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Abstract TRPC proteins constitute a family of conserved
Ca2+-permeable cation channels which are activated in
response to agonist-stimulated PIP2 hydrolysis. These
channels were initially proposed to be components of the
store-operated calcium entry channel (SOC). Subsequent
studies have provided substantial evidence that some TRPCs
contribute to SOC activity. TRPC proteins have also been
shown to form agonist-stimulated calcium entry channels
that are not store-operated but are likely regulated by PIP2 or
diacylglycerol. Further, and consistent with the presently
available data, selective homomeric or heteromeric inter-
actions between TRPC monomers generate distinct agonist-
stimulated cation permeable channels. We suggest that
interaction between TRPC monomers, as well as the
association of these channels with accessory proteins,
determines their mode of regulation as well as their cellular
localization and function. Currently identified accessory
proteins include key Ca2+ signaling proteins as well as
proteins involved in vesicle trafficking, cytoskeletal inter-
actions, and scaffolding. Studies reported until now demon-
strate that TRPC proteins are segregated into specific Ca2+

signaling complexes which can generate spatially and
temporally controlled [Ca2+]i signals. Thus, the functional
organization of TRPC channelosomes dictates not only
their regulation by extracellular stimuli but also serves as a

platform to coordinate specific downstream cellular func-
tions that are regulated as a consequence of Ca2+ entry. This
review will focus on the accessory proteins of TRPC
channels and discuss the functional implications of TRPC
channelosomes and their assembly in microdomains.
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Channel function

Store-operated Ca2+ entry: past and present

Store-operated Ca2+ entry (SOCE) was identified almost
two decades ago as a plasma membrane (PM) Ca2+ entry
pathway that is activated in response to depletion of Ca2+ in
the intracellular Ca2+ store namely the endoplasmic
reticulum (ER) [82, 84]. Although this mechanism is
ubiquitously present in all cells, it has now been clearly
demonstrated that distinct SOC channels are present in
different cell types [2, 4, 6, 11, 14, 17, 24, 32, 45, 46, 48,
66, 75, 76, 119, 127]. However, neither the molecular
components of these channels nor the mechanism(s) that
signals the ER-[Ca2+] status to the PM channel have yet
been conclusively established in all cell types. The well-
established role of Drosophila TRP channel in photo-
transduction [62, 65] propelled the search for molecular
components of SOC channels and led to the identification
of mammalian TRPC channels. Studies with TRPCs have
primarily been focused on demonstrating their involvement
in SOCE, and data obtained over the past 10 years or so
provide strong evidence that TRPC channels critically
contribute to SOCE in a number of different cell types. In
addition, these studies also provided evidence for TRPC
channel contribution to agonist-dependent, store-indepen-
dent Ca2+ channels [for reviews, see 2, 4, 6, 62, 65, 76,
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115]. In this chapter, we will first briefly review SOCE,
including the recent advances in this area, and then focus
on the accessory proteins of TRPC channels and the
functional implications of TRPC channelosomes.

Early observations that SOCE-dependent refill of internal
Ca2+ stores occurred without significant increase in [Ca2+]i
[60, 82, 84, 103] lead to the suggestion that this Ca2+ entry
occurs in specific cellular domains within which Ca2+

entering the cell is rapidly sequestered into the ER by the
activity of the ER Ca2+ pump (SERCA), with minimal
diffusion of Ca2+ in the cytosol [47, 59, 63, 64]. Thus, it
was proposed that the ER is closely apposed to the PM at
the site of SOCE. The recognition of such domains
provided the basis for several models proposed for the
activation of SOCE [11, 34, 78, 84–86]. The models that
have received most attention are: (1) “conformational
coupling”, which suggests close physical association
between the PM Ca2+ channel and an ER protein that can
detect and relay the luminal [Ca2+] status to the surface
membrane; (2) “secretion coupling”, according to which,
cortical ER is dynamically regulated so that it interacts
with PM channels when luminal [Ca2+] is low; (3)
“recruitment of channels”, which suggests regulated
trafficking and fusion of channel-containing vesicles with
the PM in response to store depletion; and (4) “diffusible
messenger”, which suggests that a diffusible calcium influx
factor is generated in response to ER-Ca2+ depletion and
released into the cytosol, resulting in the activation of the
PM Ca2+ channel. While there are insufficient data to
conclusively prove or discard any of these models, recent
developments in this field (described below) provide strong
evidence in support of the first two models. It is also
important to note that these new data suggest that these
models need not be mutually exclusive.

Three of the four models for SOCE activation predict,
and have a requirement for, close proximity of PM and ER.
Consistent with this, functional, biochemical, and morpho-
logical data reveal the presence of junctional domains in
cells formed by components of PM and peripheral ER
within which Ca2+ signaling and Ca2+ entry occur [1, 2, 7,
38, 39, 63, 84]. There is now general consensus that SOC
channels, as well as Ca2+ signaling proteins including
upstream components such as G protein-coupled receptors,
G-proteins and phospholipase C (PLC), and downstream
components such as inositol trisphosphate receptors (IP3Rs)
as well as [Ca2+]i regulatory proteins such as SERCA and
PMCA are assembled in a supramolecular signaling
complex [2, 38, 39, 41]. In addition, non-protein PM
components such as PIP2 and PIP3, which are critically
involved Ca2+ signaling, are also localized in these
junctional microdomains. Notably, these lipids, as well as
cholesterol and sphingolipids, are concentrated in biochem-
ically distinct PM lipid domains called lipid raft domains

(LRD) or caveolar LRD, referring to LRD that contain the
cholesterol-binding protein caveolin-1 [1, 35, 94]. As key
Ca2+ signaling protein complexes have been found in
caveolar LRD (also called caveolae) and disruption of
these domains attenuates SOCE, these domains have been
suggested to provide a platform for the Ca2+ signaling
mechanisms (further discussed below). Thus, proteins
involved in generating the [Ca2+]i signal, as well as those
regulating the level of [Ca2+]i in the cell, are tightly
associated with each other. More importantly, there is
dynamic remodeling of this complex and recruitment of
regulatory proteins when cells are stimulated [30, 36, 57,
73, 79, 90, 126]. Rearrangements of the local cytoskeleton
and microtubule network have been implicated in the
regulation domain architecture, e.g., increase in cortical
actin due to hyperpolymerization of actin decreases SOCE
[78, 89, 90]. Although it has been proposed that this
decrease is due to cortical actin forming a physical barrier
between the ER and PM, key Ca2+ signaling proteins from
the PM, and caveolae, are internalized under these conditions
[4, 50, 94]. Such internalization is indicative of the
involvement of vesicular trafficking mechanisms which are
regulated by cytoskeletal rearrangements as well as by
changes in PM levels of PIP2 and PIP3 [8, 21, 28]. The
role of vesicular trafficking, which is emerging as a key
mechanism in the regulation of agonist-stimulated Ca2+ entry
channels, is further discussed below.

