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Abstract Intracellular calcium is a major coordinator of
numerous aspects of cellular physiology, including muscle
contractility and cell survival. In cardiac muscle, aberrant
Ca2+ cycling has been implicated in a range of pathological
conditions including cardiomyopathies and heart failure.
The sarco(endo)plasmic reticulum Ca2+ transport adenosine
triphosphatase (SERCA2a) and its regulator phospholam-
ban (PLN) have a central role in modulating Ca2+

homeostasis and, therefore, cardiac function. Herein, we
discuss the mechanisms through which SERCA2a and PLN
control cardiomyocyte function in health and disease.
Emphasis is placed on our newly identified PLN-binding
partner HS-1-associated protein X-1 (HAX-1), which has
an anti-apoptotic function and presents with numerous
similarities to Bcl-2. Recent evidence indicates that proteins
of the Bcl-2 family can influence ER Ca2+ content, a critical
determinant of cellular sensitivity to apoptosis. The
discovery of the PLN/HAX-1 interaction therefore unveils
an important new link between Ca2+ homeostasis and cell
survival, with significant therapeutic potential.
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Introduction

In cardiac muscle, regulation of intracellular Ca2+ homeo-
stasis is mediated by the sarcoplasmic reticulum (SR), an
intracellular membranous network surrounding the contrac-
tile machinery. Through its direct involvement in Ca2+

cycling, the SR has a critical role in controlling contraction
and relaxation in cardiac muscle. During excitation–
contraction coupling, Ca2+ entry through the L-type Ca2+

channel triggers the release of Ca2+ from SR Ca2+ stores via
the ryanodine receptor, resulting in increased cytosolic Ca2+

levels and initiation of contraction [1–4]. During relaxation,
cytosolic Ca2+ is partly sequestered back into the SR lumen
by the sarco(endo)plasmic reticulum Ca2+ adenosine tri-
phosphatase (ATPase; SERCA) pump and partly extruded
to the external medium through the action of plasma-
membrane Ca2+ ATPase (PMCA) and the Na+/Ca2+

exchanger (NCX; Fig. 1). In humans, about 70% of the
cytosolic Ca2+ returns to the SR, while the rest is removed
from the cell by the activities of NCX (28%) and PMCA
(2%) [3]. As the SR represents the major source of Ca2+

store, the SR Ca2+ content and, therefore, the amount of
Ca2+ available for release play a critical role in cardiac
contractility.

Evidence from human and experimental studies has
indicated that defects in SR Ca2+ handling are associated
with attenuated contractility, which can progress to heart
failure [5]. In particular, cardiac systolic dysfunction and
impaired cardiac relaxation are common hallmarks of heart
failure. At the cellular level, depressed relaxation reflects
impaired removal of cytosolic Ca2+ and reduced cardiac SR
loading. This could be due to decreased SERCA2 protein
levels and/or increased inhibition by its regulatory protein
PLN [6, 7]. Importantly, the progression of heart failure,
which is marked by a decline in cardiac function, has been
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associated with cardiomyocyte loss through activation of
the apoptotic pathways [8–10]. This occurs through a
signaling cascade, which includes cytochrome c release
from the mitochondria, activation of caspases, protein, and
DNA degradation [8, 11, 12]. Loss of myocytes represents
an important component of cardiac remodeling and con-
tributes to the transition from an adaptive myocardial
condition to end-stage heart failure [13].

This review focuses on the critical role of the SERCA2a/
PLN complex in regulating SR Ca2+ cycling and cardiac
contractility, and presents current knowledge on its detailed
mode of function. An emphasis is given on the emerging
role of HAX-1 in cardiac muscle, which through its
interaction with PLN, could represent a link between Ca2+

homeostasis and cell survival. Deciphering the molecular
mechanisms bridging Ca2+ cycling aberrations with apo-
ptosis and, therefore, advanced stages of disease progres-
sion could unveil promising new therapeutic targets.

SERCA2a activity is critical in regulation of SR Ca2+

homeostasis

There are three different SERCA genes (human nomencla-
ture ATP2A1-3), each encoding at least two different
protein isoforms. Cardiac muscle expresses SERCA2a, a
110-kDa transmembrane protein that functions by trans-
porting two Ca2+ from the cytosol to the SR lumen at the
expense of adenosine triphosphate (ATP) hydrolysis [14–
18]. As SERCA2a activity controls both the rate of
cytosolic Ca2+ removal and the degree of SR Ca2+ load, it

represents a fundamental determinant of both cardiac
relaxation and contraction.

