stimulation was reported in brush border vesicles and cultured cells,
and inhibition was reported in perfused thick ascending limbs, which
express luminal NHE3 and NHE2

[180–182]

Angiotensin II Angiotensin II has biphasic dosage-dependent acute effects on NHE3
and volume absorption

[80, 183–190]

ATP depletion Unknown NHE3 does not directly utilize the energy of ATP hydrolysis, but the
presence of ATP is required for optimal NHE3 activity

[191, 192]

Atrial natriuretic
peptide (ANP)

Unknown ANP alone has no effect on NHE3, but it potentiates the inhibitory
effect of dopamine

[193]

Cyclic adenosine
monophosphate
(cAMP)

Acute inhibition of NHE3 by cAMP is via activation of protein kinase
A (PKA) and requires NHE3 phosphorylation at serines 552 and 605
(numbered according to the rat NHE3 sequence); other serines may
also be involved

[126, 192, 194–196]

Dopamine Both DR1-like and DR2-like receptors are involved; dopamine inhibits
NHE3 via the adenylyl cyclase–cAMP–PKA pathway (above) and
possibly via the PKC pathway; based on phosphopeptide mapping of
NHE3, dopamine action may also involve the activation of a protein
phosphatase

[82, 83, 197–200]

Endothelin-1 Endothelin-1 regulation of NHE3 occurs via the endothelin-B receptor
and likely mediates acid activation of NHE3 rather than controlling
extracellular fluid volume

[156, 201–207]

Glucocorticoids Glucocorticoids have both genomic and nongenomic actions on NHE3
(details in Fig. 4); glucocorticoids may constitute maturation signals
for the NHE8-to-NHE3 developmental switch (details in Fig. 5)

[84, 91, 137, 208–211]

Hyperosmolarity The acute response of NHE3 to hyperosmolarity is opposite to that of
NHE1 and reflects the different physiological functions of the two
isoforms (NHE1 is involved in cellular osmotic defense and NHE3 in
whole body osmotic regulation)

[92, 138, 212]

Hypoosmolarity Unknown In cultured renal cells, hypoosmolarity may stimulate NHE3 via changes
in membrane curvature due to cell swelling; the response of NHE3 to
hypoosmolarity is opposite to that of NHE1

[72, 213, 214]

Insulin The effect of insulin on NHE3 is biphasic and is enhanced by
glucocorticoids (details in Fig. 4); the insulin effect may enhance
ammonium secretion

[215–217]

Long-chain fatty acids – The inhibitory effect may be due to lipotoxicity and lipoapoptosis;
long-chain fatty acids also impair the regulation of NHE3 by
glucocorticoids and insulin but not by acid

[218]

Lysophosphatidic acid Unknown Regulation of NHE3 by lysophosphatidic acid is dependent on the
scaffolding protein NHERF2 (E3KARP)

[141, 219]

Nitric oxide (NO) Acute NO inhibits NHE3 in an intestinal cell model (Caco-2); chronic
infusion of a NO synthase inhibitor in rats increases renal NHE3
abundance

[73, 108, 220]

Ouabain Unknown Basolateral but not apical ouabain downregulates NHE3 activity and
expression; decreased basolateral Na+/K+-ATPase activity may signal
to decrease apical NHE3 activity

[109]

Pflugers Arch - Eur J Physiol (2009) 458:5–21 9



response capacity to the use of available transporters, and
may overall be more costly for the cellular signaling
economy by deflecting essential second messengers and
protein kinases from their other intracellular roles. The
chronic (hours to days) regulation of NHE3 acts in most
cases via slower and more persistent mechanisms (such as
transcriptional activation), provides the grounds for long-
term adaptation, and may be more important for the
pathophysiology of disease—such as hypertension. Howev-
er, as much as acute and chronic regulations of NHE3 may
differ, they are inseparable parts of the same physiological
continuum.

