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Abstract The sodium-hydrogen exchanger 3 (NHE3)
isoform is the major regulated sodium transporter in the
proximal convoluted tubule of the kidney. Study of the
regulation of NHE3 by hormonal stimuli has identified a
number of PDZ adaptor proteins that form an apical/
subapical membrane scaffold that binds NHE3 and
facilitates down-regulation of its activity in response to
cAMP and activation of protein kinase A. The precise
relation of proximal tubule adaptor proteins such as
sodium-hydrogen exchanger regulatory factor-1
(NHERF-1), NHERF-2, and PDZ domain-containing-
protein-1 (PDZK1) with each other and with protein
targets such as NHE3 has been evolving with the
development of specific reagents and genetically altered
animals. In this review, we trace the discovery of
NHERF-1 and NHERF-2, and update our current
understanding of the relation between these proteins and
the regulation and trafficking of NHE3.
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Introduction

The cloning of the brush border membrane (BBM) so-
dium-hydrogen exchanger isoform 3 (NHE3) was a
seminal advance in the understanding of how sodium
reabsorption and hydrogen ion secretion are regulated in
the renal proximal convoluted tubule. The discovery of
the NHE regulatory factor-1 (NHERF-1) was linked
intimately to the quest to understand the hormonal
regulation of NHE3 and, while NHERF-1 and the re-
lated NHERF-2 protein have now been linked to many
biologic processes in the kidney and other organs, the
relation between the NHERF proteins and NHE3 is the
most advanced and best characterized. In this review, we
will relate our own initial attempts to isolate the
molecular determinants that regulate NHE3 and the
discovery of NHERF as a by-product of these experi-
ments. We will then extend this narrative to describe our
current knowledge of the role of the NHERF proteins in
the short- and long-term regulation of NHE3.

NHE and the renal tubular reabsorption of sodium
and bicarbonate

Pitts was among the first to note that filtered bicarbon-
ate was reabsorbed completely in the nephron and
postulated the presence of a sodium for hydrogen ex-
change mechanism [1]. Some 20 years later Aronson and
co-workers, and Murer and colleagues provided inde-
pendent characterization of this transporter using iso-
lated renal BBM vesicles [2, 3]. Elegant studies from
these and other laboratories have described the kinetics
and coupling ratios as well as providing a fundamental
description of factors that regulate NHE activity in the
renal proximal tubule [4–8]. This transporter is respon-
sible for the reabsorption of up to 1/3 of the filtered load
of sodium in the renal proximal tubule and for the
titration and subsequent return of nearly all the filtered
bicarbonate to the systemic circulation. Quite remark-
ably for a transporter designed for bulk reabsorption,
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NHE3 activity is regulated tightly by a variety of hor-
mones including a- and b-adrenergic stimuli, dopamine,
parathyroid hormone, angiotensin II, and prostaglan-
dins, and its activity is altered in animal models of acid-
base disorders [9, 10]. By the late 1980s, there was
growing interest in knowing the structure of NHEs,
which had been implicated in a variety of cell processes
including cell growth, cancer, and hypertension [8, 10].
Early attempts to purify NHE from the kidney using
affinity chromatography and ligands such as amiloride,
while initially promising, were ultimately unsuccessful
[11, 12].

Attempts to isolate the cAMP-inhibited renal BBM NHE

In 1987, we reported results of in-situ renal proximal
tubule microperfusion experiments examining the effect
of cAMP on water and sodium reabsorption in rats [13].
As found previously by others, cAMP inhibits proximal
tubule sodium transport [14–16]. What was unique
about our experiments was the lack of organic solutes in
the solution perfused through the proximal tubule such
that under the conditions of the experiments, only NHE
was likely to be operative in mediating sodium and water
reabsorption. We reasoned that cAMP, by activating
protein kinase A (PKA), might promote phosphoryla-
tion of the apical membrane NHE and that identifica-
tion of the PKA substrates in the apical membrane
might lead to isolation of the cAMP-regulated trans-
porter [17]. Although the thesis that PKA-mediated
phosphorylation of NHE3 might inhibit its activity
eventually proved correct, our reasoning at the time of
these studies now appears rather naı̈ve [18–22].

