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Neuronal endoplasmic reticulum acts as a single functional Ca%*
store shared by ryanodine and inositol-1,4,5-trisphosphate receptors
as revealed by intra-ER [CaZ*] recordings in single rat sensory neurones
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Abstract We addressed the fundamentally important
question of functional continuity of endoplasmic reticu-
lum (ER) Ca®* store in nerve cells. In cultured rat dorsal
root ganglion neurones we measured dynamic changes in
free Ca®* concentration within the ER lumen ([Ca®*].) in
response to activation of inositol-1,4,5-trisphosphate
receptors (InsP;Rs) and ryanodine receptors (RyRs). We
found that both receptors co-exist in these neurones and
their activation results in Ca®* release from the ER as
judged by a decrease in [Ca®*];. Depletion of Ca’* stores
following an inhibition of sarco(endoplasmic)reticulum
Ca?*-ATPase by thapsigargin or cyclopiazonic acid
completely eliminated Ca’* release via both InsP;Rs
and RyRs. Similarly, when the store was depleted by
continuous activation of InsP;Rs, activation of RyRs (by
caffeine or 0.5 uM ryanodine) failed to produce Ca**
release, and vice versa, when the stores were depleted by
activators of RyRs, the InsPs-induced Ca®* release
disappeared. We conclude that in mammalian neurones
InsP3Rs and RyRs share the common continuous Ca**
pool associated with ER.

Keywords Calcium signalling - InsP;R/RyR -
Endoplasmic reticulum calcium stores - Sensory neurones

Introduction

The endoplasmic reticulum (ER), represented by a three-
dimensional intracellular network of tubules and cister-
nae, serves as an integrating signalling organelle, which
co-ordinates fast physiological Ca’* signalling and long-
lasting adaptive responses controlled by post-translational
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protein processing within the ER lumen [2, 4, 6, 9, 14].
Many ER-resident chaperones responsible for correct
folding of proteins are regulated by the concentration of
free Ca>* within the ER lumen ([Ca®*];), and therefore the
latter bestows the link between fast physiological events
and protein turnover [28, 51]. Fluctuations of [Ca”*]; are
determined by the balance between Ca’* release and Ca’*
uptake.

Two types of ligand-gated Ca”* channels, the inositol-
1,4,5-trisphosphate receptors (InsP;Rs) and ryanodine
receptors (RyRs), provide the route for Ca>* release and
underlie the excitability of the ER membrane [3, 32, 36,
47]. Both types of Ca’* release channels are abundantly
expressed in nerve cells [50, 52], although their intracel-
lular distribution shows considerable heterogeneity. That
is, dendritic spines of Purkinje neurones are rich in
InsP;Rs but are devoid of RyRs, although the latter are
found in quantity in the dendritic shafts and in the cell
body [27, 37]. In contrast, RyRs are predominant in
dendrites of CAl hippocampal neurones [38]; they are
also preferentially expressed in axons and synaptic
terminals of cerebellar basket neurones [25]. In agreement
with such peculiar distribution, different types of Ca®*
release are activated upon physiological stimulation in
distinct neuronal sub-compartments. Stimulation of syn-
aptic inputs triggers InsP;-mediated Ca’* release in the
spines of Purkinje cells [13, 46], whereas Ca?*-induced
Ca’* release generated through RyRs plays an important
role in postsynaptic Ca®* signalling in hippocampus ([1,
12] but see [24]) and controls multivesicular neurotrans-
mitter release in cerebellar synaptic terminals [25].

Therefore heterogeneous localization of Ca’* release
channels provides for a spatial control of Ca?* signals,
which is particularly important for highly polarized nerve
cells. Yet, such a heterogeneity does not implicitly entail
the existence of separate Ca®* pools associated with
different Ca®* release mechanisms. This particular issue
recently became a matter of controversy [5, 34].