Mechanisms of NHE3 regulation

The activity of NHE3 at the apical membrane of proximal
tubule epithelial cells can be modulated via a number of
mechanisms, including transcriptional [65, 71–74, 77–79]
and posttranscriptional [80, 81] regulation, changes in total
protein abundance, changes in protein phosphorylation
[82–89], trafficking (endocytosis, exocytosis, recycling)
[83, 85, 90–92], membrane locale (lipid rafts, microvilli–
intermicrovillar clefts) [93–97], and the association of
NHE3 with interacting proteins–complexes [70]. Only a
brief summary is provided here. More extensive reviews are
available [4, 70, 98, 99].

1. Transcriptional regulation. The 5′-flanking promoter
region of the NHE3 gene contains multiple putative cis-
acting sequences, including glucocorticoid and thyroid
response elements, and consensus binding sites for
various transcription factors [78, 100–102]. There are
several examples of chronic NHE3 regulation by
transcriptional activation, including the effects of
glucocorticoids [72, 78, 79], thyroid hormones [74],
insulin [73], acid [71, 77], and albumin [65]. Increased
production of NHE3 transcript is usually, but not
always, associated with increased total and plasma
membrane NHE3 protein abundance [80, 81].

2. Protein synthesis and degradation. The regulation of
total cellular NHE3 protein abundance at the posttran-
scriptional level is an important, yet underexplored
area. The estimated half-life of total NHE3 protein in
cultured renal cells is relatively long (∼20 h) [65], and
thus posttranscriptional regulation of protein abundance
may play a role in chronic but not in acute NHE3
regulation. Cases of diverging regulation of total NHE3
antigen and mRNA have been reported in both rodent
kidneys and cultured renal cells [80, 81], but it has been
difficult to determine whether this is due to regulation
of protein translation, protein degradation, or a combi-
nation of the two.

3. Phosphorylation. The C-terminal cytoplasmic domain
of NHE3 contains multiple putative phosphorylation
sites, mainly phosphoserines, and at least some of these
sites are phosphorylated under basal conditions in both
renal tissue and cultured cells. While the role of
baseline phosphorylation is not clearly defined, there
are multiple lines of evidence that additional phosphor-
ylation and/or dephosphorylation events play a role in
acute NHE3 regulation [82–88, 103, 104]. The current
body of data suggests that changes in NHE3 phosphor-
ylation occur in vivo [88, 105] and are necessary for
the regulation of NHE3 by some agonists. For example,
protein kinase A (PKA) activation in rats resulted in
increased phosphorylation of NHE3 at serines 552 and
605 [105], and mutation of either of these serines in
cultured cells abolished NHE3 regulation by the PKA
activator 8-Br-cAMP [82]. However, there is evidence
in both cultured cells and intact animals that phosphor-
ylation per se is not sufficient for NHE3 regulation [86,
87, 104, 105]. The mechanisms by which phosphory-
lation alters NHE3 activity are not known. Even though
it is theoretically possible that certain phosphorylation
patterns may change the conformation and intrinsic
transport properties of NHE3, it is more likely that
phosphorylation exerts its effects by modulating NHE3
trafficking, association with regulatory proteins, or
localization within the plasma membrane. Supporting

Table 2 (continued)

Agonist Acute
regulation

Chronic
regulation

Comments References

Parathyroid hormone
(PTH)

Acutely, PTH causes NHE3 phosphorylation and endocytosis via
the PKA and PKC pathways

[81, 221–228]

Phosphatidyl-inositol
3,4,5-trisphosphate
(PIP3)

Unknown PIP3 leads to rapid and reversible increase of NHE3 transport activity,
while having no effect on NHE1 activity

[85]

Thyroid hormone Unknown Thyroid hormones stimulate NHE3 by transcriptional activation and
may constitute maturation signals for the NHE8-to-NHE3
developmental switch (details in Fig. 5)

[75, 76, 229–231]
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the role of phosphorylation in NHE3 trafficking,
mutation of serines 560 and 613 of Didelphis virgin-
iana NHE3 (equivalent to serines 552 and 605 of rat
NHE3) suppressed dopamine-induced PKA-dependent
changes in NHE3 plasma membrane abundance [83].
Phosphorylation of another residue conserved across
mammalian species, serine 719 of rabbit NHE3, has
also been recently shown to regulate NHE3 exocytic
insertion into the plasma membrane [89].