To identify the PKA substrates in the apical mem-
brane of the rabbit renal proximal tubule, BBM were
harvested and the vesicles rendered permeable to PKA,
ATP, and magnesium using hypotonic shock. SDS-
PAGE and autoradiography demonstrated nearly 20
polypeptides that are clearly phosphorylated by PKA in
vitro in a time frame consistent with the physiological
response, i.e., inhibition of NHE activity (Fig. 1) [23].
These studies highlighted the promiscuous nature of
PKA-mediated phosphorylation of BBM proteins and
the recognition that the potential NHE3 candidate
polypeptides were far too numerous to analyze effec-
tively. To reduce the number of candidate phospho-
proteins, we elected to fractionate the solubilized BBM
proteins and to develop a functional assay whereby these
fractions could be incorporated into artificial lipid
membranes and assayed for pH-dependent sodium up-
take [24]. Solubilization and reconstitution of the renal
BBM NHE, however, proved difficult and required
many experiments to test various combinations of
detergents and lipid constituents. While we were
addressing these technical issues, Sardet and co-workers,
using a more direct approach employing a negatively
selected fibroblast cell line that lacks NHE activity
(PS120 cells), cloned the first member of the NHE

family, NHE1 [25]. Shortly thereafter, several other
members of the NHE family were cloned using a
homology based strategy. Among these was NHE3, the
epithelial isoform found in the BBM of the renal prox-
imal tubule [26, 27].

Although NHE3 had now been identified, we con-
tinued our experiments and eventually developed an in
vitro NHE assay using the detergent octyl glucoside and
soybean phospholipid liposomes. As shown in Fig. 2,
PKA-mediated phosphorylation of freshly prepared
BBM proteins inhibits NHE activity, indicating that the

Fig. 1 The phosphorylation of renal brush border membrane
(BBM) proteins by protein kinase A (PKA). Rabbit BBM were
incubated with [32-P]-ATP and magnesium in the absence (Control)
or presence of PKA (or cAMP). Proteins were resolved by SDS-
PAGE and the phosphoproteins detected by autoradiography
(adapted from [23])

Fig. 2 The effect of protein kinase A on Na+-H+-exchanger-3
(NHE3) activity using solubilized renal BBM proteins. Freshly
prepared detergent solubilized rabbit BBM proteins were studied
under control conditions or after limited trypsin digestion. Proteins
were then incubated in ATP and magnesium in the absence (Basal)
or presence of the catalytic subunit of PKA and NHE activity
assayed after reconstitution into soy bean phospholipids vesicles
(adapted from [29])
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assay was functional and consistent with in vivo findings
[28]. However, very early in these studies, we noted that
freezing and thawing the solubilized BBM proteins re-
sulted in equivalent or increased basal NHE transport
activity but complete loss of PKA regulation. We envi-
sioned that the freezing and thawing resulted in partial
proteolysis of NHE3 that abrogated PKA-mediated
phosphorylation and inhibition of activity. This specu-
lation was supported by our subsequent studies that
used limited trypsin digestion of solubilized BBM pro-
teins to reproduce the effects of freezing and thawing,
namely equivalent or enhance basal NHE activity with
complete loss of PKA regulation [29].

Isolation and cloning of NHERF-1

The dissociation of basal NHE activity from PKA reg-
ulation by limited trypsin digestion provided a repro-
ducible assay for analyzing the cellular factors that
regulated NHE3. We believed initially that limited
exposure to trypsin abolished a critical phosphorylation
site on NHE3, but soon recognized the alternative pos-
sibility that trypsin may digest a key regulatory protein
or proteins present in the solubilized BBM protein
mixture. Thus, we proceeded to fractionate freshly sol-
ubilized BBM proteins using a combination of gel fil-
tration and ion exchange chromatography to isolate a
fraction that has no intrinsic NHE activity when incor-
porated into lipid vesicles, but restores the inhibitory
effect of PKA when combined with the trypsin-treated
BBM proteins [30]. We called this fraction the Na-H

