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Abstract Hypoxia is a common pathophysiological
occurrence with a profound impact on the cellular
transcriptome. The consequences of hypoxia-induced or
hypoxia-repressed gene expression have important
implications in disease processes as diverse as tumour
development and chronic inflammation. While the hy-
poxia-inducible factor (HIF-1) plays a major role in
controlling the ubiquitous transcriptional response to
hypoxia, it is clear that a number of other transcription
factors are also activated either directly or indirectly. In
this review, we comprehensively discuss the transcription
factors that have been reported to be hypoxia-responsive
and the signalling mechanisms leading to their activa-
tion. Understanding such events will enhance our
understanding of cellular oxygen sensing.

Introduction

Cellular hypoxia occurs when the demand for molecular
oxygen necessary to generate ATP levels sufficient to
sustain normal physiologic function exceeds the vascular
supply. Tissue hypoxia can occur during a diverse array
of disease states including, but not limited to, vascular
disease, chronic inflammation and cancer. Because
molecular oxygen is the primary source of metabolic
energy for all eukaryotic cells, it is not surprising that
over the course of evolution we have developed the

capacity to respond to hypoxic insults with the tran-
scriptional up-regulation of genes that enhance tissue
perfusion and anaerobic ATP generation through gly-
colysis, an event mediated primarily through the hy-
poxia-inducible factors HIF-1 and HIF-2. Although,
primarily, a homeostatic response is directed at the
reestablishment of perfusion and tissue oxygenation, this
response may be maladaptive and contribute to tumour
survival. Gene array analysis has recently revealed sig-
nificant information regarding global transcriptomic
changes in response to hypoxia. These studies have re-
vealed that a significant cohort of alternatively regulated
genes that may contribute to hypoxia-induced pheno-
typic changes are also induced in hypoxia [55, 59]. To-
gether, these studies have demonstrated that hypoxia
has a profound effect on the cellular transcriptome, an
effect that is likely to be cell-type and cell-state specific.
The mechanism(s) by which cells sense hypoxia and
transduce this signal to the activation of transcriptional
regulators are areas of intense investigation, and current
theories include a direct role for oxygen-dependent
regulatory enzymes such as prolyl hydroxylases and a
role for the generation of reactive oxygen species (ROS).
In each case, it is likely that the mitochondria, as the
primary site of oxygen consumption, play a major role in
the signalling process. In this review, we discuss the
various transcription factors that have been demon-
strated to be hypoxia-responsive and contribute to the
complex transcriptional profile activated by this impor-
tant physiological and pathophysiological stimulus. It is
hoped that taking a global view of hypoxia-sensitive
transcription factors may shed light on a general
understanding of oxygen-sensing mechanisms.

Hypoxia-responsive transcription factors

HIF

The hypoxia-inducible factor (HIF) comprises the
heterodimeric transcription factors HIFa and HIFb of
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the Per-Arnt-Sim (PAS) family of basic helix-loop-helix
proteins [94]. These proteins bind to consensus DNA
binding motifs within regulatory promoter regions (hy-
poxia-responsive elements) of hypoxia-responsive genes.
HIF-1a is the most ubiquitously expressed and best
characterised of the family and is recognised as a master
regulator of hypoxic signalling [82]. HIF-2a is similar in
regulation to HIF-1a, but its expression is restricted to
certain cell types [24, 92]. HIF-3a is less well character-
ised but may act as an internal repressor of the HIF
system, given that a HIF-3a splice variant encodes IPAS
(inhibitor PAS domain protein) [58].

In general, activation of the HIF pathway leads to
the induction of an adaptive phenotype. Genes under
the control of HIF-1 include those involved in vaso-
dilatation (e.g. the inducible form of nitric oxide syn-
thase iNOS), glycolysis (e.g. glucose transporters
GLUT 1 and 3), angiogenesis (e.g. vascular endothelial
growth factor VEGF) and enhanced blood oxygenation
(e.g. erythropoietin, EPO) [80]. The expression of such
genes is of benefit in tissue survival and adaptation in
ischaemic disease. However, in cancer, HIF’s adaptive
role is subverted to a maladaptive state promoting
tumour growth, survival and chemotherapeutic resis-
tance [21, 34].

