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Abstract Phototransduction is the process by which light
triggers an electrical signal in a photoreceptor cell. Image-
forming vision in vertebrates is mediated by two types of
photoreceptors: the rods and the cones. In this review, we
provide a summary of the success in which the mouse has
served as a vertebrate model for studying rod photo-
transduction, with respect to both the activation and
termination steps. Cones are still not as well-understood
as rods partly because it is difficult to work with mouse
cones due to their scarcity and fragility. The situation may
change, however.
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Introduction

Vertebrates rely on retinal rods and cones for conventional,
image-forming vision. Rods are specialized for low-light
vision. They are extremely sensitive and can signal the
absorption of single photons. Cones mediate daylight
vision. They are much less sensitive to light than rods,
but have higher temporal resolution. The presence of
typically more than one type of cones in the retina mediates
color vision.

Great progress has been made in understanding rod
phototransduction since the introduction of the suction-
electrode recording technique in the late 1970s [1].

Individual amphibian and mammalian (including primate)
photoreceptors can be recorded with this method. Bovine
retina, on the other hand, has been a favorite preparation for
studying phototransduction by biochemists because of the
abundance of tissue available. The mouse, however, has
become an increasingly popular animal model for study in
the past decade through the advent of gene-targeting
techniques. When combined with electrophysiology, mouse
genetics provides unmatched power in elucidating the in
vivo functions of key phototransduction proteins, most of
which have been knocked out, overexpressed, or mutated in
rods, yielding a rich body of information on the mecha-
nisms underlying the amplification, recovery, and adapta-
tion of rod photoresponses (Table 1).

We shall first give a brief description of the structure and
the development of mouse photoreceptors, followed by a
summary of recent studies on rod phototransduction with
emphasis on information gleaned from mouse models.
Finally, a recent advance in studying mouse cones will be
mentioned.

Structure of mouse rods and cones

Rods constitute ∼97% of mouse retinal photoreceptors,
with cones accounting for the remainder [2]. The mouse
photoreceptors are broadly similar to primate photorecep-
tors in physical dimensions (Table 2). The outer segment is
about 1.4 μm in diameter and 24 μm in length for rods,
and, correspondingly, about 1.2 μm and 13 μm for cones.
These dimensions are significantly smaller than those of
amphibian photoreceptors, which explain physiologists’
longtime preference for the latter.

Rods and cones have four primary structural/functional
regions: outer segment, inner segment, cell body, and
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synaptic terminal. The outer segment is filled with a dense
stack of membrane disks, spaced at intervals of about
28 nm. The disks carry the visual pigment (rhodopsin in
rods and cone pigment in cones) and other transduction
components either as transmembrane or peripheral mem-
brane proteins. Visual pigment is the most abundant protein
in the outer segment. The importance of visual pigment as a
major structural component is demonstrated by the rhodop-
sin-knockout mouse, the rod outer segments of which fail to
form [3, 4]. The rod photoreceptors of this mouse rapidly
degenerate, followed suit by cones. The packing density of
pigment molecules on the disks is remarkably uniform
across different vertebrate species, being ∼25,000 μm−2,
corresponding to a concentration of ∼3.5 mM [5]. The total
number of pigment molecules in the outer segment can thus
be calculated roughly from its envelope volume. The dense
stack of disks greatly increases the probability of photon
capture. An interesting difference between rods and cones is
that the rod disks (except for the nascent disks at the base of
the outer segment) are completely internalized and therefore

physically separate from the plasma membrane, whereas the
cone disks remain as foldings of the plasma membrane. The
open cone disks offer a much larger surface area for rapid
fluxes of substances between the cell exterior and interior,
such as chromophore transfer for pigment regeneration and
fast calcium dynamics during light adaptation.

The inner segment contains the endoplasmic reticulum
and the Golgi apparatus. It is also packed with mitochon-
dria immediately adjacent to the outer segment in order to
meet the high demand for metabolic energy associated with
phototransduction. All proteins destined for the outer
segment must pass through a narrow connecting cilium
between the outer and the inner segments.

The synaptic terminal transmits the light signal to the
second-order neurons in the retina: the bipolar and
horizontal cells. In darkness, there is a steady inward
current (the “dark current”) through a cation conductance
on the outer segment membrane, which depolarizes the rod
or cone and maintains a steady synaptic release of
glutamate. Light closes this cation conductance (the

Table 1 List of major proteins involved in mouse rod phototransduction that have been knocked out, overexpressed, or mutated

Proteins Manipulation Phenotype References

Rhodopsin Knockout No ROS formation, no light response [3, 4]
Transducin Gαt1 Knockout No light response [64]
Transducin Gγ1 S70L mutation Deficit in light adaptation [73]
PDEβ Mutation Rd mouse, retina degeneration [83–87]
PDEγ Knockout Reduced PDE activity, retina degeneration [82]
PDEγ Overexpression Reduced gain, accelerated shutoff [156]
PDEγ W70A mutation Reduced sensitivity, slow shutoff [90]
CNGB1 Knockout No light response, retina degeneration [106]
GRK1 Knockout Slow shutoff, larger amplitude [118]
GRK1 Overexpression Normal light response [56]
Arrestin Knockout Slow shutoff [132]
Recoverin Knockout Slow shutoff, increased sensitivity [131]
RGS9-12 Overexpression Accelerated shutoff [56]
RGS9-1 Knockout Slow shutoff [148]
Gβ5-L Knockout Same as RGS9-1 knockout [151]
R9AP Knockout Same as RGS9-1 knockout [150]
GC1 Knockout Normal dark current, cone dystrophy [164]
GCAP1&2 Knockout Larger amplitude, delayed recovery [169]

1Due to space limitation, not all the genetically engineered mouse lines are listed. For those included, only the most salient phenotypes are
listed, please refer to the text for more complete description.
2RGS9-1 overexpressionwas achieved by overexpressing R9AP, which resulted in overexpression of all three components of the GAP complex, RGS9-1,
Gβ5-L and R9AP [56].