exchanger regulatory factor (NHERF). This doubly
extracted protein fraction contained one major phos-
phoprotein of approximately 55 kDa. Subsequent stud-
ies elucidated the N-terminal sequence of this
polypeptide and, by using an appropriate oligonucleo-
tide probe, we cloned the full-length NHERF cDNA
from a rabbit kidney library [31]. Bacterially expressed
recombinant NHERF protein was assayed in reconsti-
tuted proteoliposomes containing solubilized trypsinized
BBM proteins and provided clear evidence that the
single polypeptide, NHERF, restores the inhibitory ef-
fect of PKA on NHE activity [32]. In collaboration with
Donowitz, Yun and others, we also co-expressed
NHERF with NHE3 in PS120 fibroblasts and estab-
lished that NHERF is not required for basal NHE
activity, but is essential for cAMP-mediated inhibition
of this transporter (Fig. 3) [33].

Discovery of NHERF-2 and the structure of the NHERF
family of adaptor proteins

NHE3 kinase-A regulatory protein (E3KARP, later re-
named NHERF-2) was identified as a protein interacting
with the C-terminus of NHE3 in a yeast 2-hybrid screen
[33]. We had noted previously that NHERF (now re-
named NHERF-1) has two repeat sequences of
approximately 100 amino acids and we had postulated
that these domains might represent protein binding do-
mains [31]. By the time NHERF-2 was identified, these
domains were recognized as PSD-95/Discs large/ZO-1
(PDZ homology) protein interaction domains (Fig. 4).

Fig. 3 The role of sodium-
hydrogen exchanger regulatory
factor-1 (NHERF-1) and
NHERF-2 in cAMP regulation
of NHE3 activity in
PS120 cells. NHE activity was
assayed in PS120 cells
expressing rabbit NHE3 alone
(right panels) or co-expressing
NHERF-1 (top left panel) or
NHERF-2 (bottom left panel).
Studies were performed in the
absence or presence of cAMP
(adapted from [33])
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NHERF-2, like NHERF-1, contains two tandem PDZ
domains and, when co-expressed with NHE3 in PS120
cells, mediates cAMP inhibition of NHE3 activity
(Fig. 3) [33]. Bretscher and colleagues independently
cloned human NHERF-1 [called ezrin binding protein
of 50 kDa, (EBP50)] by its interaction with conserved
N-terminal sequences in the ezrin, radixin, and moesin
(ERM) family of cytoskeletal-binding proteins [34]. The
C-terminus of NHERF-2 also contains an ERM binding
domain.

NHERF-1 and NHERF-2 represent distinct gene
products and share only 40–50% overall amino acid
identity. A key difference between these two proteins is
that NHERF-1 is a phosphoprotein in mammalian cells,
whereas NHERF-2 is not [32]. To date, at least six dis-
tinct phosphorylation sites have been identified in
NHERF-1 although the physiological role of these
covalent modifications, and the identity of the relevant
protein kinases and phosphatases, remain unknown [35].

NHERF-1, NHERF-2, and NHE3 regulation

Biochemical studies in PS120 cells established that the
NHERF proteins bound both NHE3 and ezrin leading
to the model shown in Fig. 5 [36–38]. We proposed that
NHERF-1 and/or NHERF-2 link(s) NHE3 to the actin
cytoskeleton through ezrin, thus forming a multi-protein
complex. This preassembled signaling complex is not
influenced by changes in cAMP, but is necessary to
transduce the cAMP signals that inhibit NHE3. Addi-
tional experiments established that ezrin functions as a
PKA anchoring protein and that the ERM domain of
NHERF is critical in mediating cAMP phosphorylation
of NHE3 and inhibition of NHE3 activity [39–42]. From
numerous experiments, we concluded initially that in
cells which expressed both proteins, NHERF-1 and
NHERF-2 represents a redundant control mechanism
for mediating the hormonal control of NHE3.