The molecular mechanisms whereby HIF-1 activation
occurs in hypoxia have been reviewed extensively else-
where [80]. Briefly, HIF-1a and HIF-2a are synthesised
constitutively but are targeted for degradation in the
presence of molecular oxygen by modification of oxy-
gen-dependent degradation domains within the HIF
protein. This is carried out by members of the 2-oxo-
glutarate-dependent dioxygenase superfamily, namely
the prolyl hydroxylases (PHD1, PHD2 and PHD3).
Hydroxylation of proline residues 402 and 564 of the a-
subunit of HIF-1 facilitates interaction with the von
Hippel-Lindau tumour suppressor, which targets HIFa
for proteasomal degradation. A second oxygen-depen-
dent transactivation domain is regulated in a similar
manner by the asparagine hydroxylase known as Factor
Inhibiting HIF (FIH) [57]. In hypoxia, oxygen-depen-
dent proline and asparagine hydroxylation are inhibited
and HIFa accumulates, translocates to the nucleus and
associates with co-activators to regulate transcription.
There HIFa binds to the constitutively expressed nuclear
protein HIFb (also known as the aryl hydrocarbon
receptor nuclear translocator; ARNT), docks with hy-
poxia-responsive elements (HREs) in target genes and
becomes transactivated.

Recent work has demonstrated an important role for
mitochondria in regulating HIF activation. In the steady
state (physiological normoxia), the mitochondria con-
sume approximately 90% of available oxygen in the
generation of ATP through oxidative phosphorylation
in order to meet the metabolic needs of the cell [73]. The
residual �10% is available to the cell for other processes
including HIF-1a and HIF-2a degradation. In hypoxia,
the mitochondria act like a sink, consuming most
available oxygen due to the high affinity of cytochrome c

oxidase for molecular oxygen [29]. Thus, there is insuf-
ficient oxygen available for HIF-1 hydroxylation by the
2-oxoglutartate-dependent dioxygenase enzymes (which
have a relatively high Km for oxygen) [35]. Inhibition of
respiration by nitric oxide (NO) (the endogenous
inhibitor of cytochrome c oxidase) in hypoxia can de-
stabilise HIF-1a via redistribution of available oxygen to
the cytosol [31]. Thus, HIF-1/2 represent truly oxygen-
dependent transcription factors. An alternative model of
oxygen sensing involving mitochondrial production of
ROS in hypoxia has also been proposed [12]. In this
model, it is hypothesised that a paradoxical increase in
mitochondrial ROS production at Complex III of the
electron transport chain leads to HIF-1 activation [13].
However, the molecular target for ROS which leads to
HIF-1 stabilisation has yet to be found.

NFjB

Nuclear factor kappa-B (NFjB) has been studied
extensively for its roles in innate immunity, stress re-
sponses and cell survival and development and is
thought to be a central transcriptional mediator of the
inflammatory response [18]. The family of NFjB tran-
scription factors comprise proteins with a highly con-
served Rel homology (RH) domain. There are five
members of this family: p65, cRel and RelB, which
represent the transcriptionally active members and p50
and p52, which are derived from the longer proteins
p105 and p100 respectively. The NFjB family of pro-
teins can either homodimerise or heterodimerise to form
transcriptional complexes. The most common active
dimer complex is that of p50-p65 [18].

NFjB is bound to the repressor molecule IjB in the
cytosol in the absence of stimulus. This coupling of
proteins masks the nuclear localisation sequence (NLS)
of NFjB and sequesters the protein in the cytosolic
compartment. Upon stimulation, IjB is targeted for
ubiqutination and degradation by specific serine phos-
phorylation. The NLS of NFjB is then exposed, and
NFjB translocates to the nucleus where it carries out its
transcriptional activity at specific jB sites within the
promoter regions of target genes [18]. A more dynamic
role for both NFjB and IjB localisation and shuttling
has also been proposed [6]. NFjB-responsive genes in-
clude those responsible for encoding inflammatory
cytokines, chemokines and cell surface adhesion mole-
cules. A wide variety of stimuli can initiate NFjB, for
example, proinflammatory cytokines, bacterial products
and ultraviolet light. The convergence point for these
disparate stimuli seems to be at the level of the I j-B
kinases (IKKs) which are upstream of IjB phosphory-
lation [18].