Table 2 Physical dimensions
of the outer segment of mouse
rods and cones

Salamander and primate pho-
toreceptors are included for
comparison purpose.

Rods Cones

Mouse Primate Salamander Mouse Primate Salamander

Length (μm) 23.6 25 22 13.4 13 8
Diameter (μm) 1.4 2 11 1.2 3base, 1tip 4base, 2.5tip
Volume (μm3) 36 40 2,000 14 30 70
References [2] [183] [184] [2] [101] [101]
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“light-sensitive” conductance, consisting of cGMP-gated
channels) to stop the dark current and produce a membrane
hyperpolarization as the response. This hyperpolarization
decreases or terminates the dark glutamate release. The
signal is further processed by other neurons in the retina
before being transmitted to higher centers in the brain.

Development of mouse photoreceptors

Rods and cones renew their outer segments continually [6,
7]. Newly formed disks at the base of the outer segment
progressively displace previously synthesized disks toward
the apical end. The disks reaching the apex of the outer
segment are shed and phagocytosed on a daily basis by the
adjacent retinal pigment epithelium (RPE) [8]. The rate of
formation and disposal of the disks are roughly equal so
that a constant outer-segment length is maintained in the
adult retina.

The mouse rod outer segment (ROS) changes little in
diameter during development, but it elongates at a rapid and
almost linear rate from postnatal day (P) 11 to 17, reaching
adult length by P19–25 [9]. The increase in ROS length
parallels the almost linear rise in rhodopsin content from P8
to P23 [10]. At the peak rate of growth during P13–P17,
∼120 disks are synthesized per day compared with 75 disks
in the adult retina [6, 9].

The dark current recorded in developing mouse rods
increases roughly in direct proportion to the length of the
mouse ROS between P12 (around the time of eye-opening
in neonate) and P45 (adult) [11]. The kinetics of the dim–
flash response changes rather little during development and
the flash sensitivity of rods increase by approximately 1.5-
fold, reflecting the presence of a small percentage (∼1%) of
free opsin (i.e., devoid of chromophore) in neonatal rods
even after overnight dark adaptation. The constitutive
activity of this small amount of opsin mildly triggers
adaptation mechanisms and, therefore, causes a small
reduction in the sensitivity of the cell (see below). A
similar small, age-dependent increase in rod sensitivity was
found for rat. Previously, a 50-fold increase in rod
sensitivity was reported for rat from neonate to adulthood
[12], but now this appears to be incorrect.

Rod response activation

The inward dark current through the light-sensitive, cGMP-
gated channels is composed of ∼85% Na+ and ∼15% Ca2+

in rods ([13], see also [14]). An outward current presum-
ably through potassium channels completes the loop at the
inner segment and cell body. The Na+ is steadily pumped
out of the cell via a Na–K ATPase at the inner segment, and

the Ca2+ is extruded via the Na/Ca,K exchanger (NCKX)
residing also in the outer-segment plasma membrane.

Upon absorbing a photon, the rhodopsin molecule
becomes enzymatically active (R*) and catalyzes the
activation of the G protein transducin to G*. Transducin, in
turn, activates the effector phosphodiesterase (PDE) to
PDE*. PDE* hydrolyzes the diffusible messenger cGMP.
The resulting decrease in the cytoplasmic free cGMP
concentration leads to the closure of the cGMP-gated
channels and the membrane hyperpolarization. Channel
closure also leads to a reduction in the cytoplasmic free
Ca2+ concentration owing to stoppage of the Ca2+ influx
but continued extrusion of Ca2+ by NCKX. This decrease in
intracellular Ca2+ triggers negative feedback to produce
light adaptation.

The details of the activation phase of rod phototrans-
duction are now well-established. A quantitative description
that reproduces the activation kinetics of the rod response
under physiological conditions is achieved [15–18]. We
shall discuss below the major proteins mediating the
activation phase in mouse rods—visual pigment, trans-
ducin, the effector PDE, and the cGMP-gated channel. The
focus will be on studies with combined approaches from
mouse genetics and physiology.

Visual pigments of mouse rods and cones

Mouse has a single rod pigment, rhodopsin, and two cone
pigments: S- and M-cone pigments, with maximal spectral
sensitivity at 360 and 508 nm, respectively. Mouse is
unusual in that individual cones express both S- and M-
cone pigments, with the M-pigment level decreasing in a
gradient from dorsal to ventral retina [19].

Mouse rhodopsin and cone pigments belong to the
superfamily of G-protein coupled receptors. A high-
resolution (2.8 Å), three-dimensional structure of the
ground state of bovine rhodopsin was determined in 2000
by Palczewski et al. [20]. The future challenge is to solve
the structure of cone pigments, which is more unstable than
rhodopsin.

Visual pigments from most vertebrate species, including
mammals, use 11-cis-retinal (denoted A1), while those from
many water-based animals use 11-cis-3,4-dehydroretinal
(denoted A2), as their natural ligand [21, 22]. The
chromophore is covalently bound via a Schiff-base linkage
to a conserved lysine residue (K296 in mammalian
rhodopsin) in the seventh transmembrane helix. In darkness,
the 11-cis-retinal acts as a powerful antagonist to lock
rhodopsin predominantly in an inactive state because free
opsin can weakly activate the transduction cascade [23–25].
The antagonistic role of 11-cis-retinal was clearly demon-
strated in RPE65-null mice. RPE65 is the key isomerase in
the RPE visual cycle, which is important for regenerating
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rod and cone pigments. Rpe65−/− retina has virtually no 11-
cis-retinal [26]. Photoreceptors degenerate due to the
constant activation of phototransduction by the large amount
of free rod opsin. This degeneration can be prevented by
deleting the transducin α-subunit, which blocks the activa-
tion of the downstream cascade [27]. In a separate
experiment, K296 is mutated to glutamic acid, producing
an opsin with no chromophore-binding site [28]. Although
the K296E opsin constitutively activates transducin in vitro,
the constitutive activity of the mutant opsin in vivo was
turned off due to phosphorylation by rhodopsin kinase
followed by arrestin-binding (see “R* termination”).