4. Trafficking. In cultured renal epithelial cells, native
NHE3 is targeted to the apical (luminal) plasma
membrane, endocytosed through a clathrin-mediated
pathway [106], and then returned in part to the plasma
membrane via recycling endosomes [60]. Using epi-
tope-tagged transfected protein, Alexander and cow-
orkers [107] proposed that NHE3 exists in four
subpopulations: (a) virtually immobile apical mem-
brane NHE3, anchored to the actin cytoskeleton and
dependent on Rho guanosine triphosphatase activity;
(b) mobile apical membrane NHE3, not anchored to the
cytoskeleton, and more likely to enter coated pits and
be endocytosed; (c) rapidly recycling intracellular
NHE3, presumably in recycling endosomes; and (d) a
separate pool of intracellular NHE3 that exchanges
slowly with the other pools. The dynamic balance
between NHE3 subpopulations and the interplay
between apical membrane insertion, retrieval, and
endosomal recycling are what determine the amount
of functional NHE3 at the apical membrane. Numerous
studies have shown that NHE3 trafficking is regulated
at every step, with different agonists or conditions
altering NHE3 exocytosis [90–92, 108–110], recycling
[65, 111], and endocytosis [83, 85]. Much less is
known about the actual pathways and mechanisms
involved in regulated NHE3 trafficking. What are the
proteins or complexes that recruit NHE3 to exocytic
vesicles? What role do posttranslational modifications
play in NHE3 trafficking? What triggers NHE3
endocytosis, and what is the molecular decision-making
mechanism that sends NHE3 to either recycling or
degradation? Are the intracellular pools of NHE3
subject to specific regulation? These and many other
questions regarding the trajectory of NHE3 within the
proximal tubule cell await exploration.

5. Redistribution along the brush border microvillus. One
potential caveat of the cell culture models in which
NHE3 has been studied to date is the lack or paucity of
a true brush border. Electron microscopy of opossum
kidney cells, one of the most used renal epithelial cell
lines expressing native NHE3, revealed the presence of
scattered microvilli, in much lower numbers than in the
native proximal tubule [99, 112]. Do these morpholog-
ical differences influence NHE3 function and regula-

tion, and, if yes, to what extent? A series of studies by
McDonough and colleagues [95–97, 113–116] have
shown that different conditions or hormones that
regulate NHE3 cause changes in NHE3 redistribution
in density gradient fractions, which are interpreted to
represent microvilli, intermicrovillar clefts, and endo-
somes based on cosedimentation of markers. For
example, acute parathyroid hormone treatment in rats
led to a shift of proximal tubule NHE3 from microvillar
to intermicrovillar cleft marker-enriched fractions, and
the presence of NHE3 antigen in the intermicrovillar
clefts was confirmed by electron microscopy [95]. One
interesting possibility is that transporter function may
be regulated by redistribution along the microvillus,
with NHE3 transport activity decreasing as it
approaches the intermicrovillar cleft. Theoretically, this
can be a kinetically driven reduction in transport due to
less favorable ion gradients (lower sodium concentra-
tion and pH), a change in intrinsic transport properties
due to interaction with location-specific regulatory
factors, or a combination of the two mechanisms
(Fig. 3). Ion gradients in the intermicrovillar region
have not been directly demonstrated, but the ability of
NHEs to generate a measurable spatial pH gradient was
shown in vitro by single-cell electrophysiology [117].
Intermicrovillar ion gradients in vivo may be generated
by transport processes and may be maintained by the
difference in hydrodynamic flow between the axis of
the tubular lumen and the intermicrovillar region. In
addition to this conceptual model, it is possible that
NHE3 in microvilli belongs to the cytoskeleton-
anchored membrane NHE3 fraction, as proposed by
Alexander and colleagues [107], and that actin binding
is lost in intermicrovillar clefts, allowing for internal-
ization. The interaction between NHE3 and megalin
was also postulated by Biemesderfer and colleagues
[59, 118] to occur in intermicrovillar clefts, where
megalin-associated NHE3 is less active and awaiting
endocytosis. More studies and novel methods need to
be applied to resolve these mechanisms and their
relative importance for NHE3 regulation.

