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Abstract The development of the nervous system requires
complex series of cellular programming and intercellular
communication events that lead from the early neural
induction to the formation of a highly structured central and
peripheral nervous system. Neurogenesis continuously
takes place also in select regions of the adult mammalian
brain. During the past years, a multiplicity of cellular
control mechanisms has been identified, ranging from
differential transcriptional mediators to inducers or in-
hibitors of cell specification or neurite outgrowth. While
the identification of transcription factors typical for the
stage-specific progression has been a topic of key interest
for many years, less is known concerning the potential
multiplicity of relevant intercellular signaling pathways
and the fine tuning of epigenetic gene regulation. Nucleo-
tide receptors can induce a multiplicity of cellular signaling
pathways and are involved in multiple molecular interac-
tions, thus opening the possibility of cross talk between
several signaling pathways, including growth factors,
cytokines, and extracellular matrix components. An in-
creasing number of studies provides evidence for a role of
nucleotide signaling in nervous system development. This
includes progenitor cell proliferation, cell migration,
neuronal and glial cellular interaction and differentiation,
and synaptic network formation.
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Introduction

During the development of the mammalian nervous
system, neural stem cells and their derivative progenitor
cells generate neurons by asymmetric and symmetric
divisions [74]. They are also the source of the two types
of macroglial cells of the central nervous system (CNS),
astrocytes, and oligodendrocytes [97]. The development of
the nervous system requires complex series of cellular
programming and intercellular communication events that
lead from the neural induction of a specified region of the
ectoderm to the formation of a highly structured central and
peripheral nervous system, with specified cell types and
pathways of cellular interconnection [66]. These processes
include the control of proliferation and cell fate determi-
nation of neurons, astrocytes, and oligodendrocytes, cell
migration and maturation, neurite extension and nerve
guidance, synapse formation, plasticity and network
implementation and, in addition, abandoning of excessive
cellular contacts and apoptosis. During the past years, a
multiplicity of cellular control mechanisms has been
identified, ranging from differential transcriptional media-
tors to inducers or inhibitors of cell specification or neurite
outgrowth. Furthermore, there is now abundant evidence
that neurogenesis continuously takes place in select regions
of the adult mammalian forebrain [3]. This has initiated a
wealth of studies to understand the mechanisms controlling
adult neuron formation and raises hopes to reinitiate
neurogenesis under conditions of neural trauma or disease
[29, 55, 109].

While the identification of transcription factors typical
for the stage-specific progression during nervous system
development has been a topic of key interest for many
years, less is known concerning the potential multiplicity of
intercellular signaling substances and the epigenetic gene
regulation that define or modulate individual developmen-
tal switches [13, 35, 69, 86]. Regarding nervous system
development, nucleotides [32] are among the most recently
identified and least investigated group of extracellular
signaling substances. The present overview highlights
recent evidence for a role of nucleotide signaling in
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nervous system development with a focus on the
mammalian nervous system. Aspects of the role of
nucleotides and nucleosides in nervous system develop-
ment have previously been reviewed [30, 31, 64].

Signaling via extracellular nucleotides

Signaling via extracellular nucleotides is complex (Fig. 1).
Nucleotides act via ionotropic or G-protein-coupled
receptors (P2 receptors) [146]. The homomeric or hetero-
meric P2X receptors (seven subtypes, P2X1–7) are
stimulated by ATP, are permeable to Na+, K+, and Ca2+,
and mediate fast signal transmission [139]. Most of these
can combine to form heterooligomers, resulting in altered
pharmacological properties. The eight subtypes of P2Y
receptors (P2Y1,2,4,6,11,12,13,14) are activated by ATP, ADP,
UTP, UDP, or nucleotide sugars, depending on the subtype,
and couple to differential intracellular signaling pathways
[104]. In rodents, the most common experimental animals,
the ligand preference (in brackets) is as follows: P2Y1

(ADP, ATP), P2Y2 (UTP, ATP), P2Y4 (UTP, ATP), P2Y6

(UDP), P2Y11 (ATP), P2Y12 (ADP), P2Y13 (ADP), and
P2Y13 (UDP glucose and other nucleotide sugars). The
ATP-activated P2Y11 receptor is not apparent in the rodent
genome. The potential role in nervous system development
of dinucleoside polyphosphates, which can activate various
P2 receptors as well as receptors of their own [116], has not
yet been investigated. Extracellular nucleotides can be
inactivated or interconverted by a multiplicity of enzymes
generally referred to as ectonucleotidases. These belong to
several enzyme families that vary regarding catalytic
properties and cellular expression pattern [201, 203].
Extracellular ATP is eventually degraded to adenosine
that may additionally influence neural development via P1
receptors (A1, A2A, A2B, A3) [146, 163]. ATP (and UTP)
can be released from essentially every cell type. Release
can be constitutive as well as stimulus-evoked and
regulated [164].

Nucleotide receptor-induced cellular signaling

Nucleotides and nucleosides mediate a considerable num-
ber of trophic effects on neurons and glial cells including
cell proliferation, cell differentiation, axonal growth, and
the synthesis and release of trophic factors such as
fibroblast growth factor-2 (FGF-2), nerve growth factor
(NGF), or neurotrophin 3 [132, 147]. Recent evidence
suggests that cellular communication via nucleotides can
involve a considerable variety of molecular interactions
and cellular signaling mechanisms.

P2Y receptors

Depending on subtype, P2Y receptor activation can induce
several intracellular signaling cascades, most notably
activation of phospholipase C, activation or inhibition of

adenylyl cyclase, activation of phospholipase A2, coupling
to ion channels, activation of the mitogen-activated (MAP)
kinase pathways, and induction of immediate early genes.
Transactivation of receptor tyrosine kinases opens up
additional avenues for cross talk with other signaling
pathways [1, 14, 104, 115, 130]. The outcome of individual
P2 receptor activation is likely to vary with cell type, with
the coexpression of receptors for additional signaling
molecules and with the associated intracellular signaling
molecules—that can change during development [12, 57].
In addition, P2Y receptors were shown to form homo-
oligomers or heterooligomers with other G-protein-
coupled receptors (GPCRs) that could impact on both
ligand properties and intracellular signaling. The P2Y2 re-
ceptors can form homooligomers [102], and the P2Y1

receptor forms heterooligomers with the A1 adenosine
receptor [123].