Even with 11-cis-retinal attached, rhodopsin occasional-
ly undergoes spontaneous (thermal) activation in the dark,
producing responses identical to those triggered by photons
[29]. The spontaneous activation of visual pigment mole-
cules sets an ultimate limit on visual sensitivity [30–33]. In
a toad rod, the rate of thermal activation of rhodopsin was
measured to be 0.031 s−1 at 22°C, corresponding to an
average wait of 2,000 years for the spontaneous activation
of a given rhodopsin molecule to occur, based on a total of
2×109 rhodopsin molecules per cell [34]. This great
stability makes it possible for rods to pack many rhodopsin
molecules to the rod disks so as to increase its photon-
capture ability while keeping the dark noise within a
manageable level. In wild-type mouse rods, it is rather
difficult to measure the discrete noise arising from the
thermal activation of rhodopsin because of the relatively
small amplitude of the single-photon response. However,
the measurement has been achieved with GCAPs−/− rods
[35], the single-photon response of which is nearly five
times that of the wild type as a result of the elimination of
the Ca2+-mediated negative feedback on guanylate cyclase
(see below). The rate is ∼0.012 at 36°C [35]. Red cone
pigment is much more prone to spontaneous isomerization
than rhodopsin [36, 37], but it is difficult to measure the
rate from native cones [37]. The GCAPs−/− mouse will be a
useful tool for accurately measuring the rate of thermal
activation of mammalian cone pigments by expressing
them in GCAPs−/− rods.

Photon absorption by 11-cis-retinal triggers the cis-to-
trans isomerization of the retinoid. This isomerization
rapidly converts the ligand from a powerful antagonist to a
powerful agonist, leading to the formation of a series of
spectrally distinct intermediates of rhodopsin in the order
of bathorhodopsin, lumirhodopsin, metarhodopsin I (Meta
I), and metarhodopsin II (Meta II) within a few millisec-
ond (reviewed in [38]). Meta II is the active form of
rhodopsin (R*), which in turn decays to the inactive Meta
III. The Meta-II state of cone pigment decays 50 times
more rapidly than that of rhodopsin [39–41]. Despite this
difference, rhodopsin and transgenic red cone pigment
signal identically downstream when compared side-by-

side in the same Xenopus rod or cone [37]. The same was
found for rhodopsin and transgenic red cone pigment in
mouse rod [42]. Thus, not only do rod and cone pigments
interact with a given transducin identically, but the shutoff
mediated by a given pigment kinase and arrestin is also
similar and precedes the Meta-II decay of rod and cone
pigments, rendering the decay of Meta II non-rate-limiting
under normal conditions (see “R* termination”).

Retinal absorbs maximally in the UV range (λmax∼
380 nm) when in solution or bound to opsin in the
unprotonated form. The absorption shifts into the visible
region when the Schiff-base is protonated. Like other
vertebrate pigments, mouse rhodopsin and M-cone pigment
are protonated; on the other hand, mouse S-cone pigment is
unprotonated, explaining its absorption in the UV-region
[43]. The positively charged Schiff-base is stabilized by the
counterion E113 (residue number according to mouse
rhodopsin) in rhodopsin and M-cone pigment [20, 44–46].
Rhodopsin activation involves a “counterion switch” mech-
anism in which E181 located in the extracellular loop II
transfers a proton via a hydrogen-bonded network to the
primary counterion, E113, during the formation of Meta I.
Therefore, E181 replaces E113 as the counterion to stabilize
the protonated Schiff-base in the transition stage before its
eventual deprotonation [47].

Because the mouse S-cone pigment is not protonated and
the nearby E113 is neutral, the interesting questions are:
does a protonation event occur during light activation, and
does it involve a counterion switch mechanism? Remark-
ably, after the 11-cis isomerization, the all-trans-retinal
picked up a proton in the Lumi state [48] and a counterion
switch occurs from E108 (E113 in rhodopsin) to E176
(E181) during the Lumi to Meta I transition, in close
analogy to rhodopsin [48, 49]. Thus, the counterion switch
appears to be a general mechanism for the activation of all
visual pigments.

The decay of R* eventually leads to the departure of all-
trans-retinal from the protein. The all-trans chromophore is
converted back to 11-cis-retinal through a cascade of
enzymatic reactions called the visual cycle in the adjacent
RPE, before being used again for the regeneration of visual
pigments (for example, see review [50]).

Visual pigment is a major structural component of rods
and cones. It is not surprising that genetic deletion of
mouse rhodopsin results in rods without proper outer-
segment formation [3, 4]. Is half the amount of normal
rhodopsin enough for maintaining a healthy ROS? In
rho+/− mouse, rods are properly formed despite only half
of the normal level of rhodopsin being present. However,
a progressive mild degeneration of the rods does occur.
Interestingly, the activation rate of the photoresponse of
rho+/− rods is twice that of normal [51]. The explanation
for this observation was originally proposed that a lower
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rhodopsin concentration reduces protein crowding on the
disk membrane, thereby increasing rhodopsin’s diffusion
coefficient and its rate of encounter with transducin. Thus,
this finding would point to the diffusional encounter of
transducin by photoexcited rhodopsin as the rate-limiting
step in the activation of the rod photoresponse. However,
Liang et al. [52] subsequently reported that rods in rho+/−

mouse are not completely normal in that rhodopsin exists
in small raft-like structures, as well as in large and
organized para-crystals. In addition, there is an approxi-
mate 40% reduction in the ROS volume, in the rhodopsin
content and in the 11-cis-retinal level in these cells. These
authors suggested that the observed acceleration of photo-
transduction in rho+/− rods was not due to a lower density
of rhodopsin on the disk surface but to the structural
changes in the whole ROS.