Understanding the physiological role of NHERF
proteins and NHE3 took on added complexity with the
discovery that both NHERF proteins have numerous
cellular targets, including transporters and ion channels,
hormone and growth factor receptors, signaling pro-
teins, scaffolding proteins, and transcription factors [35,
43]. Many of these NHERF targets are known to, or

have the potential to, influence the regulation of NHE3.
The hormones PTH, and dopamine activate multiple
signaling pathways, but cAMP-mediated phosphoryla-
tion of NHE3, mediated by its association with the
NHERF proteins, appears to be central for the inhibi-
tory effect of these hormones on NHE3 activity and the
reabsorption of sodium, bicarbonate, and water in the
renal proximal tubule [21, 22]. The model that has
emerged is that NHERF scaffolds the ezrin-PKA com-
plex in proximity to NHE3 to facilitate the phosphory-
lation of specific C-terminal serine residues on NHE3
and the down-regulation of its transport activity [44]. By
contrast, b2-adrenergic agonists, which also elevate
cAMP levels in the renal proximal, stimulate rather than
inhibit NHE3 activity [45]. This apparent contradiction
was resolved with the findings that NHE3 interacts
predominantly with the PDZ II domain of NHERF-1,
while the b2-adrenergic receptor interacts with the PDZ I
domain in an agonist-dependent manner [46]. When the
agonist-occupied b2-adrenergic receptor engages
NHERF-1, it disrupts the association of NHERF-1 with
NHE3, thereby stimulating NHE3 activity despite the
intracellular generation of cAMP. This scenario differs
from the interaction of NHERF with the cystic fibrosis
transmembrane regulator (CFTR), where two CFTR
proteins engage each of the PDZ domains in a single
NHERF-1 molecule, resulting in more effective chloride
transport [47]. These paradigms highlight the diversity of
NHERF-1 as a regulator of multiple physiologic events
that may, at least in part, be dictated by the stoichi-
ometry of protein binding and the subcellular localiza-
tion of the proteins, both of which may be subject to
dynamic regulation within the cell.

Cellular distribution of NHERF-1 and NHERF-2

Critical for the understanding of the biological roles of
the two NHERF proteins in the mammalian kidney is

Fig. 4 The domain structure of NHERF-1 (synonym: ezrin binding
protein of 50 kDa EBP50) and NHERF-2 (synonym: NHE3
kinase-A regulatory protein E3KARP). Domain structure of
NHERF-1 and NHERF-2 indicating the presence of tandem
PSD-95/Discs large/ZO-1 (PDZ) domains and a C-terminal ezrin-
radixin-moesin-merlin (MERM) binding domain in both proteins

Fig. 5 Proposed model of the assembly of a multi-protein complex
of NHE3, NHERF, ezrin, actin, and protein kinase A (adapted
from [64])
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knowledge of their cellular distribution. Using mono-
specific antibodies against NHERF-1 and NHERF-2,
we have demonstrated that the rat proximal tubule ex-
presses only NHERF-1 that co-localizes with NHE3 at
the apical membrane [48]. NHERF-2 is present in the
glomerulus, peritubular capillaries and descending vasa
recta, and in specific distal tubule cells but is not de-
tected in proximal tubule cells. OK cells, a proximal
tubule cell line, also express only NHERF-1. Thus, de-
spite the apparent redundancy in function of NHERF-1
and NHERF-2 as regulators of NHE3 in model PS120
cells, our data suggested that only NHERF-1 is localized
appropriately to function as a biologic regulator of
NHE3. As our studies continued, however, we noted
that in contrast to rat, the proximal tubule of man,
mouse, and possibly rabbit, expresses both NHERF-1
and NHERF-2 [49, 50]. Figure 6 represents a confocal
microscopy image of proximal tubules from wild-type
mice. NHERF-1 distributes to the microvillus and co-
localizes with NHE3 and Npt2a, the major sodium-
dependent phosphate transporter in the proximal tubule
[49]. On the other hand, NHERF-2 is located predom-
inantly in a submicrovillar region. These findings again
raised significant questions about the ability of both
NHERF proteins to regulate common events such as the
hormonal control of NHE3 and suggested, at least
indirectly, distinct roles for the two NHERF isoforms in
the mammalian kidney.