The multiple interactions of the well-investigated UTP-
and ATP-activated P2Y2 receptor can serve as an example
[190]. Through activation of phospholipase C, it induces a
rise in intracellular Ca2+. This may modulate Ca2+

signaling pathways including the generation of intercellular
Ca2+ waves that can play a significant role in embryonic
development [189]. Furthermore, the human P2Y2 receptor
contains two C-terminal consensus Src-homology-3 (SH3)
binding domains that promote recruitment and activation of
Src. The Src family of tyrosine kinases was found to be
important for embryonic stem-cell renewal [8]. Activation
of Src is important for P2Y2 receptor-mediated transactiva-
tion of soluble tyrosine kinases, the epidermal growth
factor receptor (EGFR), platelet-derived growth factor
receptor (PDGFR), and vascular endothelial growth factor
receptor (VEGFR)-2 [110, 167], that have all been

Fig. 1 Potential pathways of extracellular nucleotide metabolism
and receptor function. ATP is shown as an example. Released ATP is
metabolized by ectonucleotidases to adenosine in a stepwise manner
(catabolism). Some of the ectonucleotidases directly degrade ATP to
AMP without intermediate formation of ADP. ATP is an agonist at
P2X receptors as well as at P2Y1, P2Y2, P2Y4, and P2Y11 receptors
whereas UTP only activates P2Y2 and P2Y4 receptors. ADP is an
agonist at P2Y1, P2Y12, and P2Y13 receptors and UDP at P2Y6
receptors. Adenosine activates P1 receptors (A1, A2A, A2B, and A3).
The surface-located enzymes nucleoside diphosphate kinase and
adenylate kinase catalyze the extracellular formation of ATP
(anabolism). Ectoprotein kinases can phosphorylate surface-located
proteins which in turn are dephosphorylated by ectophosphoprotein
phosphatase activity (potentially by alkaline phosphatases)
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implicated in the control of neurogenesis [187]. P2Y2

receptor activation increases Src kinase-dependent cluster-
ing with the EGFR and VEGFR-2 receptors. Similarly,
P2Y2 receptor activation in the presence of NGF leads to
the colocalization and association of tyrosine receptor
kinase A and P2Y2 receptors [9]. Furthermore, the P2Y2

receptor contains an RGD integrin-binding motif in its first
extracellular loop. It colocalizes with αVβ3/β5 integrins
[56], suggesting that it can form a large signaling complex
containing integrins and proteins associated with integrins
such as Src, focal adhesion kinase, Pyk2, EGFR, PDGFR,
and the actin cytoskeleton [110]. In accordance, the P2Y2

receptor-mediated astrocyte migration was shown to
involve the interaction with αV integrin [10, 186].

P2Y receptors activate MAP kinase pathways in a wide
variety of cell types [165, 170]. The functional role of MAP
kinase protein cascades in P2Y receptor-mediated trophic
actions has been particularly intensively investigated in
astrocytes [128, 130]. In these cells, extracellular signal-
regulated protein kinases (ERKs) can be activated via
P2Y1, P2Y2, or P2Y4 receptors whereby the intracellular
signaling cascades vary between receptor subtypes [100,
107, 127, 129]. Nucleotides can exert a synergistic effect
on cell proliferation together with growth factors, chemo-
kines, or cytokines in a variety of cell types, including
astrocytes and stem cells [88, 106, 117, 126, 181]. This
may be initiated by parallel activation of the MAP kinase
pathway and/or by transactivation of growth factor
receptors [107, 133] (Fig. 2). Activation of P2 receptors
(including P2Y2 receptors) can also result in CREB
phosphorylation [26, 42, 119]. P2Y2 receptor activation
in astrocytes not only induces the expression of bcl-2 and
bcl-xl, thus triggering survival signaling cascades, but also
stimulates the expression of genes implicated in nervous

system development, neuronal differentiation and survival,
and the formation and function of synapses [42].

An additional and very interesting potential concerns the
stimulation of α-secretase activity by the heterologously
expressed P2Y2 receptor, the enhancement of amyloid
precursor protein processing, and the concomitant release
of the soluble non-amyloidogenic amyloid precursor
protein-α (sAPP) [34]. sAPP has been shown to increase
proliferation of embryonic and adult neural stem cells [33].
In addition, the P2 receptor-mediated activation of
ectometalloproteases carries potential to induce ectodo-
main shedding of additional transmembrane proteins such
as TGF-α (endogenous ligand of the EGF receptor), HB-
EGF, or of Notch1 [79, 89]. Growth factor shedding could
in turn result in the activation of the corresponding growth
factor receptors [115].

It is of interest that EGF can sensitize and potentiate the
intracellular Ca2+ response to ATP [49]. This opens up the
possibility that the cellular release of small amounts growth
factor could prime and increase the impact of nucleo-
tidergic signaling during neural development.

P2X receptors

Activation of P2X receptors by ATP generally induces a
robust cellular influx of Na+ and Ca2+. This in turn leads to
a rapid cellular depolarization and to the activation of
intracellular Ca2+-dependent signaling cascades. In most
cases, activation of P2X7 receptors leads to the opening of
large conductance channels that have been associated with
the induction of apoptosis [139] and may thus be relevant
for stage-specific programmed cell death. Activation of this
receptor and also of other P2X receptors can also initiate
ERK1/2 phosphorylation [71, 92].

P1 receptors

The four different receptors for adenosine (P1 receptors)
couple either negatively or positively to adenylyl cyclase
[146]. In addition, these receptors can couple to MAP
kinases which could give them a role in cell growth,
survival, death, and differentiation [163]. In astrocytes,
ERK can be activated via P1 purinoceptor in addition to
P2Y receptor agonists [131]. Furthermore, P1 receptors
crosstalk with other metabotropic receptors, including P2Y
receptors [6]. This opens up a considerable potential for an
interaction of P2 receptor- and P1 receptor-mediated
pathways in multiple functional contexts.

Developmental changes in nucleotide receptor
expression

Both P1 and P2 receptors are expressed during nervous
system development [31]. P2X family genes are already
expressed in the developing zebrafish nervous system
[140]. The early and transient expression of P2 receptors in

Fig. 2 Simplified model of potential pathways for cross talk
between ATP-, ADP-, or UTP-activated P2Y receptors and growth
factor receptors (e.g., EGF, PDGF, and VEGFR-2). Both signaling
pathways can converge at the MAP kinases Erk1/2, inducing rapid
transcription and protein synthesis that could augment, e.g., cell
proliferation. In addition, the G protein-coupled P2Y receptors may
directly phosphorylate and thus activate the receptor tyrosine kinase
(receptor transactivation). Furthermore, P2 receptors may activate
plasma membrane-bound ectometalloproteases that could cleave and
mobilize membrane-bound growth factor precursors
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distinct developmental settings can serve as a first indica-
tion for an involvement of the nucleotidergic signaling
cascade.