Transgenic animal models have been developed to
define the functional role of the SERCA pump in Ca2+

homeostasis and cardiac physiology. Transgenic mice
overexpressing SERCA2a by 1.2- or 1.5-fold exhibited
increased SR Ca2+ transport and enhanced rates of cardiac
contractility and relaxation [19–21]. No cardiac pathology
was observed in these animals, suggesting that SERCA2a
overexpression can be tolerated by the heart. On the other
hand, absence of the SERCA2 gene is lethal, with the
homozygous null (SERCA2−/−) mice dying early in
development [22]. Heterozygous (SERCA2+/−) mice are
viable, showing 35% decrease in SERCA2 protein levels as
a result of the loss of one copy of SERCA2 allele. Although
no cardiac pathology was exhibited at rest, reduction in
SERCA2 levels in combination with an increased hemody-
namic load resulted in an accelerated pathway to heart
failure [23]. These mice show impaired intracellular Ca2+

homeostasis and decreased rates of cardiac contractile
function, a finding that demonstrates the requirement for
two functional copies of the SERCA2 gene for effective SR
Ca2+ cycling and cardiac function [22, 24].

Mutation screening on specific SERCA2a genomic
regions, corresponding to the PLN interacting region as
well as the SERCA2a phosphorylation and nucleotide-
binding domains, did not identify any genetic variants
resulting in amino acid alterations in adult dilated cardio-
myopathy patients [25]. This suggests that the SERCA2a
sequence is highly conserved among individuals. Loss of
function mutations in the SERCA2 gene are known to

Fig. 1 Schematic representation of the major players implicated in
excitation–contraction coupling of the heart. In response to membrane
depolarization, Ca2+ entry through the L-type Ca2+ channel (LTCC)
activates the ryanodine receptor (RyR) and triggers release of Ca2+

from sarcoplasmic reticulum (SR) Ca2+ stores. This results in
increased cytosolic Ca2+ levels, which bind to myofibrils and initiate

cardiac contraction. Reuptake of cytosolic Ca2+ to the SR lumen by
the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) pump and
removal to the external medium through the action of plasma-
membrane Ca2+ ATPase (PMCA) and the Na+/Ca2+ exchanger
(NCX) results in cardiac relaxation. PLN phospholamban, JNT
junction, TRI triadin, CSQ calsequestrin
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cause Darier’s disease, an autosomal dominant skin
disorder [26–28]. Interestingly, however, these patients do
not exhibit any cardiac pathology.

Although no SERCA2a mutations have been identified in
heart disease patients to date, significant expression changes
have been observed in failing hearts. Specifically, experimen-
tal models of myocardial failure were found to exhibit reduced
SERCA2a messenger RNA (mRNA) and protein levels,
suggesting an impairment in cytosolic Ca2+ removal, SR
Ca2+ load and overall Ca2+ cycling [29–31]. Similarly,
decreased SERCA2a expression and SR Ca2+ transport were
observed in human failing hearts [32–37]. Taken together,
these findings demonstrate a direct correlation between
SERCA2a levels, SR Ca2+ transport, and heart failure.

SERCA2a-binding partners

While experimental evidence suggests that proteins in-
volved in SR Ca2+ release, such as the ryanodine receptor,
function as part of a macromolecular complex, the
existence of such a protein complex in the regulation of
SR Ca2+ uptake has only recently begun to emerge. In
particular, SERCA2a has been found to interact with
proteins of the SR lumen, such as histidine-rich calcium-
binding protein [38] and calreticulin [39], while its
cytosolic region has been shown to bind to S100A1 [40],
acylphosphatase [41], and Bcl-2 (see section below) [42,
43]. Furthermore, PLN and sarcolipin have been found to
bind to the cytosolic and/or transmembrane domains of
SERCA2a, with accumulating evidence suggesting that
these interactions lead to inhibition of the pump’s affinity
for Ca2+ [18, 44]. PLN has proven to be a major regulator
of SERCA2a activity, and so far, it is the only SERCA2a-
associated protein directly involved in cardiac disease
development, including heart failure.

PLN is a major regulator of SERCA2a activity

PLN is a 52-amino-acid transmembrane protein of the SR
that is expressed mainly in cardiac but also in smooth and
slow-twitch skeletal muscles [45–47]. Based on its protein
sequence, PLN appears to contain three domains, namely a
largely helical cytosolic domain IA (amino acids 1–20), an
unstructured domain IB (amino acids 21–30), and a domain
II (amino acids 31–52) that forms a transmembrane helix
[45, 48]. Detailed cross-linking and site-directed mutagen-
esis studies have demonstrated that residues in both the
cytoplasmic (IA and IB domains) and the transmembrane
portions of PLN can interact directly with SERCA2a [49–
54]. PLN can be phosphorylated at serine 16 by the cAMP-
dependent protein kinase (PKA) and threonine 17 by the

Ca2+–calmodulin-dependent protein kinase (CaMKII) [55,
56]. Moreover, it has been shown that PLN exists in both
pentameric and monomeric forms, where the monomer is
considered to be the functionally active unit, while the
pentamer may act as a reservoir [57, 58].