Recent studies have provided novel insights into a
possible mechanism for regulation of SOC channels. A
key finding is the clustering of Ca2+ signaling proteins in
response to stimulation of cells and depletion of internal
Ca2+ stores. IP3R is a central protein in Ca2+ signaling and
regulation of SOC channels [7, 30, 38, 39, 77, 78, 85, 115]
despite contradictory reports regarding its role in SOCE
[55, 113]. Consistent with its proposed role in SOCE
regulation, IP3R undergoes clustering in the peripheral
region of the ER, the location of which has been suggested
as the ER–PM interaction zone involved in activation of
SOCE [30]. The stromal interacting molecule 1 (STIM1),
an ER Ca2+ sensor protein previously described as a tumor
suppressor protein, has now been proposed as a regulatory
protein for Ca2+ release-activated Ca2+ (CRAC) channels
(which mediate SOCE in T lymphocytes and other
hematopoietic cells) as well as SOCE in several other cell
types [88, 97]. More significantly, STIM1 also undergoes
clustering in the subplasma membrane region in response to
agonist stimulation and intracellular Ca2+ store depletion.
There are convincing data to show that Ca2+ entry via
CRAC channels occurs at the site where these STIM1
clusters are formed [44, 53, 129]. Further, STIM1 and IP3R
are recruited to a PM–SOC channel complex by a
cytoskeleton-dependent mechanism after store depletion in
platelets [52]. Thus, although it is not clear whether STIM1
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and IP3R co-cluster, the “clusters” can be suggested to
represent centers where dynamic remodeling of protein
complexes occurs during regulation of SOCE. Such rear-
rangement is reminiscent of other Ca2+ channel complexes
such as the glutamate receptors which are reorganized into
clusters within specific PM regions in the post-synaptic
membrane of neuronal cells in response to stimulation [27,
69]. It is also important to note that depletion of Ca2+ in the
peripheral ER Ca2+ store is sufficient for STIM1 clustering
and likely is the determining factor for activation of Ca2+

entry [73]. Thus, the entire mechanism involved in
mediating and regulating Ca2+ entry are contained within
junctional domains that involve peripheral ER and PM.

As mentioned above, the molecular components of store-
operated and store-independent calcium channels have not
yet been conclusively established. Substantial data demon-
strate that all members of the TRPC family of cation
channel proteins are activated by agonist-stimulated PIP2
hydrolysis, although only some TRPCs contribute to SOCE
[2, 6, 65, 76, 83, 98, 115, 117]. It has been recently reported
that a four-transmembrane PM protein, Orai1, together with
STIM1, is sufficient for generation of CRAC channels [81,
116, 123]. However, the role of Orai1 in SOC channels
found in other cell types has not yet been demonstrated.
Significantly, it has now been demonstrated that TRPC1-
dependent SOC channels are also regulated by STIM1 [32,
52, 72] and that several TRPCs interact with STIM1 [32].
More intriguingly TRPC1, Orai1, as well as STIM1 appear
to contribute to SOCE [72] in a human salivary gland cell
line. These recent studies provide novel molecular insights
on how distinct SOC channels might be assembled. The
rest of this review will focus on TRPC channelosomes and
how accessory proteins might determine their function.

Role of TRPC-cation channels in agonist-stimulated
Ca2+ entry

It is well recognized that activation of cell surface receptors
which are coupled to inositol lipid signaling results in PIP2
hydrolysis, generation of diacylglycerol (DAG) and IP3,
release of Ca2+ from internal Ca2+ stores, and activation of
PM Ca2+ influx channels. Studies with TRPC proteins have
revealed that agonist-generated signals can activate two
major types of Ca2+ entry. SOCE, which, as described
above, depends on the depletion of Ca2+ from the internal
Ca2+ stores rather than PIP2 hydrolysis per se. The
characteristics of the currents activated by store depletion
in cells such as T lymphocytes, RBL, salivary gland,
endothelial, and smooth muscle cells have demonstrated the
presence of different types SOC channels ranging from
non-selective to very Ca2+ selective [4, 11, 46, 65, 76, 83,
91, 98, 117]. There is convincing evidence for the

contribution of TRPC1 and TRPC4 to SOC channels [17].
TRPC3 and TRPC7 have also been shown to generate SOC
when they are in a complex with TRPC1 [45, 127].
Although the physiological significance of such diversity
in SOCs is not clear, it is important to consider whether all
these channels are activated by the same signal generated in
response to internal Ca2+ store depletion or whether internal
Ca2+ store depletion induces multiple intracellular signals
that act on different channels. TRPCs also contribute to
“second messenger-operated channels” (SMOCs) that are
activated by receptor-stimulated PIP2 hydrolysis but do not
depend on internal Ca2+ store depletion. These channels are
most likely either directly activated by DAG or by PIP2
hydrolysis per se [1, 2, 65, 76, 83, 98]. TRPC3, TRPC6,
and TRPC7 have been shown to be activated by DAG [19,
83]. An important question that arises is how cells
coordinate signals generated in the PM and within the
same Ca2+ signaling cascade, with the activation of
different Ca2+ channels. As has been described for several
ion channel complexes, this is achieved by segregating the
proteins into complexes allowing the channel to be located
in close proximity to its regulator. Such an organization
determines not only the specificity of interactions but also
the rate of signal transduction. Further, segregating these
protein complexes into required cellular domains allows for
the generation of compartmentalized Ca2+ signals [1, 2, 38,
39, 65] which can be locally decoded for regulation of
downstream effectors. Thus, resolving the organization of
agonist-stimulated Ca2+ signaling microdomains is critical
for understanding how cells distinguish different Ca2+