Experiments on neuronal preparations have shown that
depletion of RyR-sensitive Ca’* store in Purkinje neuro-
nes completely abolished responses to photoreleased
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InsP; suggesting that both receptors share the same
interconnected Ca®* pool [21]. Similar overlap between
InsP;-sensitive and caffeine-sensitive Ca’* pools was
suggested for hippocampal [19], cerebellar granule [20,
39] and cultured myenteric [23] neurones. In contrast
[Ca®*]; imaging in adrenal chromaffin cells revealed two
distinct Ca®* pools sensitive to caffeine and InsP;
respectively [8]. Finally the existence of separate Ca’*
pools in nerve cells was recently suggested by Blaustein
and Golovina [5], who based their theory on a direct
measurements of [Ca>*]; in astrocytes and atrial myocytes
[15, 16, 17]. In the present paper we addressed the
question of internal continuity of the ER Ca?* pools in
mammalian sensory neurones using direct monitoring of
[Ca?*];.. Our evidence suggests that in this preparation the
InsPsRs and RyRs share the same functional Ca** pool.

Materials and methods
Real-time imaging of Ca2+ concentration in the store

Dorsal root ganglion neurones were enzymatically isolated from
new-born (1-3 days old) Sprague-Dawley rats using a conventional
treatment with 0.1% protease (type XIV) in HEPES-buffered MEM
for 8 min at 37°C. Individual cells were separated mechanically and
plated on poly-L-ornitine (I mg/ml) and laminin (0.01 mg/ml)
covered glass coverslips. Neurones were maintained in culture
media (DMEM, supplemented with 10% horse serum, 50 U/ml
penicillin/streptomycin mixture and 6 pg/ml insulin) at 37°C in an
atmosphere of air supplemented with 5% CO, for 1-2 days prior to
the experiment. In the present study we investigated only large
(proprioceptive) neurones with somas larger than 35 um in
diameter.

For [Ca?*], recordings we have used Mag-Fura-2 (Kp~50 uM)
suitable for detecting high intraluminal [Ca™] levels [7, 31, 42].
The neurones were incubated with 5 uM Mag-Fura-2 for 30 min at
37°C, and washed at 37°C for 1 h prior to the experiment (loading
at 37°C promotes dye compartmentalization within the ER lumen
[49D).

The cytoplasmic portion of dye was removed either via
intracellular dialysis through the patch pipette (as described in
our previous paper [43]) or by permeabilization of the plasmalem-
ma with saponin [41, 42]. In the latter case the cellular membrane
was permeabilized by brief (7-10 s) application of saponin
(0.001%) in “intracellular” solution. The permeabilization tech-
nique was used exclusively for probing the neurones for InsPs-
induced Ca* release as InsP; does not penetrate through intact
plasmalemma.

Calibration of Mag-Fura-2 signals

The [Ca?*]; values were calculated using the 340/380 nm ratio with
the equation [Ca”*]; =K*(R—Ruin)/(Rmax—R). Rmin» Rmax and K* were
determined using exposure of Mag-Fura-2/AM loaded intact
neurones or saponin-permeabilized neurones to 20 uM ionomycin
and four calibrating solutions with [Ca’*]<10 nM (10 mM EGTA);
100 uM; 400 uM and 10 mM; solutions were prepared as described
previously [43]. The calibration procedure on permeabilized cells
consistently yielded higher (~40%) values for K*, most likely due
to a higher Mag-Fura-2 Kp within the ER lumen. As we assumed
this being more accurate, the values from the latter procedure were
used throughout. Values of Ry, Rmax and K* were 0.3, 1.9 and
287 uM respectively.

Real-time video-imaging

Fluorescence images were captured using an Olympus IX70
inverted microscope (40x UV objective) equipped with a charge-
coupled device (CCD) cooled intensified camera (Pentamax Gene
IV, Roper Scientific, UK). The specimen was alternately illumi-
nated at 340, 380 and 488 nm by a monochromator (Polychrom IV,
TILL Photonics, Germany) at a cycle frequency 0.5-5 Hz. Control
over the experiment, image storage and off-line analysis was
performed by use of MetaFluor/MetaMorph software (Universal
Imaging Corporation, USA) running on a Windows 98 workstation.

Electrophysiology and solution exchange

Whole-cell recordings were made by using EPC-9 amplifier run by
the PC-based PULS software (both from HEKA, Germany). The
pipette resistance was 3—5 MQ. All solutions were applied using a
fast local superfusion technique [53] which ensured complete
exchange of the milieu surrounding the cell within 100 ms.