P2X receptors

Several P2Yand P2X receptors were found by RT-PCR and
immunocytochemistry to be dynamically expressed in the
pre- and postnatal central and peripheral nervous system
[39–41, 99, 196]. Among all the P2X receptors examined,
the homomeric P2X3 receptor was the first to be expressed
during neurogenesis in both the rat CNS and peripheral
nervous system. P2X3 immunoreactivity was detected in
cranial motor neurons as early as E11, when neurons exit
the cell cycle and start axon outgrowth. The P2X3 receptor
was also identified in (the neural crest cell-derived) sensory
ganglia. During further development, the P2X3 receptor
appeared in additional distinct brain regions and in
peripheral nerves but its expression declined at later stages.
From P16 onward, P2X3 immunoreactivity was absent
from the facial nucleus, spinal trigeminal tract, the
mesencephalic trigeminal nucleus, and the vestibular
nucleus. The P2X2 receptors that can form heterodimers
with the P2X3 receptor appeared after the P2X3 receptor
(E14 onward). In retinal ganglion cells, the P2X3 receptor
was detected from E14.5 onward, whereas the P2X2

receptor was not detected in the prenatal retina. P2X7

receptors were detected from E14 onward. While P2X4,
P2X5, and P2X6 receptors were expressed from P1 onward,
no expression of P2X1 receptors was observed [39, 40]. It
is interesting to note that both P2X4 and P2X5 receptors
were expressed in the neurogenic subventricular zone,
presumably in affiliation with separate, yet-to-be-defined
cell types (see below). Similarly, P2X3 receptor immuno-
reactivity developed transiently in the myenteric plexus of
rat stomach. Immunoreactivity appeared first at E12 in the
trunk and branches of the vagus nerve and was first
demonstrated at P1 in intrinsic neuron cell bodies. It

declined after peaking at P14. Within the intraganglionic
laminar nerve endings and intramuscular arrays, many
growth cone-like structures exhibited strong P2X3

immunoreactivity [195].
The P2X3 receptor is also transiently expressed in the

developing mouse brain, and in precursors of spinal motor
neurons where it is considered to be a useful cell lineage
marker for neural, crest-derived early sensory neurons,
sympathetic neurons, and the adrenal medulla [22]. Based
on immunohistochemistry, expression of P2X3 receptors is
equally transient in mouse sensory ganglia [152].

The P2X7 receptor has previously been shown to induce
cytotoxicity at high concentrations of ATP and to be
involved in programmed cell death [105, 121]. Indeed, via
the P2X7 receptor, endogenous extracellular ATP triggers
the death of retinal cholinergic neurons during normal
development, thereby controlling the total number, local
density, and regular spacing of these neurons [148]. It is
possible that this receptor is also involved in apoptosis
during neurogenesis in the brain.

Also in sensory organs, the expression of P2X receptors
can be developmentally regulated. P2X1, P2X2, P2X3, and
P2X7 receptors are expressed in the developing inner ear
[27, 84, 85, 87, 95, 134, 135] suggesting a contribution to
the establishment of synaptic connections between the
primary auditory neurons and the sensory hair cells. The
time pattern of expression varies between the P2X1, P2X2,
and P2X3 subunits. For example, the expression of the
P2X3 receptor becomes apparent in neurites of spinal
ganglion neurons already at E16 [87]. It is expressed to
synaptic terminals and vanishes again postnatally (Fig. 3).
This transient nature of expression and the association with
afferent fibers implies that P2X receptor upregulation is
linked to the development in particular of the innervation of
the organ of Corti. P2X receptors are likely to contribute to
the neurotrophic signaling that establishes functional
auditory neurotransmission before the likely onset of
hearing (P8–P12).

Fig. 3 Example for the transient expression of a P2X receptor
subunit (P2X3) during the development of the rat cochlear
innervation, as revealed by immunohistochemistry (modified from
[87]). The receptor is first detected at E16 in the spiral ganglion that
provides the major primary afferent innervation to the cochlear
sensory hair cells. It disappears at P14. Between E18 and P4, it can
be identified in the afferent synaptic terminals that innervate the

inner hair cells (IHC). Between P2 and P13, it is associated with the
afferent fibers innervating the outer hair cells (OHC). The P2X3
receptor could not be immunodetected in the adult cochlea
(in contrast to the P2X2 receptor). The rat is borne deaf and the
onset of airborne hearing is around P12. The early postnatal period
is thus critical for the synaptic determination of the afferent
(and efferent) innervation of the cochlear outer hair cells
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P2Y receptors

A novel P2Y receptor was discovered in the Xenopus that is
expressed at very early stages of neural plate development. It
is no longer detected after neural tube closure [21]. The
chick P2Y1 receptor is expressed in a developmentally
regulated manner in various embryonic tissues, including
the brain [114]. In situ hybridization first detected the
receptor at approximately stage 33. The receptor was
expressed mostly in regions of postmitotic neurons,
including the telencephalon, with smaller patches in the
dorsal diencephalon, posterior midbrain, and anterior hind-
brain. Expression in the telencephalon, dorsal diencephalon,
and posterior hindbrain was strengthened by stage 36.

Using RT-PCR and immunohistochemistry, Burnstock et
al. also analyzed the developmental expression of P2Y1,
P2Y2, P2Y4, and P2Y6 receptors during rat development
[41]. Only P2Y1 and P2Y4 receptor proteins were
identified in the developing brain. The P2Y4 receptor
appeared to be the dominant P2Y receptor present early in
the brain. It appeared first at E14 and was identified in the
olfactory system, diencephalon, amygdala, and brain stem.
P2Y1, P2Y2, and P2Y4 receptor proteins were all expressed
in the spinal cord and the peripheral nervous system from
E12. At this stage, the P2Y1 receptor was detected in the
floor plate of the spinal neural tube, a transient organization
center that profoundly influences the development of the
nervous system [52]. The P2Y2 and P2Y4 receptors were
expressed in the ventral horns of the embryonic spinal cord
and, together with the P2Y1 receptor, may play a role in
motor neuron development.

Developmental alterations in P2 receptor signaling

Several studies addressed P2 receptor-mediated signaling
in development-specific states. In the chicken retina,
ATP-evoked Ca2+ transients were strongest as early as E3
and were drastically reduced at E11–13.5 [178]. In neonatal
rats, ATP transiently affected the excitation of motoneurons
of the nucleus ambiguus, which are the final output neurons
of the swallowing pattern generator [28]. In medullary
slices from P0–4 animals, local application of ATP
produced large desensitizing inward currents whereas in
slices from juvenile animals (P15–21), only negligible
currents were recorded. This corresponded to a transient
robust expression of the P2X3 receptor and moderate and
weak expression of P2X2, P2X5 and P2X4, P2X6 receptors,
respectively. The data support the notion that the transient
excitatory actions of ATP on neonatal motoneurons impact
on the development and/or neuromodulation of the
ambigual motor network. Similarly, ATP, operating via
distinct P2X and P2Y receptors, directly contributes to
modulate rat hippocampal network activity at early stages
of postnatal development [154].