6. Changes in membrane locale. The fluid mosaic model
of Singer and Nicolson [119] postulated that lipids and
proteins diffuse freely and are distributed randomly
within cell membranes, with some restraints—such as
the tight junction in epithelial cells. The current model
adds another level of complexity: discrete membrane
microdomains with a higher level of organization and
different lipid and protein composition have been
proposed to “float” in the surrounding fluid membrane
and have been termed lipid rafts [120–122]. There are
still many controversies in this field, including lipid raft
size, life span, lateral mobility, potential membrane
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differences between cells in vivo and in culture, and
even the appropriateness of various methods used for
the study of lipid rafts, but these are beyond the scope
of the current discussion. Based on studies using Triton
X-100 solubility, density gradients, and manipulation of
membrane cholesterol content in cultured renal cells, it
was reported that approximately half of apical mem-
brane NHE3 is localized in lipid rafts and that NHE3
activity and trafficking are lipid raft dependent [93, 94].
This may be important for NHE3 regulation, as lipid
rafts constitute platforms for the assembly of protein
complexes and may contribute to the temporal coordi-
nation and spatial compartmentalization of membrane
signaling, transport, and trafficking events [123–125].

7. Interacting proteins. The current knowledge about
proteins interacting with NHE3 and their role in
NHE3 regulation has been recently reviewed with
great insight by Donowitz and Li [70]. Some of the
best-studied interacting proteins, including calcineurin
homologous protein, ezrin, members of the NHE
regulatory factor family, and megalin, bind directly to
defined regions of the C-terminal putative cytoplasmic
domain of NHE3. This region confers regulatory
specificity to NHE isoforms: when the cytoplasmic

domains were swapped between NHE3 and NHE1, the
resulting chimeric proteins were functional Na+/H+

exchangers with regulatory properties similar to those
of the exchangers providing the C-terminus [126, 127].
In addition to direct molecular interactions, NHE3
associates in multiprotein complexes and is tethered to
the actin cytoskeleton via scaffold and adapter proteins.
Specific interaction sequences with multiple protein
complexes are likely to govern the strict spatiotemporal
coordination necessary for cohesive NHE3 function
and regulation [128].

8. Oligomerization. While there are substantial biochem-
ical and structural data consistent with dimer formation
of NHE1 [129–132], the data for NHE3 are rather
sparse. In cultured renal cells, NHE3 associates in
homodimers [133], and the pre-steady-state kinetics of
proximal tubule Na+/H+ exchange in rabbit kidney
brush border membrane vesicles are compatible with
functional cooperativity within NHE3 dimers [134,
135]. Modeling of Na+/H+ transport kinetics using a
highly sensitive electrophysiological method [117]
suggests that both NHE1 and NHE3 function as
coupled homodimers transporting 2Na+/2H+ [136].
The role of dimerization in NHE3 regulation has not
been investigated. Theoretically, NHE3 activity could
be regulated via changes in dimerization, which in turn
may be evoked by alterations in local membrane
composition, membrane curvature, or by the competi-
tive interaction of NHE3 monomers with other regula-
tory proteins. Another exciting theoretical possibility is
that NHE3 dimers may constitute units of regulation
(an individual regulatory signal reaching one NHE3
molecule affects the function of both molecules within
the dimer), thus effectively constituting a biological
amplification system for NHE3 regulation.

An integrated view of NHE3 regulation

The proximal tubule is a phenomenally complex structure,
in which myriad cellular processes occur simultaneously—
a fact that we sometimes tend to overlook when trying to
dissect individual mechanisms. Chances are that, at any
given time in the cell, NHE3 activity is affected by many
factors, acting via several of the mechanisms categorized
above. How is this network coordinated? Are some agonists
and signaling pathways more important than others? Can
we explain the molecular details of synergism, antagonism,
permission, amplification, and interdependence when it
comes to the simultaneous regulation of NHE3 by multiple
factors—as it is the case in vivo in the proximal tubule?