PLN can interact with SERCA2a and inhibit its activity,
thus preventing Ca2+ entry to the SR through SERCA2a
[47]. Specifically, PLN acts by lowering the apparent
affinity of SERCA2a for Ca2+ but has little or no effect
on the maximal velocity rate (Vmax) at saturating Ca2+ and
ATP concentrations [59]. At low Ca2+ concentrations, PLN
interacts and reversibly inhibits the affinity of SERCA2a
for Ca2+, while elevations in Ca2+ concentration lead to
dissociation of the SERCA2a/PLN protein complex, an
effect that may be due to Ca2+-induced conformational
changes of SERCA2a [18]. The phosphorylation state of
PLN has also been shown to affect SERCA2a activity. In its
dephosphorylated state, PLN interacts with SERCA2a and
inhibits the enzyme’s affinity for Ca2+. However, upon β-
adrenergic stimulation, phosphorylation of PLN relieves
this inhibitory effect on SERCA2a, leading to enhanced SR
Ca2+ transport [60, 61]. These findings indicate the crucial
functional role of PLN in regulating SERCA2a activity in a
Ca2+ or phosphorylation-dependent manner and further
suggest its involvement as a key determinant of β-
adrenergic stimulation in the heart, with potential applica-
tions in pharmacologic therapeutic approaches.

Lessons on PLN function from transgenic animal
models

The importance of PLN in cardiac physiology is further
emphasized by studies on genetically modified mouse
models. Ablation of PLN was associated with an increased
affinity of SERCA2a for Ca2+, increased SR Ca2+ uptake,
and increased contractile parameters, which resulted in an
overall hypercontractile cardiac function that persisted
throughout aging [62, 63]. Interestingly, the highly stimu-
lated function of PLN null hearts could be minimally
stimulated by β-adrenergic agonists [64, 65]. Similarly,
heterozygous (PLN+/−) mice with 60% reduction in PLN
levels exhibited significant increases in contractile param-
eters, although these increases were lower than those
exhibited by the PLN null (PLN−/−) mice [66]. Conversely,
two- and fourfold overexpression of PLN in mouse heart
resulted in decreased SERCA2a affinity for Ca2+, de-
creased contractile parameters, and depressed left ventric-
ular function. Stimulation with β-adrenergic agonists
restored the contractile parameters to levels similar to wild
type by alleviating the inhibitory effects of PLN [6, 46].
Taken together, these animal model studies have demon-
strated the fundamental role of PLN in SR Ca2+ cycling and
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cardiac function under basal and β-adrenergic stimulated
conditions.

In addition to PLN-deficient or PLN-overexpressing
mouse models, transgenic mice overexpressing specific
PLN mutants have allowed the in vivo examination of the
importance of specific amino acid residues in PLN function
and elucidation of their role in SR Ca2+ cycling. Chronic
inhibition of SERCA2a was observed upon overexpression
of superinhibitory PLN mutants (Asn27Ala, Leu37Ala,
Ile40Ala, and Val49Gly), which have been shown to alter
the ratio of PLN monomers and pentamers, thus affecting
SERCA2a inhibition [58, 67–69]. All transgenic animals
exhibited depressed SERCA2a function, decreased Ca2+

kinetics, and impaired contractility. As a result of SER-
CA2a chronic inhibition, some of these models developed
significant left ventricular hypertrophy, which progressed to
cardiac dysfunction and heart failure [58, 68, 69]. There-
fore, these findings suggest that specific amino acids are
critical for PLN function, as changes at these residues can
cause alterations in SR Ca2+ handling and subsequently
lead to cardiac remodeling and progression to heart failure.

Detailed evaluation of the functional significance of PLN
dual-site phosphorylation at Ser16 and Thr17 was accom-
plished, following the generation of transgenic animals
expressing phosphorylation-site-specific PLN mutants [70–
73]. While Ser16 phosphorylation may be a prerequisite for
Thr17 phosphorylation, it has been suggested that Ser16
phosphorylation may mediate the β-agonist response, and
Thr17 may play an important role in frequency-dependent
increase of cardiac contraction and relaxation.

Collectively, the findings from the numerous transgenic
animal models have provided evidence for the pivotal role
of PLN in the regulation of SR Ca2+ homeostasis and
suggest its potential use as a promising therapeutic target
for heart disease.

PLN mutations lead to cardiomyopathy and heart
failure

Identification of PLN mutations in patients with cardiomy-
opathy and heart failure highlight the critical role of PLN
and SR Ca2+ cycling in controlling cardiac function and
provide clues on the molecular mechanisms underlying
disease pathogenesis.