Solutions and reagents

The extracellular bathing solution contained (in mM): NaCl 135,
KCI 3, CaCl, 2, glucose 20, HEPES/NaOH 20, pH 7.4. The Ca®*-
free solution contained 5 mM EGTA with no CaCl, added. The
“intracellular” solution used in permeabilization experiments
contained (in mM): KCl 140, Na,ATP 3, MgCl, 2, CaCl, 0.4,
BAPTA 5, HEPES/KOH 20, pH 7.2, free Ca** concentration
~70 nM). The intra-pipette solution used for intracellular dialysis
contained (in mM): CsCl, 122, TEA-CI 20; Na,ATP 3, HEPES/
CsOH 10, EGTA 0.1, pH 7.3. All reagents were purchased from
Sigma (Dorset, UK), and fluorescent probes were obtained from
Molecular Probes (Ore., USA).

Results

Sensory neurones co-express functional InsP;Rs
and RyRs

We monitored intraluminal Ca®* dynamics in single
sensory neurones using low-affinity Ca?* probe Mag-
Fura-2 compartmentalized within the ER lumen. The
cytosolic portion of the dye was removed either by
intracellular dialysis under whole-cell patch-clamp con-
figuration [43], or by permeabilization of the plasmalem-
ma by brief application of saponin [41, 42]. We used the
latter technique to permit direct activation of InsP;Rs by
InsP3;, which otherwise cannot penetrate through the cell
membrane.

The resting [Ca®*];. determined with both techniques
varied between 100 and 400 uM. Since [Ca’*]. is an
important determinant of the velocity and magnitude of
Ca** release [43] we restricted our analysis to neurones
with [Ca?*];, higher than ~300 uM.

Brief extracellular applications of both InsP; (3-
10 uM; 10 s) and caffeine (20 mM, 5 s) to permeabilized
neurones triggered transient fall in [Ca**];, which recov-
ered to the pre-stimulated level after washout (Fig. 1). We
found these responses in all neurones subjected to such an
application protocol (n=12). The InsPz-induced [Ca’*].
decrease was substantially slower as compared to that
induced by caffeine: on average maximal velocity of
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Fig. 1A, B InsP;Rs and RyRs coexist in DRG neurones. A The
endoplasmlc reticulum lumen [Ca®*] ([Ca®*]) recording (fop trace)
and its first derivative (botfom trace) obtained from permeabilized
DRG neurone pre-loaded with Mag-Fura-2/AM. The neurone was
challenged by 10 ézM InsP3 and 20 mM caffeine as indicated on the
graph. B The [Ca**]. recordings from another permeabilized DRG
neurone alternately treated with 10 uM inositol-1,4,5-trisphosphate
(InsP3) and 20 mM caffeine as indicated on the graph
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[Ca®*]; decrease induced by InsP; was about three times
lower as compared with [Ca’*]; decrease induced by
caffeine (12+6 uM/s versus 41+10 uM/s, respectively;
n=12, see also Fig. 3). Quite obviously the depletion of
ER store by InsP; required much more time as compared
with caffeine (see for example Fig. 5). Such a difference
may result from either lower density of InsP;Rs or from
denial of Ca?*-induced potentiation of IICR in heavily
buffered “intracellular” solution in permeabilized exper-
iments.

Both agents, caffeine and InsP; triggered [Ca™].
decrease in a dose-dependent fashion (Fig. 2). The
responses to InsP; saturated at 10 uM, i.e. at a rather
high concentration, which might reflect either hampered
diffusion of InsP; towards ER membrane even in
permeabilized preparation, or generally lower sensitivity
of neuronal InsP;Rs to InsP; [22]. Responses to caffeine
saturated at concentrations higher than 10 mM. Therefore,
these experiments demonstrate that ER membrane in
DRG neurones possesses both InsP;-induced and Ca®*
induced Ca’*-release mechanisms (IICR and CICR,
respectively).