In presynaptic terminals of spinal cord substantia
gelatinosa neurons, P2X receptors that enhance glycinergic

activity become functional late in ontogeny (later than
P10–12) [94]. Similarly, in locus coeruleus neurons of the
rat, inward currents could be induced by ATP antagonists at
P18–23 but hardly at P10–14 [192]. It is apparent that no
functional P2 receptors are present at locus coeruleus
neurons right after birth but thereafter, P2 purinoceptor
function increases with age.

In the rat cerebellar cortex, the neuronal network
develops during the first 3 weeks of life. In a recent
study, ATP was found to enhance the synaptic activity in rat
cerebellar Purkinje neurons by the end of the second
postnatal week. From P9/10 to P17/18, ATP was found to
increase fourfold the frequency of spontaneous postsynap-
tic currents (sPSCs) recorded from Purkinje neurons.
Functional ATP receptors appeared during P10–12, sPSC
frequency was enhanced after inhibition of ecto-ATPases,
and application of the P2 receptor antagonist PPADS
revealed tonic stimulation of P2 receptors at P14 [37].
Similarly, immunostaining demonstrated a postnatal in-
crease in cerebellar P2X receptor expression [196]. These
data imply that purinergic systems mature during the
second postnatal week in the rat cerebellum and start to
contribute to the modulation of the synaptic activity in
Purkinje neurons. They also reveal that the ectonucleotid-
ase pathway is functionally developed at that develop-
mental stage and raise the question whether mechanisms
and sites of ATP release are under a comparable develop-
mental control.

A transient expression of P2X receptor function has also
been reported for the peripheral nervous system. As
revealed by patch clamp recording, sympathetic neurons
of the rat superior cervical ganglion are more responsive to
ATP at birth and during the early postnatal period due
largely to the expression of the P2X3 subunit. These
responses are much reduced in mature rats [54]. In the
embryonic (E14) chick ciliary ganglion neurons, ATP
induced a rapid inward current, inferring ATP-mediated
modulation of these parasympathetic neurons [2].

Developmental changes in ectonucleotidase expression

Ligand availability at P2 receptors is tightly controlled by
ectonucleotidases. Prolonged exposure can lead to either
receptor desensitization or downregulation [146, 182].
Ectonucleotidases may hydrolyze ATP or UTP as agonists
of P2 receptors. They may also generate ADP or UDP as
agonists of nucleoside diphosphate-sensitive P2Y receptors
and eventually produce the P1 receptor agonist adenosine
[201]. Developmentally regulated transient receptor ex-
pression may be accompanied by alterations in ectonu-
cleotidase expression. Several investigations demonstrate
that the expression of individual ectonucleotidases differs
in developmental onset and that ectonucleotidases can be
transiently expressed in defined regions of the nervous
system, including the neurogenic regions.
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Alkaline phosphatase

The four mammalian isoforms of alkaline phosphatase
(AP) degrade nucleoside 5′-tri-, -di-, and -monophos-
phates, release inorganic phosphate from a large variety of
organic compounds, including proteins, and share an
alkaline pH optimum [201]. They are anchored to the cell
surface via a glycosylphosphatidyl inositol (GPI) anchor. It
is interesting to note that the tissue nonspecific form of
alkaline phosphatase (TNAP) is expressed by mouse and
human undifferentiated embryonic stem cells [43]. As
revealed by enzyme histochemistry, homogeneous TNAP
activity in the mouse neuroepithelium becomes apparent at
E8.5 [125]. At E9.5, distinctly TNAP-positive cells appear
in the brain and spinal cord. At E10.5–12.5, TNAP
positivity is observed between the mesencephalon and the
rhombencephalon, along the entire spinal cord and the
cranial nerves emerging from the myelencephalon, sug-
gesting an association with pioneer growth cones. At
E14.5, TNAP expression is considerably reduced in brain
tissue and very low in the adult brain. In the late developing
rat cerebellar cortex, peak alkaline phosphatase activity
was localized to the proliferative external granular cells
until P7 [198]. More recent studies allocate TNAP to
primary sensory areas in the adult primate sensory cortex,
including axonal and dendritic processes and the synaptic
cleft. It is most notable that TNAP activity is regulated by
sensory experience [59]. In the postnatal marmoset
(Callithrix jacchus), expression of TNAP is developmen-
tally regulated both in gray and white matter [60],
suggesting that TNAP is involved in the mechanisms
regulating maturation of synaptic transmission and axonal
conduction in the developing brain.

The functional role of the enzyme during embryonic
development has not yet been investigated. In addition to
its nucleotidase activity, TNAP can ectodephosphorylate
proteins and it has been shown to bind to collagens [193].
Because TNAP can catalyze the entire hydrolysis chain
from the nucleoside-5′-triphosphate to the respective
nucleoside, it may scavenge or produce ligands of P2
receptors (comp. Fig. 1) and finally produce adenosine as
the ligand of P1 receptors. Mice lacking TNAP reveal no
gross abnormalities in brain development. However, at
approximately 2 weeks after birth, they develop fatal
seizures. These have been attributed to a defective
metabolism of pyridoxal 5′-phosphate and subsequent
reduced levels of the inhibitory neurotransmitter GABA
[188]. Deficiency in TNAP is associated with defective
bone mineralization [124]. At present, little is known
concerning the mechanism controlling TNAP expression.
TNAP can be induced by retinoic acid [158] and by
activation of the phosphatidyl inositol 3-kinase/Akt
pathway [138].