Hypoxia has been demonstrated to activate NFjB in
a number of studies [15, 47, 54, 60, 78, 89], however, the
signalling mechanism leading to this remains unclear.
Target genes for hypoxia-induced NFjB include cyclo-
oxygenase-2 (COX-2), tumour necrosis factor a (TNFa),

364



interleukin-6 (IL-6) and macrophage inflammatory
protein-2 (MIP-2). Tyrosine phosphorylation of IjB [47]
by the Ras/Raf kinases downstream from Src has been
implicated as a mechanism of NFjB activation in hy-
poxia [48]. Another model proposes that mitochondria-
derived ROS generation in hypoxia may be responsible
for NFjB activation [15]. In addition, Zampetaki et al.
[105] have demonstrated that hypoxia-induced transac-
tivation is mediated by p42/44 and PI-3-kinase. In
summary, while it is clear that NFjB is a hypoxia-
responsive transcription factor, multiple specific mech-
anism(s) of activation may exist.

CREB

The cyclic AMP response element binding protein
(CREB) is one of a family of leucine zipper transcription
factors regulated by intracellular signalling mechanisms
such as cAMP and Ca2+. CREB regulates the expres-
sion of a diverse array of genes including those involved
in inflammation, metabolism and signal transduction.
CREB generally acts as an activator of transcription in a
manner mediated through phosphorylation of Ser 133
by protein kinase A (PKA) or calmodulin (CaM) kinase
[61]. However, in some cases, CREB may act as a
repressor of gene transcription [25]. Recently, it has been
demonstrated that CREB-dependent gene expression is
altered in response to hypoxia in vitro and in ischaemic
disease in vivo.

Acute mild hypoxia in neuronal cells activates CREB
through phosphorylation at serine 133 [5]. In an intes-
tinal epithelial cell model, more severe hypoxia results in
the phosphorylation-dependent targeting of CREB to
ubiquitin-mediated degradation, an event mediated
through decreased activity of protein phosphatase 1c
[90]. This event leads to derepression of inflammatory
gene expression and thus contribute to inflammatory
processes. Interestingly, more prolonged exposure to
severe hypoxia results in CREB stabilisation and a res-
olution of inflammatory gene expression through small
ubiqutin-related modifier-1 (SUMO-1) modification
[20]. Thus, CREB-dependent gene expression is depen-
dent upon the extent and degree of stimulus.

AP-1

Activating protein-1 (AP-1) is a pleiotropic, dimeric
transcription factor involved in diverse cellular functions
related to apoptosis, cell proliferation, cell differentia-
tion, catecholamine biosynthesis, inflammation, xeno-
biotic metabolism, tumour invasion and angiogenesis
[83]. AP-1 comprises members of Fos, Jun, ATF (acti-
vating transcription factors) and MAF (musculoapo-
neurotic fibrosarcoma) protein families that can
homodimerise or heterodimerise to form the active AP-1
complex that modulates gene expression. The combi-
natorial complexing of these discrete proteins provides

multiple levels of gene expression control. In addition,
cell type and differentiation state can dictate the
phenotypic outcome, accounting at least in part for how
AP-1 can regulate apparently conflicting endpoints
such as apoptosis and cell proliferation [62]. AP-1 can
be activated by growth factors, pro-inflammatory
cytokines, UV radiation and hypoxia. The AP-1
family members have been reviewed extensively [3, 23,
42, 62, 83].

