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Abstract Similar to a variety of nucleated cells, human
erythrocytes activate a non-selective cation channel upon
osmotic cell shrinkage. Further stimuli of channel
activation include oxidative stress, energy depletion and
extracellular removal of Cl�. The channel is permeable to
Ca2+ and opening of the channel increases cytosolic
[Ca2+]. Intriguing evidence points to a role of this channel
in the elimination of erythrocytes by apoptosis. Ca2+

entering through the cation channel stimulates a scram-
blase, leading to breakdown of cell membrane phospha-
tidylserine asymmetry, and stimulates Ca2+-sensitive K+

channels, thus leading to KCl loss and (further) cell
shrinkage. The breakdown of phosphatidylserine asym-
metry is evidenced by annexin binding, a typical feature
of apoptotic cells. The effects of osmotic shock, oxidative
stress and energy depletion on annexin binding are
mimicked by the Ca2+ ionophore ionomycin (1 �M) and
blunted in the nominal absence of extracellular Ca2+.
Nevertheless, the residual annexin binding points to
additional mechanisms involved in the triggering of the
scramblase. The exposure of phosphatidylserine at the
extracellular face of the cell membrane stimulates
phagocytes to engulf the apoptotic erythrocytes. Thus,
sustained activation of the cation channels eventually
leads to clearance of affected erythrocytes from periph-
eral blood. Susceptibility to annexin binding is enhanced
in several genetic disorders affecting erythrocyte func-
tion, such as thalassaemia, sickle-cell disease and
glucose-6-phosphate dehydrogenase deficiency. The
enhanced vulnerability presumably contributes to the
shortened life span of the affected erythrocytes. Beyond
their role in the limitation of erythrocyte survival, cation
channels may contribute to the triggering of apoptosis in

nucleated cells exposed to osmotic shock and/or oxidative
stress.
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Introduction

Apoptosis is a physiological mechanism eliminating
abundant and potentially harmful cells [27, 30]. Hall-
marks of apoptosis include nuclear condensation, DNA
fragmentation, mitochondrial depolarization, cell shrink-
age and breakdown of phosphatidylserine asymmetry of
the plasma membrane [27, 30]. The exposure of phos-
phatidylserine at the cell surface triggers, and the decrease
of cell volume facilitates, the engulfment of the dying
cells by phagocytes [6, 22]. Thus, apoptosis allows the
elimination of the cells without the release of intracellular
proteins, which would otherwise cause inflammation [30].
The stimulation of apoptosis modifies the activity of
several transport processes at the cell membrane including
K+ channels [29, 53, 56, 68, 69], anion channels [56, 70],
Ca2+ channels [55], taurine release channels [45, 48, 60]
and Na+/H+ exchange [47].

A wide variety of stimuli induce apoptosis, including
nitric oxide [33], UV radiation [42, 65], exposure to
pathogens [23], osmotic shock [7, 8, 44, 48, 56, 59, 63,
65] and the activation of defined receptors such as CD95
[30, 45, 46], TNFa [50] and somatostatin [71].

Despite their lack of mitochondria and nuclei, intra-
cellular organelles involved in the apoptosis of nucleated
cells, erythrocytes exposed to the Ca2+ ionophore iono-
mycin undergo shrinkage, membrane blebbing and break
down of cell membrane phosphatidylserine asymmetry,
all typical features of apoptosis in nucleated cells [3, 9,
15]. It is thus fair to say that erythrocytes undergo
apoptosis upon increase of intracellular [Ca2+]. The
present brief review presents evidence that entry of Ca2+

through a non-selective cation channel is a major
mechanism triggering erythrocyte apoptosis.
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Properties of erythrocyte cation channels