Transducin

Photoactivated pigment binds the transducin heterotrimer
and catalyzes the exchange of GTP for GDP on the α-sub-
unit. Gα-GTP (G*) dissociates from R* and its native
partners, Gβγ, and interacts with the cGMP PDE to carry
the signal forward. Released R* is free to activate
additional transducin molecules. Transducin activation by
R* represents the first amplification step in the photo-
transduction cascade.

The estimated rate of transducin activation by a single
R* has ranged from 10 to over 3,000 s−1 at room
temperature (for review, see [16]). More recently, a rate of
∼120 s−1 was reported to be more consistent with
biochemical, light-scattering, and electrophysiological
measurements ([53] but see [54]). The rate is roughly
doubled in mammalian rods due to a difference in body
temperature. Until recently, it was believed that over a
hundred transducins are activated during the lifetime of a
single R* in mammalian rods (e.g. [55]). This number is
now revised to be ∼20 in mouse rods, based on the shorter
lifetime of R* (80 ms) and 240 s−1 activation rate of
transducin by R* [56].

Transducin is present at 10% the amount of pigment.
Rods and cones have different isoforms of transducin,
being Gαt1Gβ1γ1 in rods and Gαt2Gβ3γ8 in cones [57–
60]. The C-terminal of the γ subunit is farnesylated and
the N-terminal of the α subunit is acylated [61–63]. These
lipid modifications help anchor the holo-transducin to the
disk membrane. The importance of transducin for con-
veying the signal from R* to PDE was confirmed by gene-
targeting experiments, in which rods of Gαt1-null mice
(gnat1−/−) were found to lose all light sensitivity [64]. The
gnat1−/− mouse line has proven to be a valuable tool for
blocking rod phototransduction in many studies [27, 65–68].
It was also used successfully to delineate two apoptotic

pathways in light-induced retinal degeneration [69].
Bright light triggers apoptosis of photoreceptors through
a mechanism requiring the activation of rhodopsin but not
transducin signaling. In contrast, low-intensity light
induces apoptosis that is predominantly dependent on
transducin signaling.

Almost a decade ago, rod transducin was found to
undergo light-dependent redistribution [70, 71]. Great
progress has been made in the past few years by using
mouse (or rat) models for study. Both Gαt1 and Gβ1γ1

subunits are present predominantly in the ROS in darkness,
but translocate in bright light, with slightly different time
courses, to the inner segment and the inner nuclear layer
[72, 73]. This phenomenon has been suggested to contrib-
ute to light adaptation of rods [72], but others argue that the
main function of transducin translocation is to provide
protection for rods in bright light when rods contribute little
to vision [74]. In contrast, Gαt2 has been found not to
translocate from the cone outer segment (COS) in bright
light [74–76]. This might be consistent with the need for
cones to function in bright light [74]. Incidentally, there is
so far no published finding about any translocation of the
corresponding Gβγ (Gβ3γ8) in cones.

Gγ1 in rods and Gγ8 in cones are farnesylated with a 15-
carbon chain, but many other Gγ subunits are geranylger-
anylated with a 20-carbon chain. What is the significance of
this difference? Knock-in mice expressing geranylgerany-
lated instead of farnesylated Gγ1 exhibited impaired
properties in light adaptation because the stronger attach-
ment by geranylgeranylation attenuated the light-dependent
translocation of Gγ1from ROS to the inner region [73].
Thus, it appears that the selective farnesylation is important
for the regulation of visual sensitivity by providing
sufficient but not excessive anchoring of Gβ1γ1 to the
membrane.

The cGMP PDE

PDE is the third component of vertebrate phototransduc-
tion. It is a tetrameric protein consisting of two equally
active catalytic subunits, α and β, and two identical γ
subunits [77, 78]. PDE is anchored to the disk membrane
by isoprenylation of the C termini of the two catalytic
subunits [79–81]. The density of PDE is ∼1–2% of
rhodopsin. Thus, the first three components of photo-
transduction are present in the ratio of 100R:10G:1PDE.

In the dark, the two γ subunits act as inhibitory subunits
by binding to the two catalytic subunits and preventing the
hydrolysis of cGMP. In the light, Gα-GTP encounters
PDEγ and sterically displaces the latter (still associated
with PDEαβ), therefore relieving its inhibitory effect on the
catalytic subunits and permitting the hydrolysis of cGMP to
proceed.
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In contrast to the amplification achieved during trans-
ducin activation by R*, the activation of PDE by G*
constitutes no gain, i.e., with an efficiency approaching at
most unity. It is the catalytic power of PDE* that provides
the second amplification step. It was reported that PDE*
hydrolyzes cGMP at a rate close to the limit set by aqueous
diffusion, with a Km of ∼10 μM and a Kcat of 2,200 s−1

[53].
One might have expected that the deletion of PDEγ from

mouse rods would unleash the full catalytic power of
PDEαβ. However, Tsang et al. [82] found that, in the
absence of PDEγ, the PDEαβ dimer actually lacked
hydrolytic activity, and the photoreceptors of the mutant
mouse rapidly degenerated. Thus, the inhibitory PDEγ
subunit appears to be necessary for the integrity of the
catalytic PDEαβ subunits. The degeneration might be
caused by an abnormally high cGMP concentration due to
the lack of hydrolysis. A related example is the rd mouse,
which is one of the best-known models for retinal
degeneration. The rod cells in the rd mouse begin to
degenerate at about P8, followed by cones; by 4 weeks,
virtually no photoreceptors are left [83, 84]. Degeneration
in this mouse model is preceded by the accumulation of
cGMP in the retina, correlated with deficient activity of the
rod PDE due to a mutation in the β subunit [85–87]. It is
worth noting that the rd mouse was instrumental in
suggesting that inner retinal neurons could mediate non-
image-forming vision [88, 89].