signals to regulate specific Ca2+-dependent cellular function.
Although there has been intense focus on TRP channels

over the past decade, conclusive data regarding the exact
physiological function of most of these channels are still
lacking. Part of this is due to conflicting data regarding
their activation mechanisms. These discrepancies stem from
the use of heterologous expression systems and the lack of
specific pharmacological tools to affect channel properties.
Despite this, there are sufficient data to demonstrate that
TRPCs form distinct channels that not only differ in their
biophysical characteristics but also in their modes of
activation [65, 76, 100]. Studies with TRPCs (both
endogenously and exogenously expressed) demonstrate
homomeric and heteromeric interactions between TRPC
monomers (Table 1). Most of the reported interactions
appear to involve the N-terminus of the channels and, more
specifically, the coiled-coiled or ankyrin repeat regions of
the protein [22, 31, 40, 45, 92, 117]. More detailed studies
will be required to map the exact residues involved. It is
important to note that heterogenously expressed proteins
could interact promiscuously with other endogenously
expressed TRPC monomers or exhibit different modes of
activation depending on their level of expression, e.g.,
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TRPC3 displays store-dependent activation when
expressed at low levels and store-independent activity at
higher levels of expression [114]. Thus, meaningful
conclusions regarding the type of channel formed by
specific TRPC protein(s) and its physiological function
can only be based on data with the endogenous proteins.
The number of studies assessing the function of the
endogenous proteins, mostly using a knock-down approach,

is steadily increasing, and the data available until now
clearly demonstrate the capacity of TRPCs to form diverse
channels [reviewed in detail in 4, 55, 76, 91, 117]. Further,
all TRPC proteins have been shown to be closely associated
with a number of accessory proteins that appear to be
involved not only in the regulation of channel function but
also in their cellular localization and PM expression [2, 38,
65]. These include key Ca2+ signaling proteins as well as

Table 1 TRPC binding partners

TRPC1 TRPC2 TRPC3 TRPC4 TRPC5 TRPC6 TRPC7

TRPC1b [100] TRPC1b [43, 100, 119,
127]

TRPC1b [17, 31,
100, 101]

TRPC1b

[100, 101]
TRPC1b

[127]
TRPC2a

[31]
TRPC2b [13]

TRPC3b [43, 100, 119,
127]

TRPC3a [31] TRPC3b [5, 31, 45,
100]

TRPC3b

[127]
TRPC4a,b [17, 31, 100, 101] TRPC4a [31] TRPC4a

[31]
TRPC5b [100, 101] TRPC5a [31] TRPC5

TRPC6b

[16]
TRPC6a,b [5, 31, 45] TRPC6a [31] TRPC6b [48]

TRPC7b [127] TRPC7b [127] TRPC7b [48] TRPC7

References are as indicated in brackets.
a Indicates interactions observed in studies with heterologously expressed proteins
b Indicates interactions observed in studies with endogenous proteins

Table 2 TRPC channelsomes

TRPC1  TRPC2 TRPC3  TRPC4 TRPC5  TRPC6   TRPC7 

IP3R [51, 57, 90]  IP3R [109]  IP3R [5, 37, 50]  IP3R IP3R IP3R IP3R 

CaM [51]  CaM CaM CaM CaM [74]  CaM [12]  CaM 

Gq/11 [51]   Gq/11 [5, 50]   Gαq/11  

PLCβ [51]  PLCβ PLCβ [5, 50]  PLCβ [62, 105]  PLCβ [105]  PLCβ PLCβ 

GPC or TrkR  GPC or TrkR   GPC or TrkR  

STIM1 [32]   STIM1 [32]     

 Junctate [99]  Junctate [99]    Junctate [99]   

  PMCA PMCA PMCA PMCA  

SERCA     SERCA  

Enkurin [102]  Enkurin [102]    Enkurin [102]    

 PLCγ [109] PLCγ [79]   PLCγ PLCγ  

Homer [126]   Homer [37]      

   NHERF [61, 105]  NHERF [61, 105]    

   ZOI [105]  ZOI [105]    

  Caveolin [50]  Caveolin Caveolin   

MxA [54]  MxA [54]  MxA [54]  MxA [54]  MxA [54]  MxA [54]  MxA [54]  

RhoA [57]     RhoA RhoA  

SNARES [89]  SNARES [95]    SNARES [8, 26]   

 
Only proteins common to 2 or more TRPCs have been listed. Components involved in Ca2+ signaling are shown in the top half of the 
 table, the bottom half of the table show interacting proteins involved in scaffolding and trafficking. References are as indicated in
 brackets and superscript. 

PMCA [38, 39, 50] 

Caveolin [1, 13, 51] 

STIM1 [32, 52, 72]  

SERCA [50, 38, 39] 

190 Pflugers Arch - Eur J Physiol (2007) 455:187–200



proteins involved in vesicle trafficking, cytoskeletal inter-
actions, and scaffolding (see Table 2). These findings
suggest that TRPC proteins are segregated into specific
Ca2+ signaling complexes.

TRPC channelosomes and regulation of channel
function

The Drosophila TRP and TRPL channels are assembled in
a Ca2+ signaling complex via their interaction with INAD, a
multi-PDZ domain containing scaffolding protein [62, 65].
INAD binds to a number of signaling proteins, such as
calmodulin (CaM), PLC, G-protein, and protein kinase C
(PKC), which are involved in channel activation, inactiva-
tion, and regulation. Similarly, as shown in Table 2,
mammalian TRPCs are also assembled in protein com-
plexes. In addition, since TRPC channels have the inherent
ability to form homomeric and heteromeric channels,
selective association between them can generate a plethora
of channel types. Thus, it can be proposed that the
components of TRPC signalplexes determine not only the
type of channel that is formed but also the cellular localization
and targeting of these signalplexes. The rest of this reviewwill
focus on the accessory proteins of TRPC proteins and
functional implications of TRPC channelosomes.