Hypoxia has been shown to activate AP-1 and
mediate alterations in gene expression. Genes regulated
at least partially by AP-1 in hypoxia include tyrosine
hydroxylase [65], VEGF [74], and endothelial NOS
(eNOS) [36]. AP-1 co-operates with other transcription
factors such as HIF-1, GATA-2, NF-1 and NFjB to
complement the activation of hypoxia-sensitive genes
[65, 74, 84, 97]. Thus, AP-1 may represent an important
facilitator of hypoxia-induced gene expression through
interaction with other transcription factors.

The mechanism by which AP-1 is activated in hy-
poxia has yet to be fully elucidated. However, it appears
to be mediated at least in part via a Jun N-terminal
kinase (JNK)-dependent pathway [66]. The oxygen-
sensing mechanism upstream of JNK remains unclear.
AP-1 is a redox-sensitive transcription factor and it has
been suggested that hypoxia alters cellular metabolism
and consequently the redox environment in the cell, thus
favouring AP-1-mediated transcriptional activation [36].
This is likely to be a complex process, given AP-1’s
apparent activation by oxidants [36] and anti-oxidants
alike [63]. Another signalling mechanism proposed is
hypoxia-induced modulation of intracellular Ca2+ levels
upstream of AP-1 activation [27, 65, 71, 74]. This
increase is thought to activate AP-1 independently of
HIF. Other reports demonstrate a role for non-receptor
tyrosine kinases in propagating the hypoxic signal
from G protein-coupled receptors based on results
implicating a role for Src (non-receptor tyrosine kinase)
and Ras [71].

p53

p53 is a tetrameric transcription factor involved in cell-
cycle arrest and apoptosis. It is responsible for the
induction of a number of pro-apoptotic genes including
Bax, Bid, PUMA and Apaf-1 (apoptotic protease acti-
vating factor-1) [86]. It has a number of triggers
including UV light, X-irradiation, DNA damage, low
extracellular pH, hypoxia and heat shock [1]. p53 is the
most frequently mutated gene in cancer, with over 50%
of tumours exhibiting a mutation. p53 has a short half-
life and is usually targeted for degradation by MDM2, a
ubiquitin ligase that competes for p53’s DNA binding
sequence and co-activators [104].

HIF-1a can bind to MDM2 both in vitro and in vivo
resulting in p53 stabilisation [2, 17]. A direct interaction
between p53 and HIF-1-derived fragments has also been
reported [33], although this interaction is controversial

365



[32, 95]. In addition, p53 has been shown to promote
MDM2-mediated ubiquitination and subsequent prote-
asomal degradation of HIF-1a [72].Further interactions
can occur at the level of competition for the shared co-
activator p300 [72, 79]. The nature of the HIF-1a-p53
interaction is dependent on the phosphorylation status
of HIF-1a, with dephosphorylated HIF-1a deviating
from classical HIF-1 signalling and binding to p53 [87].
MDM2 expression is increased in hypoxia in a HIF-1-
independent manner [107], although it has also been
demonstrated to be decreased in hypoxia [2]. Thus, the
complex interactions between HIF-1a and p53 are
important considerations particularly in the hypoxic
environment of the tumour. Hypoxia can contribute to
the metastatic potential of tumours by modulating
MDM2 and p53, whilst mutated p53 can contribute to
the angiogenic switch by the amplification of normal
HIF-1a responses.

In an interesting caveat, recent studies have indicated
that neither hypoxia nor anoxia alone are sufficient to
drive p53 accumulation and that glucose deprivation
and acidosis secondary to hypoxia are essential co-inci-
dental events [70]. Furthermore, ROS have also been
reported to be involved in p53 regulation in hypoxia [16].

SP-1 and SP-3

SP1 and SP3 are ubiquitous transcription factors of the
Sp/XKLF transcription factor family that are involved
in basal transcription and housekeeping gene expression
[75]. They have identical sequence binding motifs, but
can display differential activity including parallel or
divergent activity, depending on the promoter. Levels of
SP1 are regulated to an extent by mRNA expression, but
further regulation can be imposed by proteasomal deg-
radation, for example, in response to nutrient starvation
and adenylate cyclase stimulation [8].