In order to construct a model of integrated NHE3
regulation, we first need to explore and understand the

Fig. 3 Theoretical models of how apical Na+/H+ exchange may be
regulated by relocation along microvilli in the early proximal tubule.
The two models presented are not mutually exclusive and may
actually coexist. A kinetically driven reduction in NHE3 activity (left)
may be achieved by relocation toward intermicrovillar clefts, where
the local ionic gradients, influenced by membrane transport processes
and hydrodynamic flow, may be less favorable for Na+/H+ exchange.
Alternatively, an intrinsic change in transport property may occur with
relocation (right), either by detachment of NHE3 from the actin
cytoskeleton or by interaction with other location-specific regulatory
factors
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interactions between individual signaling pathways. For
example, Na+/H+ exchange in the proximal tubule and in
cultured cells expressing NHE3 is stimulated by glucocorti-
coids [92, 137–140] and insulin [73, 141, 142] via partly
overlapping pathways (Fig. 4). In addition to activation of
NHE3 transcription, the serum and glucocorticoid-inducible
kinase 1 (SGK1) appears to act as a central pivot for both
pathways [140, 142] and may at least in part explain the
permissive effect that glucocorticoids have on insulin action
[73, 142]. Another example of complex regulation is NHE3
adaptation to acidosis, which involves multiple signaling
pathways and requires the autocrine–paracrine action of
endothelin 1, as reviewed by Preisig [143]. A similar
permissive effect of glucocorticoids has been described in
NHE3 regulation by acid and has been attributed to
transcriptional activation [79, 144].

Many other combinatorial patterns of NHE3 agonists
likely exist in vivo, and we are still far from understanding
their potential interactions. Although we have come a very
long way since Pitts et al. [9, 10] first proposed a Na+/H+

exchange process in the kidney, we only have a distant
glimpse of integrated NHE function and regulation.

Luminal NHE8 and its reciprocal relationship to NHE3

Evolution has endowed mammals with multiple NHE
genes. Although all NHE proteins studied to date function
as Na+/H+ exchangers (or K+/H+ exchangers for some
intracellular isoforms), they serve diverse functions in cells
and organs. It is intuitive that each NHE isoform must
possess some unique properties that justify the maintenance
of more than ten different genes through mammalian
evolution. Conversely, each isoform possesses sufficient
versatility that it can serve more than one function. By the
classification of Brett and coworkers [1], NHE8 is an
intracellular isoform in most tissues but is also expressed in
the proximal tubule brush border [20–22], suggesting that it
may serve multiple functions. NHE3 is postulated to serve
as a functional exchanger both on the plasma membrane
and intracellular vesicles [60]. This type of dual function is
becoming increasing common in the NHE field. NHA2,
which is much more similar to prokaryotic than eukaryotic
NHEs [1], was believed to be purely an intracellular protein
[145] until two recent studies demonstrated dual intracellu-
lar and plasma membrane distribution in the distal
convoluted tubule, erythrocytes, and an islet cell line [7,
8]. It is highly possible that proximal tubular NHE8 serves
dual functions.

NHE8 transcript is ubiquitously expressed [20, 21]. In
the kidney, NHE8 protein is detected in brush border
membrane vesicles by immunoblot and in the proximal
apical membrane by immunohistochemistry [20–22] with
some predilection for higher expression in the deep cortex
[21]. Total cellular NHE8 expression is present but not
increased in adult NHE3 null mice [21]. Whether apical
membrane NHE8 is increased in the absence of NHE3 has
not been determined, but, even if that were the case, NHE8
is insufficient to compensate for the absence of NHE3 in
the proximal tubule of adult NHE3-null mice [146].

The demands on the mammalian kidney differ drastically
in embryonic to neonatal and subsequently adult life.
Current data support a developmental switch of NHE8
and NHE3 in the proximal tubule apical membrane. There
is ample precedence for neonatal isoforms of transporters
that can more aptly handle the demands of transport during
that stage in life [147]. Due consideration will first be given
to neonatal proximal acidification. Neonates have lower
plasma HCO3

− concentration which is predominantly due
to a lower threshold for HCO3

− absorption in the proximal
tubule [148, 149]. The proximal tubular HCO3

− threshold
in turn is determined by the lower rate of neonatal proximal
tubule HCO3