Ectonucleotide pyrophosphatase/phosphodiesterases

Similar to alkaline phosphatases, the ectonucleotide pyro-
phosphatase/phosphodiesterases (E-NPPs) NPP1, NPP2,

and NPP3 share an alkaline pH optimum. They hydrolyze
5′-monodiester bonds in nucleotides and their derivatives,
resulting in the release of 5′-nucleotide monophosphates.
Physiological substrates include ATP, NAD+, nucleotide
sugars, and also dinucleoside polyphosphates. Typically,
ATP is directly degraded to AMP with the release of
inorganic pyrophosphate. Whereas NPP1 and NPP3 are
type II membrane proteins, NPP2 (autotaxin) is secreted
[72, 172]. As revealed by in situ hybridization, autotaxin, a
splice variant of NPP2, is expressed as early as E9.5 in the
floor plate of the neural tube. Expression increases during
the following days but is absent at E16.5 [15]. During later
brain development, autotaxin has been correlated with
intermediate stages of rat brain oligodendrocyte differen-
tiation and myelin formation [68]. It becomes expressed
with myelinating oligodendrocytes and participates in the
myelination via a novel signaling pathway leading to
changes in integrin-dependent focal adhesion assembly and
consequently oligodendrocyte extracellular matrix inter-
actions [61, 62]. The related enzyme NPP3/gp130RB13−6 is
transiently expressed during rat brain development by a
small subset of precursor cells distributed in a specific
spatio-temporal pattern in the germinal layers of the
ventricular zone of the immature brain. These cells are
capable of differentiating in vitro into cells with radial–
glial, astrocytic or ependymal cell properties [20]. In the
adult brain, immunolabeling for NPP3 is restricted to the
ependyma. It is interesting to note that transfection of
NPP3 into several cell lines induced cell aggregation, cell
motility, and invasion into collagen I. Furthermore, it
induced coexpression of both glial and neuronal markers
[48]. It has been hypothesized that NPP3 may represent an
important factor in the process of glial cell proliferation
which is accompanied by migration of glial precursors.

The endogenous substrate relevant in the various E-NPP
locations remains to be identified. In particular, NPP2/
autotaxin (but not NPP1 and NPP3) also targets lipids,
exerting lysophospholipase D activity. NPP2 has been
shown to promote tumor cell motility [177], and this
property results from the generation of lysophosphatidic
acid [184]. The involvement of NPP2/autotaxin in oligo-
dendrocyte development may thus mainly result from its
lysophospholipase D activity and an additional functional
domain mediating the modulation of oligodendrocyte
remodeling and focal adhesion organization [50].

Ectonucleoside triphosphate diphosphohydrolases

NTPDase1–3 and NTPDase8, four members of the
ectonucleoside triphosphate diphosphohydrolase (E-NTP
Dase) protein family, are firmly anchored to the plasma
membrane via two transmembrane domains and thus
represent typical ectoenzymes. All four enzymes hydrolyze
nucleoside triphosphates including the physiologically
active ATP and UTP but the hydrolysis rates for nucleoside
diphosphates vary considerably. They also differ in product
formation. This is of considerable relevance for the
regulation of nucleotide signaling [19, 202]. NTPDase1
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and NTPDase3 were found to be associated with the
vasculature and neurons, respectively [17, 151]. They can
also be detected by Northern hybridization in the devel-
oping nervous system (Zimmermann, unpublished results).
In synaptosomes isolated from rat cerebral cortex, a
postnatal increase in ecto-ATPase and ecto-ADPase activ-
ities was observed [122]. NTPDase2 protein and catalytic
activity is associated with neural progenitor cells of the late
embryonic and adult rodent brain [24, 168], implicating a
role of purinergic signaling pathways in neurogenesis (see
below). NTPDase2 is associated also with immature and
nonmyelinating Schwann cells of the peripheral nervous
system, with satellite glia cells of dorsal root ganglia and
sympathetic ganglia, and with enteric glia [25].

Ecto-5′-nucleotidase

Mammalian ecto-5′-nucleotidase catalyzes the hydrolysis of
nucleoside monophosphates and is thus of major importance
for the extracellular formation of the P1 receptor agonist
adenosine [200]. In the adult CNS, ecto-5′-nucleotidase has a
predominantly glial (astrocytic, oligodendroglial) location.
However, there is considerable evidence that the enzyme is
associated with the neural surface during development and
plasticity. During postnatal ontogeny of the rat cerebellum, it
is expressed to the surface of migrating neuroblasts [58,
159]. It is notable that proliferation of precursors, cell
migration and differentiation, and dendritic and axonal
growth and remodeling occur equally in the postnatal
cerebellum. Ecto-5′-nucleotidase also becomes transiently
associated with synapses during synaptogenesis and synapse
remodeling [11, 58, 160]. Examples include the developing
postnatal cerebellum, the adult olfactory bulb, lesion-
induced sprouting within the adult dentate gyrus, and also
reactive synaptogenesis in the human brain [108]. Expres-
sion of ecto-5′-nucleotidase was found to be mandatory for
neurite extension in vitro [80].

An impressive correlation has been found between the
development of the kitten visual cortex and the distribution
of ecto-5′-nucleotidase [161, 162]. Within postnatal
weeks 4 to 6, the enzyme exhibits a patchy distribution
that is related to the terminal fields of the afferents from the
two eyes that segregate during this phase to form ocular
dominance columns. During this developmental phase,
ecto-5′-nucleotidase is associated with synaptic contacts
and shifts to a glial location only when the processes of
synapse formation and remodeling have come to an end.
Furthermore, the cell adhesion carbohydrate epitope HNK-
1 is transiently associated with the kitten ecto-5′-nucleo-
tidase during the period of its synaptic expression [185].
These observations support the notion that ecto-5′-nucleo-
tidase plays a significant role in neurogenesis and in
cellular contact formation within the synaptic cleft.

While it is tempting to assume that the expression of the
enzyme indicates the involvement of P1 receptor-mediated
mechanisms, additional functional contexts may apply.
Ecto-5′-nucleotidase also binds to the extracellular matrix

components laminin and fibronectin and may, in addition,
mediate cellular adhesion [200]. Nerve growth factor and
retinoic acid increase ecto-5′-nucleotidase expression [101,
150]. Wnt and β-catenin signaling target the expression of
ecto-5′-nucleotidase and increase extracellular adenosine
formation [171]. Wnt signaling is essential for neural
development at various stages and also plays a role in axon
guidance and neurite outgrowth [90].

Neural progenitors

In the mammalian nervous system, neurogenesis occurs
predominantly during embryogenesis whereas glial cells
are prevalently generated after birth. During prenatal and
early postnatal stages, neurogenesis takes place in two
actively proliferating zones, the ventricular zone (VZ) and
the subventricular zone (SVZ), two relatively thin layers
lining the primitive ventricular cavities [144]. After birth,
these layers progressively disappear, leaving the mature
nervous tissue in contact with a continuous, ventricle-
lining cell monolayer, the ependyma. Both neurons and
glia continue to be generated in restricted adult forebrain
structures, including the subependymal layer (SEL) (or
adult SVZ) of the lateral walls of the lateral ventricles [7]
and the subgranular layer (SGL) of the dentate gyrus of the
hippocampus [98].