Several classically hypoxia-responsive genes such as
EPO and VEGF have SP1/SP3 binding sites within
promoter regions that are thought to facilitate tran-
scriptional activation [51, 77]. COX-2 is also hypoxia-
responsive. In an experiment investigating SP1 and SP3
involvement in COX-2 expression, hypoxia increased
nuclear localisation of SP1 but didn’t change SP3 levels
[96]. In a separate study, decreased binding of SP1 to the
UDP-glucose dehydrogenase (UGDH) promoter oc-
curred following hypoxic exposure [7]. A further study
has reported progressively decreased SP3 expression and
DNA binding to a glycolytic gene promoter in hypoxia.
SP1 levels remained unchanged in this study [22]. In
addition, several studies have hypothesised the involve-
ment of SP1 in facilitating promoter activation in hy-
poxia [51, 53, 64]. Kaluz et al. [44] have reported a novel
hypoxia-responsive enhancer for carbonic anhydrase IX.
This gene is activated differentially in mild and severe
hypoxia, SP1/SP3 being absolutely required in mild
hypoxia, while SP1/SP3 significantly up-regulates the

predominantly HIF-1-mediated hypoxic induction in
severe hypoxia. SP1 also interacts with Smad3 when the
TGFb pathway is active to facilitate full hypoxic
inducibility of EPO [77].

While the signalling mechanisms leading to hypoxia-
induced SP1/SP3 activity remain unknown, SP1 has
been reported to be redox-sensitive [50]. However, no
role for this signalling pathway has been reported for
SP1/SP3 in hypoxia.

Egr-1

Early growth response-1 (Egr-1) is a zinc finger tran-
scription factor involved in a number of early responses to
a variety of stimuli including growth factors, hormones,
neurotransmitters and hypoxia. Egr-1 binds with high
affinity to a consensus DNA element to modulate the
expression of genes involved in synaptic plasticity, cell
growth and survival, extracellularmatrix remodelling and
thrombosis [91]. The latter functions are of particular
interest in relation to hypoxia-induced Egr-1 expression.
Egr-1 nuclear localisation is enhanced under the condi-
tions of hypoxia. This binding has been found to be nec-
essary for hypoxic induction of the pro-coagulant tissue
factor using experiments involving Egr-1 null mice. In
addition, Egr-1 activation in hypoxia is independent of
HIF [103]. Further studies have confirmed that the in-
crease in Egr-1 reflects de novo biosynthesis [100] and
several groups have reported an increase in Egr-1message
and/or protein under conditions of hypoxia [4, 41, 68,
100].Up-regulation of Egr-1 is dependent upon the degree
and severity of hypoxia [98]. Dissection of the molecular
events upstream of Egr-1 activation has led to the iden-
tification of members of the protein kinase C (PKC)
family as crucial triggers in hypoxia-induced Egr-1
activity and subsequent gene expression. PKCb null mice
reveal markedly decreased Egr-1 levels in response to
hypoxia [99]. Furthermore, PKCa is implicated in Egr-1
gene induction in endothelial cells in hypoxia. Ras/Raf/
ERK1/2 are active downstream from PKCa in this model
[56]. Hypoxia-induced Egr-1 is an important regulatory
event in contributing to the pathogenesis of pulmonary
thrombosis and vascular remodelling [81, 101].

NF-IL6/ C/EBPb

NF-IL6 (nuclear factor for interleukin 6) is a member of
the C/EBP (CCAAT/enhancer-binding protein) family
of transcription factors and is also known as C/EBPb.Its
expression can be regulated transcriptionally and post-
transcriptionally, with the Cepb gene being translated
into multiple protein isoforms [30]. It is capable of di-
merisation with several transcription factors of different
origin including CREB, Fos and Jun. NF-IL6 harbours
a negative regulatory domain that hampers full activa-
tion. Phosphorlyation of NF-IL6 releases this constraint
and allows transactivation. This phosphorylation can be
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mediated by a number of different kinases including:
PKA, CaM kinase (CaMK), mitogen-activated protein
kinase (MAPK) and PKC. NF-IL6 has a number of
important physiological roles in mammary gland
development and regulation of the anti-inflammatory
cytokine IL-6. Stimulation of NF-IL6 has been dem-
onstrated in response to inflammatory agents such as
phorbol myristate acetate (PMA), lipopolysaccharide
(LPS), IL-6 and interferon-c (IFNc), in addition to
hormones and hypoxia [88].