To date, six different PLN genetic variations have been
reported [74–79]. Two of these mutations (R9C and
R14Del) are characterized by gain-of-function, causing
chronic inhibition of SERCA2a activity. Substitution of
arginine by cysteine at amino acid position 9 (R9C) was
linked with autosomal dominant inheritance of dilated
cardiomyopathy and heart failure in a large American
family [74]. The functional consequences of this mutation

were evaluated by cellular and biochemical studies
performed in a heterologous cell culture system, through
the analysis of a generated transgenic mouse model and
also by studies on human cardiac tissue obtained from
explanted hearts. A significant reduction in the levels of
PLN phosphorylation was observed, resulting in impaired
cardiomyocyte Ca2+ handling and cardiac function. Over-
expression of the R9C mutation prevented cAMP-depen-
dent PKA phosphorylation of wild-type PLN by local
trapping of PKA in a stable mutant PLN–PKA complex and
thus minimizing the PKA-mediated relief of PLN inhibitory
function on SERCA2a. While the R9C mutation itself was
not a strong inhibitor of SERCA2a, its ability to block PLN
phosphorylation caused a dominant effect, leading to
chronic inhibition of SERCA2a [74]. The other gain-of-
function mutation is a heterozygous deletion of arginine at
amino acid residue 14 (R14del), which was associated with
inherited dilated cardiomyopathy and premature death [75].
Transgenic mice overexpressing this PLN mutation reca-
pitulated the human dilated cardiomyopathy phenotype and
resulted in premature death. In vitro and in vivo assessment
of the functional consequences of the mutation determined
a dominant effect of R14del, which could not be reversed
upon PKA phosphorylation, therefore resulting in chronic
inhibition of SERCA2a activity. Through this chronic
inhibition, both PLN mutations impair SR Ca2+ cycling,
leading to cardiac dysfunction and heart failure.

A loss-of-function human PLN mutation, resulting in the
substitution of a leucine residue at position 39 with a
premature stop codon (L39X), was identified in two
families with hereditary heart failure [76]. Adenoviral
overexpression of PLN L39X mutation in rat cardiomyo-
cytes did not have an effect on SERCA2a activity.
Moreover, overexpression of PLN L39X mutant in
HEK293 cells demonstrated that the mutant protein was
unstable, a finding that was also verified in the explanted
cardiac tissue of a heart failure patient where no PLN
protein was detected. This indicates the existence of a
naturally occurring “PLN null mutation” associated with
lack of inhibition on SERCA2a activity. However, in
contrast to the hypercontractile phenotype observed in the
PLN null mouse, deficiency of PLN in human hearts results
in significantly impaired cardiac function and leads to the
development of heart failure. A possible explanation for
this is that PLN may be of paramount importance in
humans, as it is required to maintain a high Ca2+ reserve for
proper cardiac function through human life [80]. The
critical role of PLN in the human heart was further
emphasized by the strong inhibitory function elicited
through the expression of the “human PLN” in the mouse
null heart, which led to cardiac remodeling [80].

In addition to the above changes, three genetic variations
within the upstream noncoding region of the gene (A to G
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at −77 bp, C to G at −42 bp, or A to C at −36 bp) have also
been reported in patients with cardiomyopathy. Functional
analysis of the effect of these changes in cultured cells
determined alterations in the transcriptional activity of the
PLN promoter, suggesting that they may lead to alterations
in SR Ca2+ homeostasis and disease pathogenesis [77–79].

Taken together, these studies emphasize the importance
of PLN in regulating SERCA2a activity and, in this way,
SR Ca2+ homeostasis and cardiac function. Importantly,
chronic inhibition or absence of PLN activity has been
directly associated with heart failure.

PLN interacts with the anti-apoptotic protein HAX-1

The role of PLN in SR Ca2+ cycling has been carefully
characterized. However, its function in other molecular
pathways is only starting to come to light. Discovering
these pathways would contribute toward the better under-
standing of heart failure pathogenesis and could reveal new
therapeutic targets.

Recently, we reported the identification of HS-1-associ-
ated protein X-1 (HAX-1), a ∼35-kDa ubiquitously
expressed mitochondrial protein with anti-apoptotic func-
tion, as a PLN-binding partner [81]. The minimal binding
region of HAX-1 was mapped to a C-terminal fragment,
encoding amino acids 203–245, whereas the PLN-binding
region contained amino acids 16–22, a region that includes
both the Ser16 and Thr17 phosphorylation sites. This
region of PLN contains residues Ile18, Glu19, Met20, and
Pro21, which are suggested to form a turn connecting the
two α-helical stretches of the protein. This conformation
may provide the necessary flexibility to the protein that
could be important in the kinetics of monomer–pentamer
formation, in PLN phosphorylation and dephosphorylation,
as well as in its association with SERCA2a. It was therefore
proposed that binding of HAX-1 to this region of PLN may
represent a regulatory mechanism on any of these reactions
and could provide the means for controlling the conforma-
tion and activity of PLN [81]. Similarly to the SERCA2/
PLN interaction, binding of HAX-1 to PLN was found to
be diminished upon phosphorylation of PLN by cAMP-
dependent protein kinase and increasing Ca2+ concentra-
tions, thus indicating that HAX-1 may regulate the
functional properties of PLN in the heart. Through this
association, HAX-1 could therefore have an important role
on SR Ca2+ cycling.