Development of the NHERF-1 null mouse

NHERF-1, NHERF-2, and other renal brush border
PDZ adaptor proteins such as PDZK1, homo- and
heterodimerize, and have been speculated to form a
microvillar/submicrovillar scaffold that orients, retains,
or otherwise targets apical membrane proteins [51–54].
These three PDZ adaptor proteins also share many
common targets. Attempts to determine how these
proteins interact with one another, as well as with tar-
gets such as NHE3 seemed to require a genetic approach
and studies in appropriate tissues. Using homologous
recombination and a vector targeting exon 1 of the
mouse NHERF-1 gene, we successfully abolished
NHERF-1 expression in all mouse tissues [55]. Male
NHERF-1�/� mice display no overt phenotype. Blood
pressure, serum electrolytes, renal function, and renal

histology are normal. However, mutant mice demon-
strate mild hypophosphatemia and, compared with wild-
type mice, increased urinary excretion of phosphate,
calcium, and uric acid ([55], E. Weinman, R. Cunning-
ham, S. Shenolikar, unpublished observations). Some
NHERF-1 null female mice are runted and demonstrate
severe osteoporosis and bone fractures. Other female
littermates look normal and have been bred to establish
an NHERF-1 null mouse colony. Like the males, the
NHERF-1�/� females show increased urinary excretion
of phosphate, calcium, and uric acid (E. Weinman, R.
Cunningham, S. Shenolikar, unpublished observations).
The defect in phosphate transport in the mutant mice is
associated with a decrease in the renal apical membrane
expression of Npt2a, suggesting a role for NHERF-1 in
the targeting or trafficking of this transporter in the re-
nal proximal tubule [55].

The absence of NHERF-1 in null mice has no
apparent effect on the abundance or cellular distribution
of NHERF-2 or PDZK1 [49, 55, 56]. The abundance
and distribution of NHE3 in the null mice also does not
differ from wild-type controls (Fig. 7). This finding
suggested that NHERF-1 is not involved in the traf-
ficking or membrane retention of NHE3; a finding that
would not have been predicted from prior studies in OK
cells (see the following text) [19, 22]. To determine if the
absence of NHERF-1 results in abnormalities in PKA
regulation of NHE3, renal apical membranes from wild-
type and NHERF-1 null mice were harvested, phos-
phorylated using PKA ex-vivo, and NHE3 activity
determined as the amiloride-sensitive component of pH
gradient-stimulated sodium uptake [57]. Basal NHE3
activity does not differ between wild-type and
NHERF-1�/� renal BBM. Activation of PKA results in
nearly 50% inhibition of NHE3 activity in wild-type
membranes, but fails to affect NHE3 activity in mem-
brane vesicles from null mice. The failure of PKA to
inhibit NHE3 activity in NHERF-1�/� BBM vesicles is
associated with the failure of PKA-mediated phos-
phorylation of NHE3, the biochemical signature of this
form of regulation. Recently, we have extended these
observations using primary cultures of proximal con-
voluted tubule cells [56]. Basal NHE3 activity, assayed
using fluorescence measurements, does not differ be-
tween wild-type and NHERF-1 null proximal tubule
cells. Treatment of the cells with parathyroid hormone
or cAMP inhibits NHE3 activity in wild-type cells but,

Fig. 6 The localization of
NHERF-1 and NHERF-2 in
the proximal tubule of the
kidney of wild-type mice.
Confocal microscopy images of
wild-type mice proximal
convoluted tubules using
monospecific antibodies to
NHERF-2 (left panel) and
NHERF-1 (middle panel). The
merged image is shown in the
right panel (adapted from [49])
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as observed in the BBM, fails to affect NHE3 activity in
the NHERF-1 null proximal tubule cells. Adenovirus-
mediated NHERF-1 gene transfer into the NHERF-1
null cells completely restores the inhibitory responses to
parathyroid hormone and cAMP. When considered to-
gether, these results suggest strongly that NHERF-1 is
critical for PKA-mediated phosphorylation and acute
regulation of the NHE3 transporter in response to
hormones that elevate intracellular cAMP. These results
also confirm the original observations that NHERF-1 is
a required co-factor for cAMP regulation of NHE3 and
that the presence of NHERF-2 and PDZK1 cannot
substitute for the absence of NHERF-1 in renal tissue.
These findings highlight the fact that model cell systems
such as PS120 cells, while useful for certain studies, may
not reflect accurately the relation of NHERF proteins
and their targets in their natural environment, and
establish that the functions of NHERF-1 and NHERF-2
are not entirely redundant.