In an hypoxic inflammatory environment, NF-IL6
plays a central role in IL-6 production, which may in
turn contribute to the attenuation of the pro-inflam-
matory phenotype [81]. mRNA levels of IL-6 increase in
endothelial cells in response to hypoxia. Supershift
analysis of the nuclear binding has revealed enhanced
binding by NF-IL6 [102] and similar trends are seen in
cardiac myocytes exposed to hypoxia, where NF-IL6 co-
operates with NFjB in the production of IL-6. There is
a definite degree of cell specificity for these responses as
fibroblasts fail to yield the same responses [60]. Thus,
there is strong evidence for NF-IL6’s role in IL-6 regu-
lation in hypoxia. This is most likely triggered through
one of the kinase cascades upstream from NF-IL6
activation.

Other transcription factors

Limited work has been published on other transcription
factors reportedly involved in transcriptomic responses
to hypoxia. For completeness, these are outlined below.

Related transcriptional enhancer factor-1 (RTEF-1)
is a member of the TEF-1 family that can regulate gene
expression particularly in cardiac and skeletal muscle
cells. RTEF-1 is up-regulated in hypoxic endothelial
cells and may modulate VEGF transcription through
binding to an SP-1 site in the promoter region [85].

GATA-2 has been associated with negative regula-
tion of cytokine-induced EPO gene transcription [49].
This finding is supported by the evidence that EPO
mRNA is stimulated in the presence of an antisense
oliogonucleotide for the GATA element regardless of
the EPO stimulus [37]. The first evidence for the role of
GATA factors in hypoxia was the demonstration that
GATA-2 interacts physically with other transcription
factors (HIF-1, AP-1 and p300/CBP) and is necessary
for full expression of the endothelin-1 gene. However,
hypoxia does not affect the relative abundance or
binding activity of GATA-2 [97]. Mouse GATA-2 also
inhibits a hypoxia-induced EPO-luciferase reporter
construct in the mouse [38].

The signal transducers and activators of transcription
(STAT) family of transcription factors are activated by
phosphorylation on tyrosine residues in response to a
variety of stimuli including cytokines and hypoxia.
STAT5 is phosphorylated under the conditions of hy-
poxia resulting in increased binding to the b-casein gene
promoter [43].

Mammalian achaete-scute homologous protein-2
(Mash-2) is involved in placental trophoblast develop-
ment. Elevated cytoplasmic levels of Mash-2 have been
observed in hypoxic trophoblasts and are decreased in
normoxia [40]. Another study reports that hypoxia-in-
duced inhibition of aromatase expression is governed by
Mash-2 [39].

Growth arrest and DNA damage-153 (GADD153/
CHOP-10) is a pro-apoptotic transcription factor that
can be activated by hypoxia. GADD153 mRNA levels
increase in response to hypoxia independently of HIF-1
[11]. Calcium channel blockade, G protein inhibition
and PKC down-regulation abrogate hypoxia-induced
GADD153 expression without affecting basal
GADD153 expression in pulmonary artery smooth
muscle cells while antioxidants have no effect [19].
However, in adipocytes, hypoxia-induced mitochondrial
ROS are thought to be the signal for increased
GADD153 expression and antioxidants partially pre-
vent hypoxic induction of GADD153 in this study [11].
Interestingly, a recent communication has reported an-
oxia-specific induction of GADD153 in human cancer
cells, which is not seen in hypoxia. Clearly the oxygen-
sensing mechanism leading to GADD153 activation has
yet to be fully described.