− transport, which is one third that of the
equivalent segment in the adult, and not by increased
plasma-to-urine back leak [150, 151]. The maturational
increase in proximal tubular acidification can be accounted
for by the increase in apical membrane Na+/H+ exchange

Fig. 4 Stimulation of NHE3 by insulin and glucocorticoids. Dashed
arrows represent acute regulation (1–2 h), and solid arrows represent
chronic regulation (>24 h). Acute regulation of NHE3 by insulin does
not involve any of the known mechanisms of insulin signaling or
NHE3 regulation. Chronically, insulin stimulates NHE3 via activation
of phosphatidyl-inositol-3 kinase (PI3K) and serum and glucocorti-
coid-inducible kinase 1 (SGK1) and by increasing NHE3 transcription.
Glucocorticoids acutely stimulate NHE3 exocytic insertion and
activate SGK1 in a glucocorticoid receptor (GR)-dependent non-
genomic fashion. Chronically, glucocorticoids regulate NHE3 via a
genomic mechanism, stimulating both NHE3 and SGK1 transcription.
The concerted effects of glucocorticoids and insulin on NHE3
transcription and the central role of SGK1 for both signaling pathways
may at least in part explain the permissive effect that glucocorticoids
have on insulin action
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activity [152–155]. Na+/H+ exchange accounts for two
thirds of the luminal H+ secretion in the adult [152, 156]
and virtually all the luminal acidification in the neonate
[152]. In the adult, NHE3 is the predominant Na+/H+

exchanger mediating proximal tubule acidification [19, 52,
157]. Indeed, there is a parallel increase in Na+/H+

exchanger activity [152, 154, 155] and NHE3 protein and
transcript with maturation [153]. However, changes in
NHE3 expression alone could not explain all the findings.

There is considerable Na+/H+ exchanger activity in
neonatal rats despite very low levels of NHE3 protein on
brush border membranes [158, 159]. In 30-day-old rats
subjected to adrenalectomy to arrest maturation, there is
substantive amount of Na+/H+ exchanger activity despite
the distinct paucity of NHE3 protein on the apical
membrane [159]. In the NHE3 and NHE2 double-knockout
mice, there was clearly residual luminal Na+/H+ exchanger
activity in the proximal tubule [160]. The collective data
support another NHE on the apical membrane, especially in
the neonate, that mediates renal acidification. Based on its
renal localization, it is likely that NHE8 is the neonatal
proximal tubule NHE isoform.

The induction of the NHE8-to-NHE3 developmental
switch (Fig. 5) can be intrinsic to the kidney, secondary to
circulating factors, or both. To date, evidence exists only
for endocrine control. There is a threefold increase in
thyroid hormone level and a 25-fold increase in corticoste-

rone level in rat plasma during postnatal maturation [161–
164] and these hormonal surges mirror the maturational
increase of NHE3 [159]. Perinatal increases in glucocorti-
coids and thyroid hormone have been proposed by Baum
and coworkers [151, 153, 164, 165] to be responsible for
the postnatal increase in proximal tubule NHE3 and
acidification, and causality is supported by several obser-
vations. Administration of glucocorticoids and thyroid
hormone prior to the developmental increase in serum
levels results in acceleration of the maturation of Na+/H+

exchanger activity and NHE3 mRNA and NHE3 protein
abundance [151, 153, 159, 164]. In cultured cells, both
glucocorticoids and thyroid hormone directly increase
NHE3 transcription and protein abundance [72, 74]. In
addition, posttranslational protein trafficking is also in-
volved in the increase in surface NHE3 protein by
glucocorticoids [92, 166]. Conversely, preventing the
maturational increase in either thyroid hormone or gluco-
corticoids significantly suppresses the maturational increase
in Na+/H+ exchanger activity and brush border membrane
NHE3 protein [159, 164]. Experimentally induced hypo-
thyroidism delays the maturational increase in NHE3 and
prolongs the expression of neonatal NHE8 [167]. Interac-
tion and complementation between thyroid hormone and
glucocorticoid levels have been well described [168–171].
Interestingly, the reduction in NHE3 protein is not
accompanied by changes in NHE3 mRNA abundance,
once again highlighting the multilevel regulation of NHE3.