TRPC1 TRPC1 is currently the strongest TRPC candidate for
SOC [see 1, 4, 6, 49, 65, 76, 91 for recent reviews]. The
characteristics of the channels formed by TRPC1 are quite
diverse, ranging from relatively Ca2+ selective to non-
selective (Ca2+ vs Na+) depending on their molecular
composition [4, 6, 14, 17, 45, 48, 66]. TRPC1 is suggested
to have a role in various physiological functions, including
fluid secretion, endothelial cell migration and permeability,
smooth and skeletal muscle function, cell proliferation,
differentiation, wound healing, and protection against cell
death [4, 6, 10, 87, 91]. Surface expression of TRPC1
appears to depend on its interactions with other TRPCs (e.g.,
TRPC1, TRPC4) [17, 22, 31] or other proteins such as
caveolin-1 [1, 13], β-tubulin (microtubule structures) [9], and
RhoA (remodeling of the cytoskeleton) [57]. TRPC1 interac-
tion with caveolin-1 and RhoA mediates its localization in
caveolae. In addition, the TRPC1-signalplex also contains
key Ca2+ signaling proteins such PLC, Gαq/11, IP3R [51, 126]
and depending on the cell type, neurotransmitter and growth
factor receptors such as bradykinin [18] and fibroblast growth
factor receptors [23]. Most of these proteins are involved
upstream in the signaling cascade, leading to PIP2 hydrolysis,
IP3 generation, and release of Ca2+ from the ER, i.e., events
that result in the activation of Ca2+ entry.

A major focus has been placed on IP3R, which was first
described as the ER protein involved in the activation of

SOCE [34, 85]. There is convincing evidence that IP3R
regulates TRPC1 function. The scaffolding protein HO-
MER has been suggested to mediate the interaction
between TRPC1 and IP3R, and disruption of this interaction
is associated with TRPC1 activation by ER-Ca2+ depletion
[126]. In contrast, an increase in association of IP3R with
TRPC1 has been seen in platelets and endothelial cells,
suggesting that the IP3R-TRPC1 interaction is required for
SOCE [52, 57, 90]. Recently, as discussed above, STIM1
has been proposed to function as a regulator for SOCE. The
C-Terminus of STIM1 interacts with and activates TRPC1
[32]. Further, Lopez et al. [52] recently reported that
TRPC1 forms a complex with IP3RII and STIM1 in human
platelets and that after store depletion, there is increased
interaction between these proteins. Thus, HOMER and
STIM1 mediate very different effects on TRPC1-IP3R
interactions, although both induce activation of SOCE.
RhoA has also been shown to mediate TRPC1–IP3R
interactions in endothelial cells and regulate SOCE [57].
In this case, a ternary complex is formed upon stimulation,
which results in increased TRPC1 in the PM. While
HOMER does not affect the level of TRPC1 in the PM,
the effect of STIM1 on TRPC1 surface expression is not yet
known. We have recently reported that TRPC1 associates
with Orai1 [72]. Further, we showed that Orai1, TRPC1,
and STIM1 concertedly regulate SOCE. Stimulation with
calcium-depleting agents increases the association between
these proteins. Thus, a ternary complex of TRPC1, Orai1,
and STIM1 determines SOCE in cells where TRPC1 was
previously shown to contribute to SOCE. More importantly,
these data demonstrate that Orai1 is required for TRPC1-
mediated SOCE. The status of IP3R, and whether it interacts
with Orai1, has not been assessed in this study. Thus, further
studies will be required to clarify the role of IP3R in TRPC1
function and to identify the components of TRPC1-channe-
losome that are involved in trafficking per se and those that
directly regulate the gating and function of the channel.

TRPC2 There is relatively less known about TRPC2
compared to other TRPCs. While the mouse and bovine
TRPC2 genes form functional channels, TRPC2 is not
expressed in human tissues [43, 124], but is abundantly
found in the vomeronasal organ (VNO) of rodents. Mouse
TRPC2 has been shown to mediate pheromone sensory
signaling and TRPC2−/− mice exhibit defective sexual and
social behaviors [43, 132]. The interaction of TRPC2 with
other TRPCs have not been fully investigated, although one
study showed that TRPC2 did not interact with any TRPCs
when heterologously expressed in HEK293 cells [31];
another showed that TRPC2 interacts with endogenous
TRPC6 in primary erythroid cells [16]. Nonetheless,
TRPC2 has been shown to form a signalplex with
erythropoietin receptor, IP3RIII and PLCγ [109]. Enkurin,
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which is also highly expressed in testis and VNO, interacts
with TRPC2. Enkurin contains binding sites for calmodulin
and SH3 domain proteins, such as the p85 regulatory
subunit of PI3K, and thus, has been proposed to function as
an adaptor that localizes TRPC2 and other regulatory
proteins in a signalplex [102]. In addition, the C-terminus
of TRPC2 binds to the N-terminus of junctate, which might
determine its regulation by store depletion in some cell
types [99]. TRPC2 also binds to STIM1 [32].