In addition to its inhibitory function, PDEγ accelerates
the GTPase activating protein (GAP) activity of transducin
for G* shutoff (see “G*-PDE* termination”). Mouse rods
carrying the W70A point mutation of PDEγ, which impairs
the Gαt1–PDEγ interaction, showed a greatly reduced
sensitivity to light and a slower recovery from the flash
response than wild type [90].

The cGMP-gated channel

The cGMP-gated channel belongs to the family of cyclic-
nucleotide-gated (CNG) channels, which are nonselective
cation channels (reviewed in [91, 92]). The channel is
located on the plasma membrane and is the last component
in the activation phase of phototransduction. In the dark, a
basal concentration of one to several micromolars of cGMP
keeps a small percentage of the CNG channels open [13].
The decline in cGMP concentration upon illumination leads
to rapid closure of the channels with a sub-millisecond
delay [93].

The rod CNG channel has a surprising 3CNGA1:1CNGB1
subunit composition [94–96], whereas the cone channel
supposedly exhibits a 2CNGA3: 2CNGB3 stoichiometry
[97]. CNGA1 and CNGA3 subunits form functional homo-
meric channels by themselves when heterologously

expressed. Although CNGB1 and CNGB3 do not form
functional channels by themselves, they confer several
properties typical of native channels when co-expressed with
A subunits: flickery opening behavior, increased sensitivity
to L-cis-diltiazem, and weaker block by extracellular calcium
(reviewed in [91, 98–100]). The combined amplification
provided by pigment, PDE and CNG channels are very high,
ensuring the high sensitivity of rods (for review see [16,
101]), including the ability of rods to signal the absorption of
a single photon [102].

In humans, mutations in CNGA1 causes retinitis
pigmentosa [103], while mutations in both CNGA3 [104]
and CNGB3[105] cause achromatopsia. Mouse models
carrying null mutations of CNGB1 [106] and CNGA3
[107] are available. CNGB1 was found to be crucial for the
targeting of the native CNG channel in rods. Thus, only
trace amounts of the CNGA1 subunit were found on the
ROS in CNGB1-null mice and the majority of rod photo-
receptors failed to respond to light [106]. CNGA3-deficient
mice selectively lost their cone photoresponse with the rod
pathway intact. Analogous to the case of rod transducin,
CNGA3-null mice were used to block cone phototransduc-
tion in studying the intrinsically photosensitive retinal
ganglion cells [65, 66].

Phototransduction termination

After light activation, a timely recovery of the photorecep-
tor is essential so that it can respond to subsequently
absorbed photons and signal rapid changes in illumination.
This recovery from light requires the efficient inactivation
of each of the activated components: R*, G*, and PDE*, as
well as a rapid restoration of the cGMP concentration. The
termination rates of the activation steps set the time course
of the photoresponse.

In the past decade, knowledge gained from genetically
engineered mouse lines has provided major advances in
understanding the termination of the rod photoresponse. In
the following sections, we shall discuss separately the
events responsible for the inactivations of R*, G*, and
PDE*, followed by the restoration of cGMP.

R* termination

Activated rhodopsin (R*) is inactivated by a two-step
process. First, R* is phosphorylated by rhodopsin kinase
(GRK1), which lowers the activity of R*. Second, the
protein arrestin binds to phosphorylated R*, capping its
residual activity [108, 109].

Multiple serine/threonine residues at the C-terminal of
rhodopsin (six in mice and seven in humans) provide the
phosphorylation sites for GRK1. Cone pigments have more
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potential phosphorylation sites at the C-terminal than
rhodopsin. For example, human red cone pigment has ten
such sites. Even though biochemical experiments originally
suggested that rhodopsin is predominantly phosphorylated
at only one serine residue after light exposure [110],
subsequent recordings from transgenic mouse rods carrying
phosphorylation site mutations suggested that the repro-
ducible deactivation of R* requires at least three phosphor-
ylation events [111]. In addition, all six sites need to be
phosphorylated in order for the normal decline of the
response to proceed.

Multiple phosphorylation events are also proposed to
underlie the reproducibility of rod responses to single photons
[111–113]. Despite the fact that events generated by single
molecules are stochastic in nature, the single-photon response
of rods shows remarkable reproducibility in amplitude and
shape [102, 114, 115]. By averaging over multiple shutoff
steps, the integrated R* activity varies less than otherwise
controlled by a single step. This hypothesis is supported by a
recent experiment using transgenic mouse rods carrying
phosphorylation site mutations ([116]; however, see “G*-
PDE* termination”). The authors showed that the reproduc-
ibility of the single-photon response varies in a graded and
systematic manner with the number, but not the identity, of
the phosphorylation sites. Each phosphorylation site provides
an independent step in rhodopsin deactivation and that,
collectively, these steps tightly control the lifetime of R*.

Much less is known about the role of the phosphorylation
sites in cone pigments. The only in vivo experiment was done
by Kefalov et al. [37], showing that transgenic frog rods
expressing a human red cone pigment with all ten putative
phosphorylation sites mutated gave a prolonged response. It
suggests that the activated cone pigment is quenched by a
similar two-step shutoff mechanism even though its active
lifetime is much shorter than that of rhodopsin.