The SEL and its rostral extension, originating after the
occlusion of the primitive olfactory ventricle, generate
neuroblasts that migrate towards the olfactory bulb (OB),
constituting the rostral migratory stream (RMS) (Fig. 4).
Within the RMS, the neuroblasts continue to divide and
move as a network of tightly associated chains of cells
ensheathed by tubes of slowly proliferating astrocyte-like
cells [111, 113]. Upon reaching the OB, the neuroblasts
move radially and differentiate into granular or periglo-
merular interneurons [111]. Within the adult SEL, three
principal, closely adjacent cell types are distinguished
morphologically and functionally. The glial fibrillary acidic
protein- (GFAP) and nestin-expressing protoplasmic astro-
cyte-like type-B cells are thought to represent (at least in
part) the actual stem cells. They give rise to transit-
amplifying progenitors (type-C cells) that generate type-A
cells, representing the neuroblasts migrating to the OB
[70]. For comparison, in the hippocampus, radial glia-like
cells (residual radial glia) with their cell body in the SGL
are considered to function as progenitors and maintain
their neurogenic potential into adulthood (Fig. 5). The
GFAP- and nestin-expressing residual radial glial elements
proliferate and become transformed into neurons via
transit-amplifying cells [98, 173]. Cells in the transition
state start to express markers of neuronal differentiation
and migrate into the granule cell layer where they differ-
entiate into interneurons [53]. There is now increasing
evidence for an association of distinct functional purinergic
signaling pathways with embryonic and adult neural
progenitors.
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Association of ectonucleotidase activity with stem
cells/progenitor cells

NTPDase2 is the dominant ectonucleotidase expressed by
mammalian progenitors in the late embryonic and adult
murine brain [24]. The enzyme reveals a high preference
for the hydrolysis of nucleoside triphosphates over nucleo-
side diphosphates. The enzyme thus not only inactivates
ligands for nucleoside triphosphate-sensitive receptors but
also generates ligands for nucleoside diphosphate-sensitive
receptors. In the rat and mouse brain, NTPDase2 is first
immunodetected at E18 and E17, respectively. It gradually
becomes expressed along the ventricular and subventric-
ular zone of the brain, followed by retraction to the adult
expression pattern at P21. In the adult brain, NTPDase2 is
selectively expressed by the GFAP, polysialylated neural
cell adhesion molecule- (PSA-NCAM) and S-100-positive
stem cells (type-B cells) of the SEL and the RMS (Fig. 4).
It is also associated with select tanycytes of the third
ventricle and by subpial astrocytes. It is interesting to note
that neurogenesis has recently also been allocated to the
ventricular layer of the adult third ventricle [197].
Furthermore, NTPDase2 selectively marks postnatal cor-
tical radial glia [168]. Radial glia is considered to represent
the major source of neurons during development [73].
Cortical immunostaining for NTPDase2 ceases after P5, a
state when radial glia transforms into astrocytes [118].

In addition, NTPDase2 is selectively associated with
progenitor cells of the mouse dentate gyrus, beginning with
the early migration of progenitor cells into the dentate
gyrus anlage during embryonic development [168]. The
embryonic pattern of expression mirrors that of the dentate
migration of neuroblasts. By P23, the immunostaining
corresponds to the adult stage. At that stage, the
NTPDase2-positive cells correspond to the “residual radial
glia”, the presumptive adult progenitors of hippocampal
granule neurons. Double immunolabeling of the adult
dentate gyrus revealed that NTPDase2 is associated with
subpopulations of GFAP-, nestin-, and doublecortin-posi-
tive cells and also with the amplifying horizontal D cells
[166] (Fig. 5). NTPDase2 is absent from mature granule
cells and S100-positive astrocytes. NTPDase2-positive
cells proliferate and postmitotic cells preferentially acquire
an NTPDase2-positive phenotype.

Association of purinergic receptors with stem
cells/progenitor cells

Neural stem cells can successfully be cultured in vitro as
floating cell aggregates, referred to as neurospheres.
Neurospheres cultured from the adult SEL in the presence
of epidermal growth factor (EGF) and fibroblast growth
factor-2 (FGF-2) contain multipotent precursors with the
characteristics of neural stem cells and the ability to
generate neurons, astrocytes, and oligodendrocytes [76,
149]. Neurospheres derived from the adult mouse SEL
express the metabotropic P2Y1 and P2Y2 nucleotide
receptors, resulting in the generation of rapid Ca2+

Fig. 5 Cellular association of NTPDase2 in the neurogenic adult
mouse dentate gyrus. NTPDase2 is expressed by slowly proliferat-
ing residual radial glia considered to represent the neurogenic
progenitors. The cell body of this cell type is situated in the
subgranular layer (SGL). It extends strong radial processes
throughout the granule cell layer (GCL) and forms bushy
arborizations within the inner molecular layer (IML). NTPDase2
is still associated with highly multiplying intermediate cell types
[166] that exhibit a horizontal extension in the SGL. Expression of
NTPDase2 ceases when young neurons migrate into the GCL and
differentiate into mature neurons, with long dendrites spanning the
outer molecular layer (OML) and an axon innervating CA3
pyramidal neurons (according to [168])

Fig. 4 Stage-specific cellular expression of NTPDase2 during adult
neurogenesis in the subependymal layer (SEL) of the rodent lateral
ventricles. Top Parasaggital section through a murine forebrain,
depicting a lateral ventricle (LV) with the SEL and the corresponding
rostral migratory stream (RMS), extending from the SEL into the
olfactory bulb (OB). Bottom The nucleoside triphosphate-hydrolyzing
enzyme NTPDase2 is selectively associated with the slowly
proliferating type-B cells considered to represent (at least in part)
adult neural stem cells. The enzyme becomes downregulated on
formation of the highly proliferating type-C cells and is also absent
from migrating neuroblasts (type-A cells) and mature interneurons
that are formed after migration of type-A cells into the OB. Within the
RMS, NTPDase2 is associated with astrocyte-like cells ensheathing
the migrating neuroblasts but it is absent from cells radially migrating
out from the RMS within the OB (according to [117])
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transients after the application of the agonists ATP, ADP, or
UTP [117]. Agonists of these receptors and also low
concentrations of adenosine augmented cell proliferation in
the presence of growth factors, inferring nucleotide recep-
tor- and growth factor receptor-mediated synergism with
progenitor cell proliferation. Growth factor-stimulated
neurosphere cell proliferation was attenuated after applica-
tion of the P2Y1 receptor antagonist MRS2179 and in
neurospheres from P2Y1 receptor knockout mice. These
results suggest that nucleotides may be constitutively
released from neurosphere cells and exert a synergistic P2
receptor-mediated effect on growth factor-mediated cell
proliferation. Furthermore, neurospheres expressed the
ectonucleotidases NTPDase2 and TNAP and hydrolyzed
extracellular ATP to adenosine. While the data suggest that
in vitro progenitors can directly be targeted by nucleotides,
the cellular allocation of nucleotide receptors in the SEL is
less defined. Using in situ hybridization, the P2Y1 receptor
could be allocated not only to striatal neurons but also to
select clusters of cells in the SEL [117].