Osmotic shock [32] and oxidative stress [21] open non-
selective cation channels in the erythrocyte cell mem-
brane. The same channels can be activated by removal of
intracellular and extracellular Cl� (Fig. 1A, B) [21, 32].
This property is reminiscent of the Na+ and K+ perme-
ability activated by incubating human erythrocytes in low
ionic strength (LIS) medium [4, 36, 43]. Incubation in LIS
medium also induces permeabilities to organic osmolytes,
such as taurine and glutamine, which share many
properties of the LIS-induced cation permeability [14].
This feature may be of interest as taurine release is a
typical feature of apoptosis in nucleated cells [45, 48, 60].
Similar to what has been shown for the LIS permeability
[14, 36], activation of the volume- and oxidant-sensitive
cation channel by removal of extracellular Cl� is inhibited
by the anion channel/transport inhibitor 4,40-diisothio-
cyanostilbene-2,20-disulphonic acid (DIDS) [21]. The
cation channels allow the permeation of Ca2+ [21].
Accordingly, exposure to osmotic shock or oxidative
stress triggers erythrocyte Ca2+ uptake [51].

Impact of cation channels on cell volume

In general, Na+ entry through cation channels leads to cell
membrane depolarization, which should favour cell
swelling [44]. Depolarization decreases the electrical
driving force for extrusion of negatively charged Cl� and
thus leads to accumulation of Cl� in parallel to Na+. In
most cells cytosolic Cl� concentration ([Cl�]i) is below
20 mM and thus less than 20% of the extracellular [Cl�]
([Cl�]o). Thus, the equilibrium potential for Cl�

(EClðin mVÞ ¼ 60 log ½Cl��i
½Cl��o

) is more negative than

�40 mV, i.e. any depolarization below �40 mV would
drive Cl� into the cells. [Cl�]i in erythrocytes, however, is
of the order of 80 mM [76] and the membrane resting
potential is at ECl, which is close to �10 mV [13, 18]. The
selectivity of the cation channel is some twofold higher
for K+ than for Na+ [21]. In view of the intracellular Na+

and K+ concentrations of approximately 10–20 mM [16,
26, 37, 40] and 140 mM [37], respectively, and the
extracellular concentrations of 145 mM and 5 mM,
respectively, the equilibrium potential for the channel
approaches some �18 mV, i.e. a value more negative than
the actual cell membrane potential. Accordingly, the
activation of the channel should hyperpolarize the cell
membrane and shrink rather than swell the erythrocyte.
Moreover, Ca2+ entering the cells though the cation
channel will activate Ca2+-sensitive K+ channels
(KCNN4) in the erythrocyte cell membrane [31, 53],
leading to hyperpolarization of the cell membrane and
subsequent loss of KCl from the erythrocyte [17, 20, 25,
28, 54, 61, 67], again rather favouring hyperpolarization
and cell shrinkage. Thus, the erythrocyte cation channels
probably do not mediate regulatory cell volume increase,
even though they are up-regulated by cell shrinkage.

Fig. 1A–D Activation of cell volume-sensitive, non-selective cat-
ion channels in the erythrocyte membrane induces annexin binding.
A Cation-selective ion channels are activated by removal of
extracellular Cl�. Patch-clamp current traces recorded with Na-d-
gluconate pipette solution and isotonic NaCl bath solution (left),
isotonic Na-d-gluconate bath solution (middle), and after replace-
ment of bath Na+ by the impermeant cation N-methyl-d-glucamine
(NMDG+, right). Currents were recorded in the fast, whole-cell,
voltage-clamp mode; membrane potential was held at �10 mV and
currents were elicited by 400-ms square pulses to test potentials
between �100 and +100 mV; currents of the individual voltage
sweeps are superimposed; zero current is indicated by the grey line.
B Mean (€SE; n=3–16) slope conductance of human erythrocytes
recorded under isotonic conditions as in A prior to (NaCl; open bar)
and upon activation of the cation channels by extracellular Cl�

removal (Na-gluconate; open bar). Hypertonic cell shrinkage (by
adding 250 mM sucrose to the bath solution) further activates the
cation channels (Na-gluconate; solid bar). C Cell-shrinkage-
induced break down of the erythrocyte membrane phospholipid
asymmetry is dependent on extracellular Ca2+ and inhibited by
amiloride. Mean percentage of annexin binding erythrocytes (€SE;
n=3–16) as measured by flow cytometry. Erythrocytes were
cultured for 24 h at 37�C either in isotonic (open bar) or in
hypertonic Ringer solution (closed bars; osmolarity increased to
850 mOsm by adding sucrose). In some experiments, incubation in
hypertonic Ringer solution was performed in the presence of the
cation channel inhibitor amiloride (1 mM) or in the absence of
extracellular Ca2+. D Summary of the experimental manoeuvres
inducing activation or inactivation/inhibition of the Ca2+-permeable
non-selective cation channel in human erythrocytes (EIPA ethyliso-
propylamiloride). Increased channel activity leads to elevated
cytosolic free [Ca2+] and subsequently to scramblase activation
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Impact of cation channels on erythrocyte apoptosis

Compelling evidence points to a role of the volume-
sensitive cation channels in the induction of erythrocyte
apoptosis. Besides triggering cell shrinkage (see above),
an increase of [Ca2+]i stimulates a scramblase, thus
leading to the breakdown of phosphatidylserine asymme-
try [3, 9, 15, 51]. Exposure of phosphatidylserine is
detected by determination of annexin binding, together
with cell shrinkage, a typical feature of apoptosis in
nucleated cells [30].

Erythrocyte annexin binding is triggered by osmotic
shock (Fig. 1C) and oxidative stress [51], both manoeu-
vres that activate the cation channel [21, 32]. Further-
more, energy depletion leads to enhanced annexin binding
[51]. Presumably energy depletion impairs the replenish-
ment of GSH and thus weakens the antioxidative defence
of the erythrocytes [5, 58]. The annexin binding following
osmotic shock and oxidative stress is blunted following
chelation of extracellular Ca2+ [51]. Moreover, the
annexin binding is blunted by amiloride (Fig. 1C) [51]
and ethylisopropylamiloride (EIPA) [52] at concentra-
tions needed to inhibit the cation channel [51, 52]. Thus, it
appears safe to conclude that activation of the cell
volume- and oxidant-sensitive cation channel and subse-
quent Ca2+ entry contribute to the stimulation of eryth-
rocyte scramblase following osmotic shock or oxidative
stress (Fig. 1D). Interestingly, the Na+/H+ exchange
inhibitor ethylisopropylamiloride (EIPA) is effective at
a concentration of 1 �M, whereas amiloride, which
inhibits both Na+/H+ exchange and cation channels,
requires 1 mM to become effective [52].

Further experiments have revealed the enhanced
sensitivity of erythrocytes from patients with thalas-
saemia, sickle-cell anaemia and glucose-6-phosphate
dehydrogenase deficiency [49]. Similarly, increased
scramblase activity and phosphatidylserine exposure has
been demonstrated for erythrocytes in mouse models of
sickle cell disease and thalassaemia [38].

Impact of cation channels on erythrocyte ageing

Aged erythrocytes expose more phosphatidylserine,
which contributes to the elimination of the senescent
cells [6]. The capacity for oxidative defence decreases
with erythrocyte age [34, 62] a phenomenon paralleled by
increase of passive cation permeability [35] and cytosolic
free [Ca2+] [1, 2, 11, 41, 64, 66]. It is thus tempting to
speculate that the cation channels sense cell age. Within
the ageing erythrocytes, the loss of antioxidative defence
can be expected to increase cation channel activity
leading to Ca2+ entry, increased Ca2+ pump activity,
ATP depletion, further impairment of antioxidative
defence, further activation of cation channels and further
Ca2+ entry and eventually activation of the scramblase.

Volume-sensitive cation channels in nucleated cells

Cell volume-sensitive cation channels are not only
expressed in erythrocytes but are found in a wide variety
of nucleated cells, such as airway epithelial cells [12],
mast cells [10], macrophages [24], vascular smooth
muscle, colon carcinoma and neuroblastoma cells [39],
cortical collecting duct [73] and hepatocytes [74, 75].
Moreover, cation channels activated by Cl� removal have
been identified in salivary and lung epithelial cells [19,
57, 72]. Cl� influences the channels via a pertussis toxin-
sensitive G protein [19]. It is intriguing to speculate that
non-selective cation channels are similarly involved in
apoptosis of nucleated cells.
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