TRPC3 TRPC3, TRPC6, and TRPC7 are grouped together
based on the considerable homology in their amino acid
sequence and in their mode of activation [19, 65, 83, 98].
Nonetheless, the physiological properties and functions
attributed to TRPC3 are quite distinct from those of TRPC6
and TRPC7. TRPC3 can form both store-independent and
store-dependent channels in different cell types [45, 83, 98,
119, 127], and this has been suggested to depend on the
level of protein expression. High levels of expression
results in homomeric TRPC3 channels with constitutive
store-independent activity, whereas low channel expression
results in store-dependent activity [114]. As TRPC1 +
TRPC3 [45], and also TRPC1 + TRPC3 + TRPC7 [127],
interactions have been reported in generation of SOC

channels, the exact molecular interactions involved in
generation of TRPC3-SOC channels need to be further
examined. It is possible that when low levels of TRPC3 are
expressed, it can interact with endogenous TRPC1 to form
SOC channels (see Fig. 1). Localization of TRPC3 in the
PM depends on the status of actin [50], while its
calmodulin/IP3 receptor-binding (CIRB) region is involved
in targeting the channel to the PM [118]. Interaction with
PLCγ regulates TRPC3 cell surface expression and
facilitates interaction or anchoring of TRPC3 with the PM
lipid, PIP2. Interestingly, TRPC3–PLCγ–PIP2 interaction
does not appear to be required for its activation, but rather
for channel retention in the membrane and cell surface
expression [79]. We reported that PM expression of TRPC3
is dependent on vesicular trafficking and mediated via its
interaction with the vesicle soluble NSF attachment
receptor (SNARE) protein, VAMP2. Both constitutive and
regulated trafficking mechanisms were identified; the
former was Ca2+-dependent, while the latter was dependent
on PIP2 hydrolysis, but not on intracellular [Ca2+] increase
[95]. Similarly, HOMER has been shown to mediate the
interaction between IP3R and TRPC3, and these interac-
tions determine the rate of TRPC3 translocation to and
retrieval from the PM [37]. TRPC3 also interacts with

TRPC1
TRPC4
TRPC2

Ca2+

STIM1 SERCA

IP3R

TRPC1
TRPC4
TRPC2PMCA

Homomeric Heteromeric

Store-operated TRPC channels

TRPC1
TRPC4
TRPC2

Ca2+

STIM1

SERCA

TRPC3
TRPC7
TRPC5

IP3R

PMCA

Ca2+

SERCA

TRPC3
TRPC5
TRPC6
TRPC7

IP3

PMCA
PIP2

DAG

Ca2+

Second-messenger operated TRPC channels

Fig. 1 Possible arrangement of
TRPC monomers and accessory
proteins in the formation of
SOCs (top two illustrations) or
non-SOC (bottom illustration).
Although only G protein-cou-
pled receptor has been shown,
receptor tyrosine kinases also
activate TRPC channels. The
model is further explained in the
text (also see Tables 1 and 2 for
details on the interactions of
TRPC proteins with other
TRPCs as well as with accesso-
ry proteins)

192 Pflugers Arch - Eur J Physiol (2007) 455:187–200



MxA, a member of the dynamin superfamily [54], and this
interaction is most likely involved in trafficking of the
channel. However, the exact components of the TRPC3
channelosome that are involved in constitutive and regu-
lated trafficking of TRPC3, as well as its ability to generate
SOC channels, have not yet been resolved.

TRPC4 TRPC4 is most closely related to TRPC5, sharing
73% amino acid identity, but both proteins diverge in the
last 220 amino acids. Studies with TRPC4−/− mice models
have implicated TRPC4 in endothelial cell function and
vascular smooth muscle contractility [24], lung microvas-
cular permeability [108], and corneal epithelial cell prolif-
eration [122]. While there is general consensus that TRPC4
forms a store-dependent channel [65, 76], some studies
show that it forms constitutively active or store-independent
channels [80]. TRPC4 interacts with the PDZ domain
proteins NHERF and ZO1 via the “VTTRL” sequence in
the C-Terminus [105]. It also interacts with PLCβ [61] and
the protein tyrosine kinase, fyn [71]. The dynamic interplay
between tyrosine kinases, TRPC4, and NHERF regulates
PM expression and activation of TRPC4 channels. EGF
stimulation induces fyn-dependent phosphorylation of
TRPC4, which increases its interaction with NHERF and
activates its exocytotic insertion into the PM [71]. Interest-
ingly, TRPC4 is also associated with caveolae [110] where
growth factor receptor signaling proteins as well as
NHERF-binding proteins such as ezrin are localized. It
has been suggested that the interaction with NHERF and
Z01 provide a scaffold to position the channel in the apical
or lateral regions of polarized cells such as endothelial cells.
TRPC4 also interacts with STIM1, consistent with its store-
dependent regulation [32].

TRPC5 Although TRPC5 shares significant homology with
TRPC4, its localization, physiological function, and prop-
erties differ greatly. TRPC5 has been reported to form both
store-operated and store-independent channels and form
multimeric channels with TRPC1 and TRPC4 [80, 101,
120, 128]. It is predominantly expressed in the brain where
it appears to have a significant role in regulating neuronal
growth [26, 33]. Like TRPC4, TRPC5 also has the
sequence “VTTRL” in the C-Terminus, which mediates its
interaction with PDZ-binding proteins such as NHERF and
ezrin/moesin/radixin-binding phosphoprotein 50 (EBP50)
[70, 105]. Interaction with NHERF mediates its association
with PLCβ and regulates surface expression of TRPC5,
whereas interaction with EBP50 links the channel to the
cytoskeleton via ezrin and modulates the activation kinetics
of TRPC5 after agonist stimulation. Further, a recent study
also showed TRPC5 interaction with cytoskeletal proteins
such as actinin, actin, and drebrin [25]. In addition to the
“VTTRL” motif, two CaM binding sites located in the C-

terminus of TRPC5 have been reported [74, 104]. Both
CaM binding sites are involved in modulating channel
responses to agonist stimulation. Myosin light chain kinase
and PKC have also been shown to regulate TRPC5
function, although it is not clear whether this involves
direct effects on TRPC5 or is mediated via regulation of the
cytoskeleton [93, 130]. Trafficking of TRPC5 to specific
sites in the hippocampal neurons is determined by its
interaction with the exocyst component protein stathmin-2,
which targets the homomeric channel to the growth cone of
hippocampal neurons [26]. SNARE proteins have also been
found to be associated with the TRPC5-trafficking com-
plex. TRPC5 is localized in vesicles with proteins involved
in vesicle trafficking such as dynamin, clathrin, and MxA
[25, 26], suggesting that TRPC5 trafficking may involve
endocytosis via clathrin-coated pits. Rapid trafficking of
these vesicles to the PM is activated in response to
stimulation of hippocampal and other neuronal cells with
EGF and NGF, with relatively weaker responses to BDNF
and GF-1 [8]. Incorporation of the channel into the PM also
involves PI3K, the GTPase, Rac1, as well as PI4K. Ca2+