Nucleotides activate hippocampal progenitors in situ. In
acute slices, the neural progenitors in the adult dentate
gyrus of the hippocampus react with an inward current to
application of ATP, implicating the expression of P2X
receptors [168]. P2X receptor-mediated inward currents
were also detected on individual cultured and undiffer-
entiated adult hippocampal progenitors [82].

There is increasing evidence for a functional role of
purinergic signaling pathways also in embryonic neuro-
genesis. Ntera-2/D1 (NT-2) cells, a pluripotent human
embryonal carcinoma-derived clonal cell line, express
functional P2Y1 receptors resulting in an ATP- or ADP-
mediated increase in intracellular Ca2+ [120]. P2Y1

receptor-mediated Ca2+ transients could be evoked in
cells (originally obtained from the embryonic striatum,
E14) of connexin43-null mice that had migrated out from
neurospheres shifted to growth factor-free medium [156].
In addition, progenitor migration and proliferation may be
affected by the P2Y1 receptor. ATP was found to induce an
elevation of cytosolic Ca2+ levels and proliferation of
precursor cells cultured from immortalized human stem
cells derived from the embryonic telencephalon as well as
from mouse embryonic and adult neurospheres [153, 181].
The functional impact of nucleotides in embryonic neuro-
genesis is further corroborated by the observation of P2Y1

receptor-mediated Ca2+ waves through radial glial cells in
slices of the embryonic rat ventricular zone. Disrupting Ca2+

waves between these neuronal progenitors reduced
ventricular zone cell proliferation during the peak of
embryonic neurogenesis [191]. Similarly, ATP stimulates
proliferation of neural, retinal progenitor cells in the
embryonic chicken retina [143, 179]. Recent investigations
using acute slices of postnatal mice further revealed the
presence of ATP-induced inward currents in precursors in
the SVZ and in particular in the RMS [23].

Neurite outgrowth

Whereas coactivation of P2Y receptors and EGF leads to
enhanced cell proliferation, it appears that NGF and P2Y
receptor coactivation preferentially results in neurite out-
growth. The effects of nucleotides vary, however, between
cell type or cell line investigated. In neural tube explants
derived from E12 rat embryos, ATP (but not UTP) had an
inhibitory effect on motor axon outgrowth, most likely via
the P2X3 receptor [40]. In contrast, ATP, several ATP
analogues, and UTP were shown to enhance NGF-
mediated survival and neurite outgrowth from pheochro-
mocytoma (PC12) cells [16, 45, 46, 145] and also from
cultured neonatal dorsal root ganglion neurons, apparently
involving P2Y2 receptor activation [9]. In accordance, P2
receptor antagonists prevented NGF-dependent neurito-
genesis [44]. It is interesting to note that a similar
stimulatory effect on PC12 neuritogenesis has been
described for guanosine and GTP [77, 78] for which no
cell surface-located receptors are known to date. The effect
of GTP was not mediated by P2 receptors.

In dibutyryl-cAMP-differentiated human neuroblastoma
SH-SY5Y cells, a model system to study neuronal
differentiation in vitro, UTP acting via the P2Y4 receptor
increased the contribution of neurite-bearing cells. Tran-
sient transfection with the P2Y4 receptor facilitated
neuritogenesis. This was accompanied by an increased
transcription of immediate early genes linked to differen-
tiation. However, prolonged exposure to UTP induced cell
death [38]. In addition, activation of adenosine A1 and A2A

receptors induced neuritogenesis in SH-SY5Y cells in a
nonsynergistic manner, apparently via differential intra-
cellular signaling pathways [36]. A similar effect was
observed with primary cultures of striatal neurons.
2-Chloroadenosine increased cell number and neurite
length in cultured myenteric neurons and synergistically
enhanced neurite outgrowth with FGF-2 [157]. In accor-
dance, culturing of PC12 cells on an ecto-5′-nucleotidase
substratum stimulated neurite extension of PC12 cells [81].
Inhibition of extracellular adenosine formation by inhibi-
tion of ecto-5′-nucleotidase activity via selective antibodies
or by knockdown of the enzyme protein via antisense
oligonucleotides inhibited neurite formation in PC12 cells
and in cultured cerebellar granule neurons [80]. In contrast,
A1 receptor activation was found to inhibit NGF-induced
neurite outgrowth in PC12 cells and cultured cortical and
hippocampal neurons [180].

There may be additional impacts of nucleotides on the
interaction of neurons and on neurite outgrowth. Extra-
cellular ATP binds to (and can be hydrolyzed by) the neural
cell adhesion molecule NCAM. Neurite outgrowth from
hippocampal neurons (prepared from embryonic E17–19
rats) allowing NCAM homophilic interactions was in-
hibited by high concentrations of ATP [169]. Autotaxin/
NPP2 induced neurite retraction of PC12 cells, an effect
possibly produced by its lysophospholipase D rather than
by its ectonucleotidase activity [155].
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Developing glia

Astroglia and retinal Müller cells

Multiple investigations revealed the presence of P2 and P1
receptors on all types of glial cells. During the neurogenic
phase of the cerebral cortex, radial glia is considered as the
relevant stem cell, generating most of the pyramidal
neurons [103, 137]. Towards the end of neurogenesis, the
cortical progenitor switches back to symmetric division
and gives rise to astrocytes. Astrocytes, generally cultured
from postnatal brain, express a wide array of P2X and P2Y
receptors, and nucleotides and nucleosides have important
roles in the proliferation and differentiation of these cells
[63, 67, 93, 100, 132, 142]. As for other cell types, the
possibility needs to be considered that the functional
properties of cultured cells differ from the in situ situation.
But nucleotide-mediated astrocyte proliferation and differ-
entiation were demonstrated in situ [65]. A single cell PCR
of astrocytes acutely isolated from the hippocampal CA1
region of P8-12 rats revealed the mRNA of P2Y1, P2Y2, or
P2Y4 receptors [199]. In cultured astrocytes, ATP or UTP
increased GFAP expression and chemotactic and chemo-
kinetic cell migration [186], and induced intracellular Ca2+

transients and proliferation [130]. Astrocytes share this
property with the astrocyte-like stem cells of the embryonic
and adult nervous system (see above). For comparison,
elevated concentrations of adenosine induce astrocyte
apoptosis [51]. Differentiation of Müller cells from radial
glial progenitors in the developing rabbit retina is accom-
panied by a decreasing capability to respond to ATP with an
increase in intracellular Ca2+. Whereas postnatally most of
the cells respond, the response is minor regarding cell
number and amplitude in the adult retina [183].