HAX-1 was originally identified to interact with HS1, a
protein with proposed involvement in B cell signal
transduction in hemopoietic cells [82]. Subsequently,
HAX-1 has been found to interact with a number of
cytoskeletal and viral proteins (Table 1). Although the
biological significance of these interactions remains un-

clear, the existence of multiple interacting proteins for
HAX-1 indicates its involvement in multiple cellular path-
ways. Immunofluorescence microscopy studies have local-
ized HAX-1 to the mitochondria, endoplasmic reticulum,
and the nuclear envelope [82, 85, 86, 88, 89, 95, 96]. We
previously reported a preferential mitochondrial localization
of HAX-1 after transient transfections in HEK293 cells.
Interestingly, upon cotransfection with PLN, HAX-1
underwent cellular redistribution and colocalized with
PLN at the ER [81]. A similar finding was also reported
in the presence of the HAX-1 interacting protein Vpr.
Specifically, coexpression of HAX-1 with the predominant-
ly nuclear localized protein Vpr resulted in the codistribu-
tion of the two proteins in cytoplasmic bodies outside the
nucleus and mitochondria [86]. It was therefore proposed
that the subcellular localization and functional properties of
HAX-1 may vary among different tissues, depending on
which interacting partners are available [81].

Based on its weak sequence similarity to Nip3 and its
homology to Bcl-2 domains BH1 and BH2, HAX-1 was
initially proposed to be involved in promoting cell survival.
Its anti-apoptotic function was supported by experimental
evidence after the identification of its interaction with K15
Kaposis’s sarcoma, Omi/HtrA2 protease, and Vpr [85, 86,
97]. Studies in Jurkat, HEK293, or Hela cell lines
demonstrated that HAX-1 overexpression provides protec-
tion against Fas treatment, γ-irradiation, serum deprivation,
Bax overexpression, or hypoxia/reoxygenation-induced cell
death [81, 82, 85, 96]. Furthermore, HAX-1 was found to
be overexpressed in psoriasis, a chronic inflammatory
disease characterized by increased proliferation and dimin-
ished susceptibility to apoptosis, implicating HAX-1 in the
regulation of cell viability [101].

Even though HAX-1 is highly expressed in skeletal and
cardiac muscles, its role in muscle function has recently
been unraveled through the identification of its interactions
with caspase-9 [96] and PLN [81]. The PLN/HAX-1
interaction was suggested to play a role in modulating
Ca2+ cycling in the regulation of cardiac contractility.
Importantly, this complex may regulate SR/ER Ca2+

homeostasis, which could affect mitochondrial Ca2+ redis-
tribution and in turn influence mitochondrial Ca2+ accumu-
lation and initiation of the apoptotic cell death signaling
cascade [102]. In the presence of PLN, HAX-1 exhibited an
enhanced anti-apoptotic effect after hypoxia/reoxygenation-
induced cell death [81]. This finding further emphasizes the
critical functional role of the PLN/HAX-1 interaction,
which represents a new link between Ca2+ handling and
cell survival.

The identification of the HAX-1/caspase-9 interaction
provided new evidence linking HAX-1 with the apoptotic
pathway. Specifically, adenoviral overexpression of HAX-1
in rat cardiomyocytes resulted in significant attenuation of
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hypoxia/reoxygenation-induced cell death. This was shown
to be mediated through the direct interaction of HAX-1
with caspase-9, probably occurring within the mitochon-
dria, which in turn led to inhibition of caspase-9 processing
and subsequent inhibition of caspase-3 activation [96].
Based on its interaction with caspase-9, an initiator caspase
of apoptosis, HAX-1 was proposed to act during early
stages of apoptosis.

Collectively, these findings highlight the involvement of
HAX-1 in SR/ER Ca2+ cycling, mediated through PLN, but
also implicate HAX-1 in cell survival via inhibition of the
caspase-9 apoptotic pathway. This critical new link between
Ca2+ cycling and apoptosis could hold important clues for
understanding the association of SERCA2a and PLN with
heart failure.