entry via the TRPC5 channel inhibits extension of growth
cones, but the exact mechanisms mediating this inhibitory
effect are not yet known [26]. Recently, Hui et al. [33]
showed that the neuronal calcium sensor-1 (NCS-1) binds
to the C-terminus of TRPC5, and the TRPC5-NSC-1
protein complex was shown to retard neurite outgrowth.
Interestingly, while TRPC1 + TRPC5 heteromers are
localized in neurites and TRPC5 homomers are found in
the growth cones, only the latter has an effect on the
elongation of the growth cone [8]. TRPC5 has also been
linked to vascular smooth muscle cell motility after
activation of the TRPC1 + TRPC5 channel by sphingo-
sine-1-phosphate [121]. Thus, components of the TRPC5
channelosome reveal the molecular basis for its trafficking,
internalization, and cellular function. Further, these findings
also substantiate the ability of TRPC proteins to generate
functionally distinct calcium channels.

TRPC6 TRPC6 shares close sequence and structural ho-
mology with TRPC3 and TRPC7, and has been unequivocally
shown to be activated by DAG and not by internal Ca2+ store
depletion [19, 83]. It has been associated with epinephrine-
evoked Ca2+ entry in smooth muscle cells from rat portal vein
[19] and arginine vasopressin-induced Ca2+ entry in vascular
smooth muscle cells [56]. TRPC6−/− mice show increased
vascular smooth muscle contractility [20], which is due to a
compensatory increase in spontaneously active TRPC3
channels. TRPC6 channels are also involved in the growth
of pontine neurons (TRPC3 + TRPC6) [42] and prostate
cancer epithelial cells [106]. TRPC6 translocates to the PM
upon stimulation with muscarinic agonists by a Ca2+-
independent mechanism [15]. The tyrosine kinase, fyn, an
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accessory protein for TRPC6, has been suggested to regulate
channel activation, but it is not clear whether phosphoryla-
tion has a role in TRPC6 translocation [29].

Relatively less is known about proteins that interact with
and regulate the trafficking and activity of TRPC6,
although TRPC6 has been shown to bind to enkurin
[102], cytoskeletal proteins such as actinin, actin, and
drebrin [25] and endocytic vesicle-associated proteins such
as dynamin, clathrin, and MxA [25, 54] and the plasma-
lemmal Na+/K+ ATPase pump [25]. Further, TRPC6 also
contains conserved IP3R- and CaM-binding domains, and
CaM reportedly regulates TRPC6 activation [12]. While
cytoskeletal proteins can potentially exert an effect on
channel trafficking, the role of these proteins in TRPC6
trafficking has not been directly demonstrated. In addition,
after stimulation with carbachol, several proteins including
PKC and the muscarinic receptor are recruited to TRPC6
[36]. It is important to recognize that both TRPC3 and TRPC6
are regulated by PIP2 hydrolysis and undergo translocation to
the PM in response to agonist stimulation. Furthermore,
TRPC6 has been shown to co-immunoprecipitate with
TRPC3 and TRPC7 [5, 31, 56]. However, any direct impact
of TRPC multimerization on TRPC6 trafficking is not yet
known. It is also not clear whether trafficking of homomeric
channels differs from that of heteromeric channels. This
might be an important consideration for all TRPCs.

TRPC7 TRPC7 was first isolated from fetal brain and
caudate nucleus cDNA libraries and was predominantly
expressed in different regions of the brain such as the
cerebral cortex, occipital pole, and amygdala [67]. The
TRPC7 gene maps to the human chromosome 21q22.3 and
has been proposed to be a candidate gene for genetic
disorders. TRPC7 gene expression is significantly lower in
B lymphoblast cell lines obtained from patients with bipolar
disorders [125]. When compared to the other TRPCs, less is
known about TRPC7, although store-dependent and –
independent, as well as constitutive activation, have been
observed [19, 83]. Importantly, TRPC7 was shown to
generate SOC channels when it interacts with TRPC1 and
TRPC3 in HEK293 cells [127]. In addition to its interaction
with TRPC6, TRPC7 has been reported to interact with
MxA [54], but how this interaction affects TRPC7
trafficking and channel activity has not been investigated.

Functional implications of TRPC channelosomes

Type of channel As discussed above, interaction of TRPC
monomers results in the generation of biophysically distinct
homomeric or heteromeric channels all of which are
relatively non-selective for Ca2+ (vs Na+), with the

exception of TRPC4 and TRPC1. These channels are also
regulated differently, e.g., TRPC1 + TRPC3 form SOC
channels [45, 119] while TRPC3 + TRPC6 generate store-
independent, DAG-activated, channels [107], and TRPC3
monomers appear to be spontaneously active [20, 83].
Thus, TRPC3, depending on its interacting partner, can
form different types of Ca2+ entry channels. It is very likely
that the type of channel that is formed is determined by the
associated regulatory protein. An ER-Ca2+ sensor protein
STIM1, which has been proposed to relay the internal Ca2+

store status to the PM channel and to be the key regulator of
SOCE, interacts with the TRPC channels that currently are
the strongest candidates for SOC, i.e., TRPC1 and TRPC4
[32, 52, 72]. Note that STIM1 also interacts with TRPC2,
which, although not expressed in human cells, has been
shown to be regulated by store depletion [32]. In contrast,
store-independent SMOC channels such as TRPC3,
TRPC6, and TRPC7 do not directly interact with STIM1
[32]. However, TRPC3 and TRPC7 contribute to SOC
channels when they heteromerize with TRPC1; TRPC1/
TRPC3 [45, 119] as well as TRPC1/TRPC3/TRPC7 [127]
SOC channels have been described. TRPC4, on the other
hand, does not appear to interact with TRPC3, TRPC6, or
TRPC7 [31]. It can be suggested that TRPC1, TRPC4, and
TRPC2 have the potential to form SOCs (i.e., as they
interact with STIM1), and TRPC3 and TRPC7 can form
SOC by interacting with TRPC1, as the latter can interact
with STIM1 and receive the ER signal. Thus, the regulatory
components associated with the individual TRPC proteins
determine the type of channel that is formed (see Fig. 1).
The exact stoichiometry of TRPC monomers required to
generate SOCs is not yet known. It is interesting that TRPC3
and TRPC6 interact with an ER-lumen protein, junctate,
which is involved in the ER–PM interaction in muscle cells.
Knockdown of junctate cells decreased agonist-induced Ca2+