In addition to mutations of all of the C-terminal serine
and threonine residues to alanine [111], rhodopsin phos-
phorylation can also be prevented by deleting the C-
terminal region of the pigment [117] or ablating GRK1
[118]. As expected, rods from all three transgenic mouse
lines showed similar properties of the single-photon
response, with an amplitude reaching a plateau about twice
that of the wild type and decaying stochastically to baseline
after a long interval of 3 to 5 s. GRK1-mediated
phosphorylation begins to reduce the activity of R* at
∼100 ms after the flash, because this is the time point at
which the transgenic response starts to deviate from the
wild-type response (Fig. 1). As mentioned earlier, it was
estimated in a recent study that the lifetime of R* is ∼80 ms
[56], suggesting that arrestin-binding occurs rapidly after
phosphorylation of the pigment. Therefore, GRK1/arrestin-
mediated shutoff occurs in rods even earlier than the fast
Meta-II decay of cone pigment [37], which is of the order

of 1 s after flash [39–41]. The GRK1-mediated shutoff
likely happens even faster in cones (see below).

Mouse and rat are unusual in that the same GRK1 is
present in both rods and cones. In all other species studied,
another pigment kinase (the so-called “cone pigment
kinase”), GRK7, is present in cone photoreceptors [119–
122]. Indeed, many animal species, including human, have
both GRK1 and GRK7 in cones. This explains why Oguchi
patients with a defective GRK1 gene have normal daytime
vision, whereas GRK1-null mice have prolonged cone
photoresponses [123]. Interestingly, GRK7 was shown to
have considerably higher specific activity than GRK1 and,
is present at a much higher concentration in cones than
GRK1 is in rods in fish [121, 124]. This difference has been
proposed as a potential mechanism underlying the faster
shutoff and lower sensitivity of cones than rods (recently
reviewed in [125]).

Biochemical experiments suggest that GRK1-mediated
phosphorylation of R* is regulated by recoverin (Rec) [126–
129], which belongs to a family of calcium-binding
proteins. The hypothesis is that, when intracellular free
Ca2+ concentration is high in the dark, Rec–Ca2+ binds to
GRK1 and inhibits R* phosphorylation. When Ca2+

concentration decreases in the light, Ca2+ dissociates from
recoverin; consequently, the resulting affinity between

Fig. 1 Form of the single-photon response from knockout mouse rods
with deficient R* termination on fast (a) and slow (b) timescales.
Flashes were delivered at t=0. Figure was kindly supplied by Dr. M.
E. Burns
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recoverin and GRK1 is reduced, and its inhibition on R*
phosphorylation is released. However, this hypothesis was
challenged by in vitro measurements suggesting that the
extent of R* phosphorylation was unaffected by light
adaptation and by changes in intracellular Ca2+ [130]. This
controversy was finally settled by recordings from Rec−/−

mouse rods [131], which showed that Rec–Ca2+ prolongs
the dark-adapted flash response and increases the rod’s
sensitivity to dim steady light, probably by inhibiting the
phosphorylation of R* by GRK1. Furthermore, Rec−/− rods
had faster Ca2+ dynamics, indicating that recoverin is a
significant Ca2+ buffer in the ROS.

In the second step for the deactivation of R*, arrestin
binds to phosphorylated R* (R*–P) to cap its catalytic
activity. In mouse, the dim–flash responses from rods of
arrestin-knockout (Arr−/−) mice do not differ greatly from
the wild-type response until in its falling phase, when
recovery reaches approximately halfway back to baseline
[132]. Therefore, phosphorylation alone can reduce R*’s
activity significantly. The response of Arr−/− rods on average
recovers ∼10 times more slowly than the response of rods
lacking rhodopsin phosphorylation (Fig. 1), presumably
reflecting the continuous activity of the phosphorylated
meta-II state of R* until it decays to inactive meta III. In
rods lacking both GRK1 and arrestin (GRK1−/−Arr−/−), the
activation phase and peak amplitude of the dim–flash
response resemble those of GRK1−/− rods but then decay
slowly with a time constant similar to that of the Arr−/−

response [133], reflecting the decay of non-phosphorylated
R. Thus, it appears that phosphorylation does not influence
the decay of R*.

At least two splice variants exist for rod arrestin: a full-
length (p48) and a C-terminal truncated form (p44) [134].
P44 has a faster on-rate than p48 for binding R* and R*–P
[135, 136]. In addition, p44 is more efficient than p48 in
turning off R* in vitro [137, 138]. Although p48 is ∼10
times more abundant than p44, it translocates from ROS to
the rest of the cell in the dark, therefore largely, absent in
dark-adapted ROS [71, 139–141]. This raises an interesting
question about the roles of individual isoforms of arrestin in
the intact rods. By selectively expressing the two isoforms
in mouse rods lacking endogenous arrestin, it was found
that both isoforms could quench the activity of phosphor-
ylated R* rapidly. However, only p48 was able to quench
the activity of non-phosphorylated R* [133].

Cones express their own arrestin called cone arrestin or
X-arrestin [142]. Surprisingly, both the rod and cone forms
of arrestin exist in mouse cones [143]. Recent photopic
electroretinogram (ERG) recordings on cone-arrestin-
knockout mouse have shown that cone arrestin is involved
in the recovery of the cone response, but its exact function
is still unclear [144], whereas rod arrestin seems to play no
role in the cone response.

G*-PDE* termination

Earlier, genetically engineered mouse lines were designed
to disrupt R* termination. More recent studies have
centered on G*-PDE* termination. G* is inactivated when
its bound GTP is hydrolyzed to GDP. Although transducin
has a slow intrinsic GTPase activity, the hydrolysis is
greatly accelerated by a GAP complex. The complex is
composed of a member of the family of regulator-of-G-
protein-signaling proteins [RGS9-1, 145], the long form of
Gβ5 subunit (Gβ5-L, [146]}, and a membrane-anchor
protein (R9AP and [147]). RGS9-1 has a G protein γ-like
(GGL) domain that binds to Gβ5-L and has an N-terminal
DEP (Dishevell/Eg110/Pleckstrin) domain that interacts
with R9AP. After hydrolysis, Gα-GDP dissociates from
PDEγ, which reexerts its inhibition on the catalytic PDEαβ
subunits (reviewed in [55]). The molecular reactions
underlying this step are shown schematically in Fig. 2.