NHERF and the regulation of NHE3 trafficking

While the distribution NHE3 in NHERF-1�/� mice is
unchanged, other data suggest a role for the NHERF
proteins in the trafficking of NHE3. In OK cells, NHE3
retrieved from the apical membrane is recycled back to
the plasma membrane via endosomal vesicles [19, 22].
Moe and colleagues have studied the inhibitory effect of
parathyroid hormone and dopamine on NHE3 in OK
[19]. The acute short-term inhibition of NHE3 activity
by parathyroid hormone is not associated with changes
in the membrane abundance of NHE3, but the longer-
term regulation of NHE3 by parathyroid hormone is
associated with decreased apical membrane expression
of NHE3. Both the acute as well as the longer-term
regulation of NHE3 by PTH require PKA-mediated
phosphorylation of specific serines in the C-terminus of
the transporter. Dopamine acutely inhibits sodium-

hydrogen exchange activity, primarily by decreasing the
apical membrane abundance of NHE3, a process that
also involves PKA-mediated phosphorylation of the
transporter [22]. Although other mechanisms for
PKA-mediated phosphorylation of NHE3 cannot be
discounted, to date, the NHERF-mediated phosphory-
lation of NHE3 remains the best understood. The dis-
tinction between the mouse kidney, in which the absence
of NHERF-1 has no apparent effect on the apical tar-
geting of NHE3, and OK cells, which down-regulate the
apical membrane abundance of NHE3 in response to
long-term parathyroid hormone or acutely to dopamine,
remains unresolved and may reflect, at least in part, the
presence of NHERF-2 in native tissue which, via its
association with NHERF-1, modulates some of its cel-
lular functions. Consistent with this view are recent
studies of Lee-Kwon, Donowitz and co-workers dem-
onstrating that NHERF-2, even in the presence of
NHERF-1, regulates the trafficking of NHE3 by virtue
of its association with other proteins [58, 59]. The
development of NHERF-2 and NHERF-1/2 null mice
may help unravel the role of the various PDZ adaptor
proteins expressed in epithelial tissue in the regulation of
their targets.

Perspective

The NHERF proteins were the first PDZ-type adaptor
proteins found in epithelial tissue. Since their discovery
and the associated discovery of PDZK1, these proteins
have been found to interact with a surprisingly large
number of proteins, many of which are expressed in the
kidney and have been demonstrated to play a role in ion
and mineral homeostasis. To date, over 60 targets have
been identified and the list continues to grow [9, 35, 43,
44]. Moreover, NHERF proteins appear to regulate
transporters such as the sodium-dependent bicarbonate
transporter and Na/K ATPase by mechanisms that do

Fig. 7 The cellular localization
of NHE3 and NHERF-2 in the
proximal tubule of wild-type
(WT) and NHERF-1 null mice
(knock-out, KO). Confocal
microscopy images showing the
distribution of NHE3 and
NHERF-2 in wild-type (WT)
and NHERF-1�/� (KO)
proximal tubules (adapted from
[55])
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not involve the direct binding [60, 61]. These trans-
porters are located predominantly in the basolateral
membrane of renal tubular cells. Since the NHERF
proteins are most abundant in the apical membrane of
these cells, the precise interactions are, as yet, unknown
but it might be suggested that the NHERF proteins
interact with other signaling proteins that affect these
basolateral transporters more directly. Full under-
standing of the roles of the NHERF proteins in biologic
processes will require detailed study of relevant tissues.
It has already been established that biochemical modi-
fication of NHERF targets such as the b2 adrenergic
receptor and platelet-derived growth factor receptors
can alter its binding to NHERF-1 and the biological
responses of these receptors [62, 63]. Unexplored, how-
ever, is the unique role of NHERF-1 phosphorylation
that potentially may affect the binding interaction be-
tween targets to one or both of the PDZ domains or to
the ERM domain. We think it possible, and perhaps
likely, that numerous signaling pathways, acting
through specific protein kinases and phosphatases,
dynamically regulate NHERF-1 and, as a consequence,
its physiological effects in kidney and other organs.
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