HAX-1 and disease

HAX-1 deficiency was recently associated with autosomal
recessive severe congenital neutropenia (Kostmann disease)
[103]. Severe congenital neutropenia represents a primary
immunodefiency syndrome comprising of a genetically
heterogeneous group of disorders, which is characterized
by low peripheral blood neutrophils and myeloid matura-
tion arrest [104]. Three different nonsense HAX-1 muta-
tions (W44X, R86X and Q190X) have been identified so
far in different populations [103, 105, 106]. Analysis of the
functional significance of the W44X mutation in cells from
affected individuals determined a critical role for HAX-1 in
the maintenance of the inner mitochondrial membrane
potential. Specifically, deficiency of this protein caused
destabilization of membrane potential, leading to increased
apoptosis in myeloid cells and disease progression [103].
Given the recently identified involvement of HAX-1 in
cardiac muscle, an important biological question yet to be
answered is whether these patients present cardiac func-
tional defects.

Although there have been no reports directly associating
HAX-1 with heart disease, its potential involvement in Ca2+

homeostasis through PLN interaction makes it an interesting
candidate for future genetic studies.

HAX-1 and the Bcl-2 family of proteins

Regulation of SR Ca2+ homeostasis is of vital importance
for cardiac cell survival, as defects in SR Ca2+ cycling have
been associated with cardiac dysfunction, heart failure, and
death. The identification of HAX-1, a mitochondrial protein
with anti-apoptotic function, as a binding partner of PLN
indicates the direct association between a mitochondrial and
SR protein, and provides new insights into key players and

mechanisms modulating Ca2+ cycling in cardiac contractil-
ity and cell death. Accumulating evidence has unraveled a
novel aspect of the Bcl-2 anti-apoptotic protein family in
promoting cell survival through regulation of ER Ca2+

homeostasis. Interestingly, HAX-1 presents a number of
structural and functional similarities to Bcl-2. Therefore,
while the precise function of the anti-apoptotic protein
HAX-1 in cardiac muscle is slowly beginning to emerge, its
similarity to Bcl-2 implicates HAX-1 in the regulation of
cell survival. This can give rise to novel hypotheses
regarding the molecular mechanisms of HAX-1 function
and potentially uncover new links between Ca2+ cycling
and apoptosis, especially in cardiac disease.

In mammals, the Bcl-2 gene family consists of at least
12 members [107], encoding proteins with pro- or anti-
apoptotic function that exert a key role in the regulation of
apoptosis. These proteins are important in controlling the
mitochondrial pathway of apoptosis and are critical in the
decision toward initiation of the cellular death cascade,
which leads to release of pro-apoptotic factors, caspase
activation, and commitment to apoptosis. Bcl-2, the found-
ing member of this family, is an anti-apoptotic protein that
provides protection against various apoptosis-inducing
agents by maintaining the outer mitochondrial membrane
integrity and, in this way, preventing the release of pro-
apoptotic factors. A characteristic feature of the Bcl-2
protein family is the presence of at least one of the four
conserved Bcl-2 homology (BH) domains, which are
thought to be important in mediating protein interactions
between family members [108, 109]. Since HAX-1 presents
structural similarity to Bcl-2 due to its sequence homology
to the Bcl-2 domains BH1 and BH2, it becomes intriguing
to speculate that these two mitochondrial proteins might
participate in similar molecular pathways.

The Bcl-2 protein family and its role in ER Ca2+

homeostasis

Mitochondria are central players in the initiation of
apoptosis, and numerous studies have focused on their role
in regulating the molecular pathways leading to cell death.
Recent experimental evidence has demonstrated the critical
role of ER Ca2+ content in determining cellular sensitivity
to apoptotic stimuli. In particular, increased ER Ca2+ load
was associated with sensitization to apoptosis, while
decreased ER Ca2+ levels are thought to provide protection
against apoptotic stimuli [110, 111]. A communication
between the ER and the mitochondria was proposed to
represent a critical mechanism in determining cell fate,
hence defining a functional role for the ER as a new
gateway to apoptosis [110]. The spatial organization and
proximity of ER and mitochondrial membranes has been
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shown to result in the existence of close contact sites
between the two organelles [102, 112–114]. This may
facilitate Ca2+ movement between the two organelles,
further pinpointing their critical relationship in defining
cellular fate. The direct communication between ER and
mitochondria could be of particular importance in tissues
such as cardiac muscle, which require accurate and tight
regulation of Ca2+ homeostasis coupled to bioenergetics on
a beat-to-beat basis.

Over the past few years, it has become evident that anti-
apoptotic proteins may be important in promoting cell
survival by regulating homeostasis of additional organelles.
Studies on Bcl-2 have determined that, in addition to its
mitochondrial localization, it is also present in other
membrane cellular compartments including the ER and
the outer nuclear membrane [115–117]. Several other
proteins of the Bcl-2 family, such as BAX, BAK, and
Bcl-XL, also localize to the ER [118–120]. While the
function of Bcl-2 at these extra-mitochondrial sites remains
unclear, experimental evidence suggests that it is most
likely related to cell survival.