Even though only RGS9-1 has GAP activity, all three
components of the GAP complex are obligatory partners
because genetic ablation of any one of them in mouse
resulted in an increased instability of the other two through
a posttranscriptional mechanism [148–150]. This is why
transgenic mouse rods lacking RGS9-1, Gβ5-L, or R9AP
display a similar delay in the recovery phase of the flash
response without much noticeable differences in the
activation phase [148, 150, 151]. In addition, the GAP
activity on transducin is enhanced by PDEγ (see “The
cGMP PDE section; [90, 145, 152, 153]). This provides an
elegant mechanism for ensuring that excitation does not
normally decay until G* has bound to the effector, PDE.
The same GAP complex is present in both rods and cones;
however, its concentration is much higher in cones than in
rods [154, 155]. This has been suggested to contribute to
the faster response kinetics of cones than rods.

Overexpression of PDEγ in mouse rods can accelerate
the shutoff of light response independent of the GAP
complex, suggesting that the inhibitory sites on PDE α and
β are accessible to excess PDEγ after endogenous PDEγ

Fig. 2 Schematic on the termination G*-PDE*. Gα*-GTP binds to
PDEγ and activates PDE. The deactivation of Gα*-GTP is accelerated
by the GAP complex, R9AP-RGS9-1-Gβ5L, in which RGS9-1
facilitates the hydrolysis of the bound GTP to GDP, leading to the
reformation of the inactive heterotrimeric Gα-GDP-Gβγ and inactive
PDE. An asterisk denotes the active state. This step was found to be
the rate-limiting step of rod recovery [56]
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has been displaced by G* upon illumination [156]. Over-
expression also reduces the gain of transduction apparently
through the “dominant negative effect” of interfering with
the binding of G* to endogenous PDEγ.

Termination of phototransduction requires the shutoff of
both R* and G*-PDE*, with the slower step determining the
overall rate of response recovery. The identity of the rate-
limiting step for rod recovery has been a long-standing
question until recently [114, 157–160]. By overexpressing
the GAP complex in mouse rods, Krispel et al. [56] showed
that the recovery of rod response was dramatically acceler-
ated, whereas overexpression of GRK1 had no effect. This
experiment unequivocally demonstrated that the termination
of G*-PDE* is the rate-limiting step. It is worthy to note that
the same step is not necessarily the rate-limiting step in cone
recovery because there is a much higher concentration of the
GAP complex in cones. The same “overexpression” tech-
nique can be used in cones to answer this question.

Another implication of the above finding has to do with
the question of the reproducibility of the single-photon
response (see “R* termination”). Because G* deactivation
is 2.5 times slower than R* deactivation [56], the slower G*
termination dictates the recovery kinetics of the single-
photon response of rods. In addition to the multistep
involved in the shutoff of R*, the activation of ∼20
transducin by one R* can provide the necessary averaging
for an otherwise stochastic process.

Restoration of cGMP

The free concentration of cGMP is determined by the PDE-
mediated hydrolysis and guanylate–cyclase (GC)-mediated
synthesis. For the photoreceptor to recover, not only is the
light-stimulated cGMP hydrolysis by PDE required to
terminate as discussed in the previous sections, but the dark
level of cGMP also has to be restored. There are two GCs in
mouse photoreceptors: GC1 (GC-E) and GC2 (GC-F). GC1 is
present in both rods and cones [161, 162], and GC2 is present
only in rods [163]. Mouse rods lacking GC1 can generate
normal dark current, suggesting that GC2 can compensate
for the loss of GC1 in synthesizing cGMP [164]. GC1 is
important for cone function because cones degenerate in its
absence [164]. Single knockout of GC2 and double knockout
of both GCs are necessary for clarifying the functional
differences between the two in rods.

GC activity is regulated by Ca2+, mediated by the
guanylate–cyclase activating proteins (GCAPs). This regula-
tion is the most important negative feedback mechanism
triggered by Ca2+ in the light. For topics on other Ca2+-
feedaback effects and light adaptation, readers can refer to
the following publications: [13, 101, 165, 166].

GCAPs belong to a large family of Ca2+-binding proteins
including calmodulin. Two GCAPs are present in mouse

retinas, GCAP1 and GCAP2. Both GCAPs are expressed in
mouse rods, but GCAP1 is primarily expressed in cones
[167, 168]. In darkness, the relatively high Ca2+ concen-
tration promotes the formation of the Ca2+-bound form of
GCAPs, which inhibits GCs. When the Ca2+ concentration
declines during the light response, the dissociation of Ca2+

allows GCAP to activate GC, thereby quickly restoring the
basal cGMP concentration.

The two GCAP genes were knocked out in mouse
simultaneously by taking advantage of their tail-to-tail
chromosome localization [169]. The flash response of
GCAPs−/− rods showed a larger amplitude and delayed
decline compared to the wild type, consistent with a delay in
cGMP synthesis during recovery when the associated Ca2+

feedback was removed. The power of Ca2+-mediated
regulation through GCAP can be appreciated from the fact
that the single-photon response of GCAPs−/− rods is five
times that of the wild type vs the twofold increase when
pigment phosphorylation is prevented. By comparing the
light response of GCAPs−/− rods with that of the wild-type
rods, Burns et al. [35] found that the activation of GC
resulting from a change in Ca2+-dependent GCAP activity
occurs within ∼40 ms after the flash and in a highly
cooperative manner, with a Hill coefficient of 4. Therefore,
the effect occurs much earlier than pigment phosphorylation,
which is 80–100 ms after the flash (see “R* termination”).
The rapid feedback to GC has dual effects on photoreceptors,
decreasing the dark-adapted flash sensitivity [169] and
speeding the restoration of the dark current [35].