NHE3 protein in total cortex and apical membrane
increases concordantly with maturation [153]. In contrast,
while apical membrane NHE8 decreases dramatically upon
maturation, its level in total cortical membranes is higher in
the adult compared to the neonatal proximal tubule [22].
Native NHE8 in cultured cells also has considerable
intracellular expression [172]. One possible paradigm is
that NHE8 serves primarily as an organellar exchanger in
adults, but, in neonates prior to the maturation of NHE3 on
the brush border, NHE8 is temporarily “leased” to the
apical membrane to perform transepithelial transport.

As mentioned above, Brett and coworkers [1] predicted
NHE8 to be an intracellular protein. The function of
intracellular NHE8 is unclear at present. Transport charac-
teristics for NHE8 may be more suited for the neonatal
proximal tubule than NHE3. Na+ kinetics for example
exhibits a higher degree of cooperativity than NHE3 [172]
which is what one may expect for an intracellular NHE
utilizing vesicular Na+ to drive intravesicular acidification.
Nakamura and coworkers [173] found evidence for K+/H+

exchange for NHE8 when reconstituted in proteoliposomes
but plasma membrane NHE8 in mammalian cells does not
seem to have such properties [172]. Capability of K+/H+

exchange may be intrinsic for the protein but not functional
in the plasma membrane environment. A most important

Fig. 5 Developmental switch of NHE8 and NHE3 at the proximal
tubule apical membrane. Maturation signals can be from the systemic
circulation, intrinsic to the kidney, or both. While there is parallel
increase in total cellular and apical membrane NHE3 upon maturation,
the decrease in apical NHE8 in the adult is accompanied by increase
in intracellular NHE8
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and challenging question is what role does intracellular
NHE8 play.

Summary

This account covers the role of luminal Na+/H+ exchangers
in proximal tubule function and updates selected aspects of
the current database on the mechanisms of regulation of
NHE3 that are not detailed in other more extensive reviews.
Mammals are endowed with multiple NHE genes and have
kept this genetic inventory over many millennia without
extinguishing any of these sequences. This suggests an
“insurance policy” of high redundancy, unique irreplaceable
properties of each isoform, or both. Conversely, individual
isoforms such as NHE3 participate in extremely diverse
functions, such as those described here at the lumen of the
proximal tubule. Comparable to its scope of function, the
levels of regulation of NHE3 are astoundingly broad—and
this is just NHE3 in the proximal tubule, our hors d'oeuvre
so to speak, in this field. One has not even begun to
consider all the other NHE isoforms in all other nephron
segments. The database is of course still very much empty
and awaits discovery. NHEs provide a myriad of functions
critical for renal physiology in each segment—transport of
solutes such as NH4

+ within the complex architecture of the
medullary, the role of intracellular NHEs for organellar
function, nontransport functions as plasma membrane plat-
forms for protein assembly—tasks immense enough to fill
several generations of investigators.

The authors took the liberty to linguistically interpret this
molecularly guided tour along the nephron conceived by
the editors as one that places equal emphasis on the
molecule as well as the nephron. There is no doubt that
the awesome power of recombinant DNA techniques has
spawned a revolution and explosion of knowledge on renal
physiology with unprecedented speed and scope; an effect
whose momentum will not stall but rather continue to
accelerate. All this is triumphant news for the renal
physiologist. However, it will be deceiving to assume and
believe that the understanding of individual molecules in
exquisite detail and precision automatically begets the
understanding of tubular, renal, and whole-organism biol-
ogy. There is a hierarchy from individual molecules to the
cell, epithelia, nephron, kidney, and eventually for a
physiologist, the organism. At each level of this pyramid,
new complexities, patterns, and laws emerge. Such proper-
ties cannot be studied and understood when outfitted solely
with knowledge derived from a different level. A translated
citation of Claude Bernard embodies this spirit eloquently:
“We must appreciate that when we break up an organism by
taking the different components apart it is only for the sake
of convenient experimentation and by no means because

we consider them as separate entities. Indeed when we wish
to ascribe to a physiologic property its significance we must
always refer it to the whole organism and draw any
conclusions only in relation to the effect of this property
on the organism as a whole.”
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