The use of specific organelle-targeted mutants showing
restricted subcellular localization has been very important
on deciphering the role of Bcl-2 at the ER membrane and
thus further defining its contribution to regulation of
cellular apoptosis. An ER-localized Bcl-2 mutant (Bcl-2-
cb5), which was generated by exchanging the C-terminal
tail of wild-type Bcl-2 with the corresponding sequence
from an ER-specific isoform of cytochrome b5, has been
shown to protect against a variety of apoptotic-stimuli
including serum starvation, ionizing radiation, brefeldin A,
ceramide, and staurosporine [121–124]. Moreover, this ER-
localized Bcl-2 mutant can inhibit the loss of mitochondrial
membrane potential [124] and cytochrome c release [123],
suggesting that Bcl-2-cb5 can indirectly protect the mito-
chondria. These studies indicate that Bcl-2 does not need to
be associated with mitochondria to inhibit cytochrome c
release and have implicated Bcl-2 in an apoptotic crosstalk
between the ER and the mitochondria. Similarly to Bcl-2,
HAX-1 can localize at the mitochondria or the ER,
exhibiting anti-apoptotic properties in both sites [81]. Thus,
HAX-1 could represent a new mediator of the ER–
mitochondria crosstalk, with direct implications in cell
death decisions.

Considering the critical function of ER in Ca2+ homeo-
stasis, the role of Bcl-2 as a regulator of ER Ca2+ levels has
been evaluated. In human breast epithelial cells and mouse
lymphoma cells, Bcl-2 overexpression was shown to result
in increased ER Ca2+ concentration, a finding which was
proposed to correlate with maintenance of cell growth and
viability [43, 125]. On the other hand, studies in HeLa cells
[126], human prostate cancer cells [127], and HEK293 cells
[128] identified decreased ER Ca2+ levels as the result of

Bcl-2 overexpression. This decrease in ER Ca2+ concentra-
tion was proposed to enhance cell survival by reducing the
amount of Ca2+ available for release and subsequent uptake
by the mitochondria after apoptotic stimulus. The above
discrepancies on the effect of Bcl-2 overexpression could
be due to differences between cells lines, Bcl-2 expression
levels, and Ca2+ measurement methodologies [108].

The anti-apoptotic protein Bcl-XL has also been found to
modulate ER Ca2+ levels and cell survival, further
implicating anti-apoptotic proteins in the regulation of Ca2+

homeostasis. Specifically, Bcl-XL overexpression in a
murine T-cell line caused a dose-dependent decrease in
the expression levels of type 1 inositol 1,4,5-triphosphate
receptor (IP3R) and thus in the amount of receptor-mediated
Ca2+ released after IP3 stimulation [129, 130]. The
identification of an interaction between Bcl-XL and IP3R
has provided additional evidence for the involvement of
Bcl-XL in the regulation of ER Ca2+ homeostasis, leading
to enhanced cellular bioenergetics and preserved survival
[131].

In addition to anti-apoptotic proteins, the pro-apoptotic
proteins BAX and BAK have also been shown to modulate
ER Ca2+ content, to affect the amount of Ca2+ taken up by
the mitochondria and subsequently to induce apoptosis
[119, 132]. Analysis of mouse embryonic fibroblasts
(MEFs) from Bax and Bak double-knockout mice has
provided valuable information on the role of these apoptotic
proteins as regulators of ER Ca2+ homeostasis. A decreased
ER Ca2+ content in Bax and Bak double-knockout MEF
cells resulted in attenuated Ca2+ uptake by the mitochondria
after ER Ca2+ release and consequent increased resistance
to ceramide and arachidonic-acid-induced cell death [133].
Overexpression of BAX or SERCA corrected the ER Ca2+

imbalance in these cells and restored apoptotic response to
cell death stimuli, thus demonstrating the involvement of
BAX in modulating ER Ca2+ homeostasis and promoting
cell death. The decreased levels of ER Ca2+ in Bax and Bak
double-knockout MEF cells were associated with increased
passive leak of Ca2+ and hyperphosphorylated state of
inositol triphosphate receptor type 1 (IP3R-1) [134]. These
findings suggest a role for BAX and BAK in both ER and
mitochondria, with the two proteins potentially providing a
Ca2+-dependent crosstalk between the two organelles.