entry as well as SOCE, whereas overexpression of the
protein increased ER–PM connections and increased Ca2+

entry [111]. Thus, junctate is another ER-calcium-binding
protein that appears to mediate ER-PM signaling during
activation of SOCE. TRPC1, together with TRPC4, contrib-
utes to SOCE and function of dystrophic skeletal muscle
fibers [112], while TRPC3 forms SOC channels in cardiac
muscle [68]. Whether interaction with junctate confers store-
dependent regulation of these TRPCs is not yet known. As it
is likely that STIM1 is also present in these cells, the relative
roles of STIM1 and junctate in the regulation of SOC
channels need to be further investigated.

Based on these findings, it can be suggested that the ER
proteins, junctate and STIM1, could fulfill the role of “ER-
Ca2+ sensor” function proposed in the conformational
coupling model. The initial model, which was based on
the regulation of voltage-gated calcium channels by the
ryanodine receptor in skeletal muscle, suggested IP3R as
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the ER protein involved in activation of SOCE. While there
are strong data that IP3Rs are involved in regulation of
SOCE via TRPC channels, the data are somewhat contra-
dictory. As noted above, in many instances, an increase in
the association of IP3R and TRPC channels has been seen
during activation of Ca2+ entry [36, 52, 57, 90]. However,
other studies predict dissociation of TRPC from IP3R
during activation [37, 126]. Despite the lack of clear
understanding as to how IP3R regulates PM membrane
TRPC channels, it is important to note that IP3Rs are seen
to be present in all mammalian TRPC channelosomes.
CaM, which mediates Ca2+-dependent feedback inhibition
of TRPC channels, is also found in almost all TRPC
channelosomes, and evidence for direct interaction of CaM
with various TRPCs has been reported. Interestingly, IP3R
and CaM have been proposed to have antagonistic effects
in the activation of TRPC1, with CaM being inhibitory and
IP3R activating the channel by displacing CaM [131]. Thus,
as in the case of Drosophila TRP channelosome, the
proteins involved in the activation and inactivation of
TRPC channels are localized in the TRPC channelosomes
where they directly or indirectly interact with the channel
proteins. Whether different proteins serve the same function
in different cell types is not yet clear, e.g., are the relative roles
of junctate and STIM1 as the signal relayers cell-specific?

Targeting and trafficking TRPC channelosomes also con-
tain scaffolding proteins that determine the localization of
the channel complex in the cell. Scaffolding proteins, such
as RACK1, HOMER, IP3R, ezrin, caveolin, junctate, ZO1,
EBP50, and NHERF (see Table 2), are likely to be involved
in retaining TRPC channelosomes in predetermined ER–
PM junctional regions as well as mediating interaction of
TRPCs with other regulatory proteins to facilitate Ca2+

entry-dependent regulation of cell function. TRPC1 is
localized in the basolateral region of salivary acinar cells
[49, 96], while TRPC3 is found in the apical membrane of
ductal cells [5]. TRPC3 + TRPC6 channels are found in the
apical region of MDCK cells, while TRPC6 is found in the
lateral membranes as well [5]. TRPC4 and TRPC5 are
localized in the apical region of polarized cells where they
interact with NHERF [105]. The latter is a PDZ domain-
containing protein which regulates apical localization of a
number of ion transporters. Thus, it is quite likely that in
addition to the surface expression, NHERF also determines
the apical localization of TRPC4 and TRPC5. Interaction of
these channels with ZO1 positions them in the lateral area
of endothelial cells where they can control functions like
permeability. TRPC5 is found in hippocampal neuronal
cells where it is packaged into vesicles together with the
growth cone-enriched protein stathmin 2 and carried to
newly forming growth cones and synapses [8, 26].
Activation of these homomeric TRPC5 channels by EGF-

dependent signaling inhibits growth cone extension. Con-
versely, TRPC5 + TRPC1 heteromeric channel is excluded
from the growth cones, and its activity does not affect the
growth of the neurons. It is presently unclear what governs
the differential localization of the two TRPC5-containing
channels. Most likely, distinct scaffolding proteins are
involved in holding the channels at these two different
sites. The accessory proteins for TRPCs appear to serve
similar functions as those reported for glutamate receptor
(GluR), which also interact to form homo- or hetero-
tetramers with varying Ca2+ selectivities. Although these
channels are primarily localized in the post-synaptic
membrane, they are regulated and trafficked very different-
ly. While some GluR complexes are constitutively active,
others are dynamically regulated. Accessory proteins
distinctly control their targeting, clustering, surface expres-
sion, and internalization. In addition to PDZ domain-
containing proteins such as PICK1, GluRs also interact
with four-transmembrane domain-containing proteins,
TARPS, which regulate their surface expression and gating.
TARPs are similar to the β-subunit of voltage-gated
channels which serve a similar function. While β-subunits
have not yet been identified for TRPC channels, an
emerging theme regarding regulation of their function is
their regulated trafficking in response to stimulation of the
cell [3, 62, 65]. All TRPCs, other than TRPC2 and TRPC7,
have been shown to undergo regulated trafficking and
insertion into the PM in response to stimulation of PIP2
hydrolysis or internal Ca2+ store depletion. Consistent with
this, a number of proteins that are involved in vesicle
trafficking and membrane fusion events have been found to
be associated with TRPC proteins. Vesicle-associated
SNARE proteins, as well as dynamin, clathrin, PI3K, rac,
RhoA, and caveolin-1, have been identified as components
of different TRPC channelosomes (see Table 2). Inter-
estingly, EBP50, a scaffolding protein, was shown to affect
the gating of TRPC5 channels [70].