A number of transcription factors are activated
downstream of HIF-1. DEC1 (differentially expressed in
chondrocytes 1) [STRA13 (stimulated with retinoic acid
13), SHARP2 (enhancer-of-split and hairy-related pro-
tein 2)] and DEC2 are hypoxia-inducible transcription
factors that are HIF-1-dependent [67]. ETS1 is a hy-
poxia-inducible transcription factor that has been shown
to be HIF-1-dependent. ETS1 plays a role in cancer
invasion and angiogenesis [69].

The Smad signalling pathway has recently been
shown to interact with HIF-1 for the induction of hy-
poxia-responsive genes such as VEGF, EPO and trans-
forming growth factor-b2 (TGFb 2) [76, 77, 106].
Physical interaction between Smad3 and HIF has been
confirmed by co-immunoprecipitation studies [76].
Exposure of human vascular endothelial cells (HU-
VECs) to hypoxia results in phosphorylation and nu-
clear transportation of Smad2 and Smad3 proteins as
well as in stimulation of transcriptional activities of
Smad3 and HIF-1a [106]. In addition, under conditions
of hypoxia, co-operative binding of Smad3/4 with HIF-1
occurs in the EPO gene. This synergetic interaction only
occurs, however, when the TGFb signalling pathway is
mediating cross-talk between SP1 and HIF-1 via Smad3
[77]. Thus, Smad proteins can modulate hypoxic re-
sponses actively when TGFb signalling is active.

Discussion

In summary, hypoxia activates a diverse array of
transcription factors and thus has a profound impact on
the cellular transcriptome (Figure 1). A number of
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complexities exist which determine the PO2 at which a
cell perceives hypoxia, primarily the cellular oxygen
demand as determined by metabolic activity and the
cellular levels of the endogenous inhibitor of respiration,
NO. Because of these issues, it is likely that the degree
and nature of the global transcriptomic response to
hypoxia in vivo is both cell-type and cell-state specific. In
general, however, the HIF pathway is ubiquitous and
represents a truly oxygen-dependent transcription factor
as a result of the absolute dependency of proline/
asparagine hydroxylation modification on molecular
oxygen availability.

The mechanism of hypoxia-sensing that signals to
other hypoxia-responsive transcription factors remains
less clear. A number of such transcription factors are
responsive to alterations in cellular redox potential.
Furthermore, ROS have been implicated in their acti-
vation under conditions of hypoxia [12–15, 46]. How-
ever, significant controversy still exists as to whether
significant increases in ROS occur in hypoxia, with a
number of studies reporting a positive correlation [12–
15, 46] while others report a negative correlation [9, 26,
28, 45, 93]. Hypoxia can also alter classical signalling
pathways such as intracellular cAMP and calcium levels.
In addition, signalling kinases outlined above and re-
ported to be activated in hypoxia include PKA, PKC,
CaMK, JNK, Src, p38 and p42/44. Thus, while HIF is a
major factor in determining the cellular response to
hypoxia, a significant number of secondary pathways
may modulate the global transcriptomic response. Fur-
thermore, given the diverse array of transcription factors
activated, it is likely that a number of signalling path-
ways may be induced as a cell undergoes the transition
from normoxia to hypoxia. It is also likely that the de-
gree and extent of exposure to hypoxia along with cel-
lular oxygen demand will dictate the primary signalling
pathways activated in a given hypoxic circumstance.
Thus, the transcriptional outcome of hypoxia probably
depends on the degree of hypoxia experienced and the

cellular requirement for oxygen. Further studies are re-
quired to determine the series of signalling events as a
cell undergoes the transition from normoxia to mild,
moderate, severe and lethal hypoxia.

In conclusion, it is becoming clear that the mito-
chondria, as the primary site of oxygen consumption
and ROS production, play a pivotal role in oxygen
sensing. ATP depletion, not outlined in this review,
which also occurs during hypoxia, can activate the AMP
kinase pathway, leading to alterations in transcription
[52]. In all likelihood, the signalling pathways outlined in
this review will interact to mediate the global cellular
transcriptomic response to hypoxia.
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