Taken together, these studies provide significant evi-
dence on the involvement of Bcl-2 family proteins in the
regulation of ER Ca2+ homeostasis, with direct effects on
ER Ca2+ content and cell survival. In parallel to these
proteins, HAX-1 is highly likely to play a similar role.
Specifically, HAX-1 interacts with PLN, the major regula-
tor of SERCA2a activity, and exhibits anti-apoptotic
properties when localized to the ER, thus implicating it in
the regulation of ER/SR Ca2+ homeostasis and cell survival
(Fig. 2).
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Bcl-2 interacts with SERCA and modulates its activity

Although the precise mechanism through which Bcl-2
regulates ER Ca2+ homeostasis is still unclear, experimental
evidence supports a number of different alternatives [42,
43, 128, 135–137]. Of particular interest is the effect of
Bcl-2 on SERCA activity, mediated through their direct
association that parallels the PLN/HAX-1 binding.

Overexpression of Bcl-2 in human breast epithelial cells
and prostate cancer cells was shown to influence SERCA
protein expression, resulting in an increase or decrease of
SERCA2 or SERCA2b, respectively. Although the under-
lying cause of this discrepancy has not been clarified, these
findings implicate Bcl-2 in SERCA expression regulation
and provide a possible explanation for the observed
alterations in ER Ca2+ levels [43, 127]. Immunoprecipita-
tion studies in DHL-4 human lymphoma cell line, MCF10A
breast epithelial cells and rat skeletal muscle identified a
direct interaction between Bcl-2 and SERCA1 or SERCA2
[42, 43]. Further in vitro analysis of this interaction
determined that Bcl-2 inhibits SERCA activity in a time-
and dose-dependent manner, and causes a conformational
transition of SERCA, leading to partial unfolding of the
protein [42]. It was recently proposed that SERCA
inactivation by Bcl-2 occurs through displacement of

SERCA from caveolae-related domains of the SR into a
different membrane environment [138]. Although the
binding sites involved in the interaction between Bcl-2
and SERCA have not been determined, current findings
suggest that the occurrence of a tight association with the
ATP-binding or the Ca2+-binding domains of SERCA is
probably unlikely. It is possible, however, that a transient
interaction of Bcl-2 with these domains may trigger
transition of SERCA into an inactive conformation and
may therefore release Bcl-2 from the protein complex
[138].

Collectively, these findings reveal the critical role of Bcl-
2 in modulating SERCA activity and ER Ca2+ levels.
Furthermore, when considered jointly, the HAX-1 and Bcl-
2 association with the SERCA/PLN complex may give rise
to the hypothesis that there is a direct link between the SR
Ca2+ uptake complex and apoptosis, with direct implica-
tions in cardiac function and disease development, such as
heart failure.

Conclusion

Ca2+ cycling is a critical determinant of cardiomyocyte
contractility and cardiac function. A major regulator of SR

Fig. 2 HAX-1 is a promising new link between Ca2+ cycling and cell
survival. During cardiac contraction, part of the SR Ca2+ content that
is released from RyR channels can be taken up by closely positioned
mitochondria. Sequestration of Ca2+ to the SR by SERCA2a results in
refilling of the SR. PLN exerts inhibitory effects on SERCA2a activity
and thus represents a critical regulator of SR Ca2+ homeostasis. The
anti-apoptotic protein HAX-1 interacts with PLN, an association
directly implicating HAX-1 in the regulation of SR Ca2+ uptake to
promote cell survival. If SR Ca2+ uptake is tightly regulated, then SR
Ca2+ content is maintained at optimal levels, and subsequently,

mitochondria take up optimal amounts of Ca2+ (thin arrows). This
can positively regulate mitochondrial bioenergetics to support cell
function and promote cell survival. Conversely, deregulation of SR
Ca2+ uptake, as seen in heart failure, can affect the amount of SR Ca2+

available for release and subsequently cause mitochondrial Ca2+

overload (thick arrows). This would result in caspase activation,
initiation of the apoptotic signaling cascade, and cell death. HAX-1 is
emerging as a critical player in the regulation of SR Ca2+ homeostasis,
with direct effects on SR Ca2+ content and cell survival
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Ca2+ uptake is the SERCA2a/PLN complex, with aberra-
tions in its function being directly associated with heart
failure. HAX-1, the novel binding partner of PLN, presents
with numerous structural and functional similarities to the
Bcl-2 family and is therefore emerging as an intriguing new
link between Ca2+ homeostasis and cell survival. Over the
past few years, it has become apparent that a crucial aspect
in the function of anti-apoptotic proteins of the Bcl-2 family
includes regulation of ER Ca2+ homeostasis and protection
of mitochondria from Ca2+ overload. Similarly, HAX-1
could be implicated in the promotion of cell survival by
indirectly or even directly affecting SERCA2a activity. This
putative role of HAX-1 as a mediator between SR Ca2+

content and cell survival needs to be further evaluated.
Elucidating the precise pathways implicated in this process
will be invaluable in understanding the pathogenetic
mechanisms of heart failure and importantly could unveil
promising new therapeutic targets.
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