Oligodendroglia

Oligodendrocytes tend to arise from specific locations
within the CNS, in particular the ventral region of the
neural tube, and migrate into the white matter of the CNS to
myelinate axons [136]. Oligodendrocytes are generated by
the proliferation and differentiation of oligodendrocyte
progenitors (OPs) [75]. There are multiple studies on the
modulation of oligodendrocyte function by nucleotides and
nucleosides [4, 5]. The effect of nucleotides and nucleo-
sides on cultured OPs varies between investigations,
possibly as a result of variations in culture conditions or
source of cells. OPs cultured from the forebrain of P1 rats
expressed P2X7 and P2Y1 as the main ionotropic and
metabotropic nucleotide receptors, respectively [4]. Their
activation induced intracellular Ca2+ transients. P2Y1

receptors were also expressed in NG2-positive OPs in P4
cerebral cortex and in the cerebellar granule cell layer. P2Y
receptor activation stimulated OP random motility and to a
lesser extent chemotaxis, inhibited the mitogenic response
of OPs to platelet-derived growth factor (PDGF) in both
purified and organotypic cultures, and promoted OP
differentiation. Migration and proliferation was also

inhibited by adenosine. Other studies invoke a significant
stimulation of OP migration by an A1 adenosine receptor
agonist [141].

It is interesting to note that the release of nucleotides and
nucleosides from electrically active axons was shown to
regulate proliferation and oligodendrocyte development.
OP cells cultured from embryonic rat brain were found to
express adenosine receptors that were activated in response
to action potential firing. Adenosine inhibited OP cell
proliferation and promoted the formation of myelin [176].
Adenosine thus appears to be a primary activity-dependent
signal promoting the differentiation of premyelinating
progenitor cells into myelinating oligodendrocytes.

Schwann cells

Most Schwann cells develop from the neural crest. Their
generation involves the formation of two intermediates, the
Schwann cell precursor and the immature Schwann cells,
originating during later embryonic development. In mature
nerves, individual large caliber axons are ensheathed by
myelinating Schwann cells, whereas bundles of small
caliber axons are loosely ensheathed by the nonmyelinat-
ing Schwann cells [96], whose sensitivity to purinergic
stimulation differs [112]. Similar to oligodendrocytes, ATP
and adenosine were found to act as axonally derived
signals mediating activity-dependent communication be-
tween neurons and premyelinating cultured mouse
Schwann cells, but their effect differed [174, 175]. ATP
was found to inhibit proliferation of cultured Schwann cells
(in contrast to astrocytes that are stimulated, see above) and
to arrest maturation before differentiation into either the
myelinating or nonmyelinating phenotypes, thus prevent-
ing the formation of myelin. For comparison, adenosine
also inhibited Schwann cell proliferation albeit through a
different mechanism than ATP. It did not, however, inhibit
Schwann cell differentiation and myelination [175].

Microglia

Microglial cells represent the immune effector cells of the
CNS. They are derived from mesenchymal precursors that
invade the brain during late embryogenesis and early
postnatal periods. Several studies have identified P2X and
P2Y receptors and a variety of functional responses in
cultured microglia [18, 91]. These include eliciting of Ca2+

transients, stimulating proliferation, inducing cell death via
activation of P2X7 receptors, or stimulating the release of
plasminogen, IL-1β, or tumor necrosis factor. ATP was
found to mediate rapid morphological responses in micro-
glia to brain injury in vivo [47] and ATP or ADP induced
chemotaxis via P2Y receptors in a microglial cell line [83].
A recent study has investigated the ontogenetic expression
of the microglial P2X receptors (P2X1, P2X4, and P2X7) by
immunocytochemistry in the rat brain [194]. These
receptors were identified on microglial cells from late
E16. The expression of individual P2X receptors varied
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between microglial subtype or functional state and tissue
location. At P30, microglial cells with P2X1 receptors had
disappeared and microglial cells with P2X7 receptor-
immunoreactivity were found to be widely distributed in
the forebrain, suggesting that the P2X7 receptor governs
the actions of ATP in the resting microglial cells.

Summary and outlook

Signaling pathways employing extracellular nucleotides
and adenosine are expressed early on during embryonic
development of the nervous system. The transient expres-
sion of defined receptor subtypes and of ectonucleotidases
implies that nucleotides and nucleosides affect stage-
specific developmental processes. Yet, much more needs to
be learned concerning the developmental onset of receptor
function and ectonucleotidase activity in specific cellular
settings. In several cases, the transient expression of P2
receptors suggests that nucleotidergic signaling is of even
greater functional significance during development than in
the adult nervous system. There is increasing evidence that
purinergic signaling has a direct impact on progenitor cell
proliferation, cell migration, neuronal and glial cellular
interaction and differentiation, and synaptic network
formation (Fig. 6).

Very little is presently known concerning sites, cell
types, and mechanisms of nucleotide release in the various
developmental settings. While it appears possible that
ubiquitous and constitutive nucleotide release becomes
relevant only when the appropriate receptors are expressed,
it is likely that regulated release also plays a significant
role. It is now becoming clear that nucleotide receptors can
induce a multiplicity of cellular signaling pathways and are
involved in multiple molecular interactions. A fascinating
possibility concerns the congruence and synergistic inter-
actions of multiple signaling pathways such as those of
growth factors, cytokines, and purines/pyrimidines. Pre-
conditioning via one pathway may increase the impact of
another. Thus, analyzing the functional role of single
signaling pathways on defined developmental processes

may fall short of identifying the relevance of multiple and
interactive signaling mechanisms in situ.

It can be anticipated that the focus on nucleotide
signaling in nervous system development will rapidly
broaden. Novel technical approaches are going to facilitate
the investigations. These include not only the analysis of
knockouts of specific components of the nucleotide
signaling pathways but also the knockdown of individual
proteins by cell-type specific viral transfection and RNA
interference, or the analysis of animals in which the
encoding gene can be inactivated or selectively induced in
specific tissues by genetic approaches. Transgenic mice
expressing fluorescent protein under the promoter of the
respective receptor or ectonucleotidase will greatly facil-
itate the identification of the expression pattern of
individual proteins during development. Purines may
have several functional roles; they may act as direct
functional switches or as mutual modulators or enhancers
of signaling pathways mediated by other agonists. The
examples provided show that nucleotides possess a broad
potential to control multiple developmental cues, alone or
together with other signaling substances.
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