What are the functional differences between the two
GCAPs? In vitro, GCAP1 activates GC1 more efficiently
than GC2 [170, 171], whereas GCAP2 activates both GC1
and GC2 with similar efficiency [163, 172, 173]. In vivo,
expression of GCAP1, the major form in cones, in
GCAPs−/− retina restored normal response kinetics of cones
as expected [174]. A more interesting situation is in mouse
rods where the two GCAPs coexist. Expression of bovine
GCAP2 in GCAPs−/− rods restored the recovery of rods to
saturating flashes but failed to restore the recovery kinetics
of responses initiated by subsaturating flashes and partic-
ularly failed to rescue the fast initial phase of recovery
[169]. In contrast, the expression of GCAP1 in GCAPs−/−

retina restored the normal response kinetics of rods [175],
suggesting that GCAP1 is responsible for the initial rapid
phase of response recovery. More work is needed to clarify
the role of GCAP2 in rods.

Mouse model of cone phototransduction

Recently, there have been substantial advances in the
understanding of cone transduction with fish as the model
[120, 121, 124, 176, 177]. On the other hand, despite the
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enormous success in studying rod phototransduction by a
combination of mouse genetics and suction-electrode
recording in recent years, the usage of mouse as a model
system for studying cone phototransduction has until
recently been limited to ERG studies. This is mainly due
to the rarity of cones (∼3%) and the fragility of the COS.

This hurdle was overcome recently by Pugh et al. [67,
178], who have developed a new configuration for
recording from mouse cones. The conventional suction
pipette recording, which involves drawing the ROS into the
suction pipette (“OS in”), is not tolerated well by the more
fragile COS. Instead, they drew a portion of the inner
segment (“OS out”) of a cone photoreceptor in a retinal
slice into the suction pipette, allowing long, stable record-
ings. Previously, it was shown that the same information
could be obtained by recording from either outer or inner
segment of amphibian rods and cones [179] as expected
from the nature of the circulating current.

To overcome the difficulty of identifying the ∼3% cones
in mouse retina, Pugh and colleagues used three different
mouse lines. The first lacks the neural leucine zipper
transcription factor (Nrl) [180], which drastically alters the
cell fate of rod photoreceptors by turning them into cone-
like photoreceptors [178, 181]. The second expresses EGFP
in mouse cones, which facilitates/verifies their identifica-
tion [182]. The third lacks the rod transducin α-subunit
(gnat1−/−), which blocks rod phototransduction [64].

In the case of the EGFP mouse line, background light is
required to suppress the rod response so that the cone
response can be isolated. As a result, the cone response is
slightly light-adapted, therefore slightly faster and smaller
for a given test flash intensity than that from gnat1−/− or
Nrl−/− cones. When this factor is taken into consideration,
the light response properties of mouse cones recorded from
the three mouse lines are very similar and are as expected
from mammalian cones (Fig. 3, Table 3) [67]. Prominent
among these features is that mouse cones are far more
tolerant than mouse rods to bleached pigment. The dark
current recovers substantially in both S- and M-type cones
after strong flashes that bleach a substantial fraction of the
pigment. One surprising finding, however, is that the
inactivation of M pigment is more retarded than that of S
pigment in the absence of GRK1, suggesting the existence
of a GRK1-independent inactivation mechanism for the S
pigment. Nrl−/− cones differ from the wild type in certain
respects. Their outer segments are shorter, more disordered,
and undergo a slow degeneration [181]. In addition, in
contrast to the wild type, Nrl−/− cones express a much
higher percentage of S-opsin. Thus, transgenic mice
expressing EGFP in their cones and gnat1−/− mice are
better than Nrl−/− mice for studying cone physiology,
although there is still the caveat of a variable mixture of
M and S pigments in mouse cones, which makes the

comparison of sensitivity across cells difficult. This is
especially true considering that the S pigment seems to be
inactivated differently from the M pigment. In addition,
mouse cones lack the so-called cone pigment kinase GRK7,
which is present in the cones of many other species,
including human (see “R* termination”).

Fig. 3 Flash responses of mouse cone photoreceptors from different
genotypes. a Comparison of the average response of S-cones to 361-
nm flashes and M-cones to 510-nm flashes. b Comparison of the
average flash responses to 361-nm flashes of wild-type S-cones,
gnat1−/− S-cones, Nrl−/− cones, and rods recorded under the same
“OS out” conditions. Each trace is scaled to unity at its peak. Data
from Fig. 4e,f of [67]. Reproduced from The Journal of General
Physiology, 2006, 127: 359–374. Copyright 2006 The Rockefeller
University Press

Table 3 Kinetic and sensitivity parameters of mouse rods and cones

Id (pA) tp (ms) τD (ms) I1/2 (photons
μm−2 s−1)

S-cone (n=21) 6±1 73±5 73±10 (1.8±0.6)×105

M-cone (n=8) 8±2 63±5 68±18 (2.5±0.9)×105

Rods (n=26) 20±6 205±10 235±20 350

Data from Table 1 of [67]. Reproduced from The Journal of General
Physiology, 2006, 127: 359–374. Copyright 2006 The Rockefeller
University Press.
Id Dark current, tp the time to peak of the dim-flash response, τD the
dominant recovery time constant, I1/2 flash strength that elicited a
half-maximal response, uncorrected for pigment bleaching for cones.
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Concluding remarks

In the past decade, great progress has been made in using
mouse models to elucidate the mechanisms of activation
and termination of the rod phototransduction pathway.
Although there are still questions to be answered about the
rod pathway such as the reproducibility of the single-photon
response, the current frontier of phototransduction research
lies in cones, which, for human vision, are far more
important than rods. The recent success in recording from
single mouse cones ushers in a new era in research on
vertebrate cone phototransduction. Many long-standing
questions, e.g., the mechanisms for the enormous ability of
cones to adapt to light and the differences between rods and
cones in sensitivity and kinetics, can now be addressed with
a combination of mouse genetics and electrophysiology.
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