The presence of a number of cytoskeletal components as
well as actin-interacting proteins in TRPC channelosomes
suggests that cytoskeletal remodeling might be involved in
the trafficking of TRPC channels to the surface membrane.
Regulation of PIP2 signaling by small G-proteins and their
effectors is key to many biological functions. Through
selective recruitment and activation of different PIPK
isoforms, small G-proteins such as Rho, rac, and Cdc42
modulate actin dynamics and cytoskeleton-dependent cel-
lular events in response to extracellular signaling. These
activities affect a number of processes, including endocy-
tosis. It is important to note that localized changes in the
cytoskeleton can induce local change in the PM morphol-
ogy, for example ruffling. Rho-GTPase has been reported to
have a role in trafficking of TRPC1. In addition, rac and
PI3K have been shown to regulate trafficking of TRPC5.
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Although the remodeling of cytoskeleton associated with
the activation of TRPC-SOC or TRPC-SMOC channels
have not yet been directly assessed, several studies
demonstrate that PIP2 hydrolysis leads to localized cyto-
skeletal changes [28]. Thus, it can be suggested that such
changes might be coordinated with the activation or
inactivation of Ca2+ entry.

Coordination and compartmentalization of Ca2+ signals As
discussed above, both PM lipids and proteins are critically
involved in the assembly and regulation of TRP channels.
While lipids, e.g., PIP2 can directly regulate activity of a
number of TRPC channels, changes in the lipid composi-
tion can also elicit effects via cytoskeletal remodeling or
regulation of vesicle trafficking. One concept that has
gained much attention is that vesicle fusion or channel
targeting is not an arbitrary event, but involves precise
spatiotemporal resolution. It is well established that lipids
are heterogeneously localized within the PM lipid bilayer.
As noted above, enrichment of cholesterol, PIP2, and
sphingolipids in certain regions of the PM results in the
formation of biochemically distinct lipid raft domains.
These domains form the center for the coordinating events
associated with cytoskeletal remodeling and PIP2 metabo-
lism [58]. Further, it is also suggested that vesicle fusion
events are concentrated in these regions, as SNARE
proteins are enriched in these domains [35, 94]. Cholester-
ol-binding proteins such as caveolin-1 are found within
lipid rafts and act as a scaffold for the assembly of signaling
protein complexes. Lipid modification, such as acylation, of
proteins as well as their interaction with PIP2 via PH
domains targets their localization into lipid rafts. Thus, it is
significant that several TRPCs, TRPC1, TRPC3, TRPC4,
and TRPC5, have been reported to be associated with lipid
raft domains. It is reasonable to propose that the relatively
high concentration of PIP2 in these regions, presence of
scaffolding proteins, as well as proteins involved in PIP2
metabolism and cytoskeletal remodeling allows targeting,
clustering, and regulation of TRPC channels. While it is
known that the core components of the TRPC channels, i.e.,
the TRPC monomers, are assembled in the ER, it is not
clear when other accessory components are recruited and
how the channel complex is routed to and assembled in the
PM. Irrespective of the lack of such data, it is reasonable to
suggest that assembly and regulation of TRPC channels
within specialized cellular domains facilitates the genera-
tion and precise regulation of distinct [Ca2+]i micro-
domains. The amplitude and duration of these localized
[Ca2+]i signals will be determined by mechanisms generat-
ing the Ca2+ signal (Ca2+ internal release and entry, channel
trafficking and activation, etc.) and those involved in decay
of the signal (channel inactivation, Ca2+ pumping, diffu-
sion, etc.). In most cases, Ca2+-regulated proteins, such as

kinases, phosphatases, vesicle fusion proteins, CaM, etc.,
are either already scaffolded within the TRPC channelo-
somes or are recruited into the complex after stimulation so
that the changes in [Ca2+]i can be tightly regulated. Such
local [Ca2+]i changes are likely to be important in the
regulation of acute (activation of ion-channels, secretion,
etc.) and/or long-term (activation of transcription, prolifer-
ation, etc.) cellular functions. An important question that
needs to be addressed is how different cell types “custom
design” the components, function, and localization of
TRPC channelosomes to provide the spatiotemporal Ca2+

signals required for regulation of specific physiological
function.

Concluding remarks

In conclusion, TRPC channels are activated and regulated
within signaling microdomains. Activity of TRPC chan-
nels can generate local [Ca2+]i microdomains or modify
the duration and/or amplitude of local [Ca2+]i. This
segregated Ca2+ signal can be decoded for the regulation
of specific downstream functions. Further, recent data
suggest that TRPC-channel complexes are remodeled after
stimulation, including association with other proteins as
well as clustering. Both acute and long-term remodeling
have been observed. For example, prolonged stimulation of
cells has been shown to alter the expression of TRPC
proteins, and in some cases, compensatory changes in other
TRPC proteins, which in turn affect the Ca2+ entry signal
and Ca2+-dependent regulation of cell function. For
example, in TRPC6−/− mice, compensatory increase in
TRPC3 expression generates spontaneously active channels
that induce vascular smooth muscle contraction. Similarly,
increases in TRPC1 expression have been associated with
anti-apoptotic events in cells. Thus, TRPC channels can be
considered to contribute to the “plasticity” of Ca2+

homeostasis by modulating, either acutely or long-term,
local Ca2+ signals and providing a platform for the
regulation of specific Ca2+-dependent cellular functions.
The ion permeability of specific TRPC channels, as well as
their ability to interact with various signaling proteins, is
likely to be critical determinants for the generation of these
regulatory Ca2+ microdomains. While receptor-coupled PIP2
hydrolysis appears to be a basic process underlying
activation of TRPC channels, it is quite likely that they are
involved in the regulation of discrete and highly specialized
cellular functions which require a customized Ca2+ signaling
“tool kit” [5]. Future studies directed towards resolving the
functional organization of different TRPC channels should
take into account the specific downstream function(s) that is
regulated.
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