Inhibition of SERCA pumps and direct activation
of RyR deplete the Ca** store

The ability of the ER Ca* store to generate Ca>* signals
is regulated by intraluminal free Ca®* concentration, so
that store depletion prevents development of Ca’* release.
We have already demonstrated that the store replenish-
ment following CICR (induced either by caffeine or by
Ca’* entry) is determined by thapsigargin (TG)-sensitive
sarco(endoplasmic)reticulum ~ Ca**-ATPase (SERCA)
pumps [43]. Here we investigated the mechanisms of
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store depletion in greater detail. Conceptually the stores
can be depleted either by inhibition of Ca** uptake, which
leaves the resting Ca’* leakage unopposed, or by stim-
ulation of Ca®* release channels. In DRG neurones the
inhibition of SERCA pumps by both TG (5 uM; n=14)
and cyclopiazonic acid (CPA, 50 uM; n=11) triggered a
progressive decrease in [Ca’*];. which stabilized after
complete depletion of the store (Fig. 3A, B). Alternatively
the stores can be depleted by activation of the Ca’*-
release route. For this purpose we incubated the neurones
with a low (0.5 uM) concentration of ryanodine. At this
concentration the latter is known to promote opening of
RyRs either by direct interaction with gating mechanisms
[40] or by a dramatic (~1,000-fold) increase in RyRs
sensitivity to cytosolic Ca?* [26]. As shown in Fig. 3C,
application of 0.5 uM of ryanodine effectively decreased
[Ca®*], thus indicating the depletion of the ER store. The
maximal velocities of [Ca?*]; decrease initiated by
various pharmacological agents (caffeine, InsP3, ryan-
odine, TG and CPA) are compared in Fig. 3D.

RyRs and InsP3;Rs share the common pool sensitive
to TG and CPA

The experiments described above have evidently demon-
strated that the ER in DRG neurones is endowed with
functional InsP;Rs, RyRs as well as with TG and CPA-
sensitive  SERCA pumps. These data enabled us to
address the central question of this study, i.e. whether
all these mechanisms operate within a single Ca®* pool or
the ER Ca’* store is represented by several independent
compartments. For this purpose we utilized the ability of
the agents described above to deplete the ER store. After

Ca* pool was depleted by one of these agents, we tested
the ability of others to initiate a further decrease in
[Ca’*].. The appearance of such a decrease would
indicate the coexistence of separate Ca’* pools.

First we tested the ability of TG and CPA to deplete
the caffeine-sensitive Ca®>* pool. As shown in Fig. 4A,
dialysed neurones were initially challenged with caffeine
to probe for the existence of a caffeine-sensitive pool.
Subsequently the neurones were incubated with 5 uM TG
which resulted in a decrease in [Ca**].. After complete
depletion of the pool (as was judged by stabilization of
[Ca®*]. in the presence of TG) the cells were challenged
with 20 mM caffeine and 50 uM CPA. In all nine
neurones exposed to such a protocol neither caffeine nor
CPA were able to affect [Ca®*]. after the stores were
depleted by TG. Similar results were obtained when Ca?*
pool was initially depleted by 50 uM CPA: both caffeine
and TG applied in the presence of CPA failed to affect
[Ca’*],. (Fig. 4B, n=8). Likewise, depletion of stores with
0.5 uM ryanodine rendered caffeine, CPA and TG,
applied in the presence of ryanodine, totally ineffective
(n=T7; Fig. 4C, D).

After completion of these experiments we switched to
permeabilized neurones, thus gaining the possibility to
test for InsPs;-induced Ca®* release. The cells were
initially incubated with 10 uM InsPs;, which resulted in
a drop in [Ca®*].. The [Ca®*]_ stabilized at a steady-state
level after complete depletion of the InsP3-sensitive pool.
Application of caffeine performed at this moment failed
to further affect [Ca®*], (Fig. 5A, n=T7). Vice versa, when
the stores were depleted in the presence of 20 mM of
caffeine, application of 10 uM InsP; did not induce any
changes in [Ca®*]. (Fig. 5B, n=6). Despite the clarity of
the traces resulting from the protocols described above,
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Fig. 4A-D Ryanodine- and caffeine-releasable Ca®* pool is sensi-
tive to sarco(endoplasmic)reticulum Ca®*-ATPase (SERCA) inhi-
bition by TG and CPA. All traces represent [Ca’*]; recordings from
Mag-Fura-2 pre-loaded dialysed DRG neurones. A [Ca**]; record-
ing in response to applications of 20 mM caffeine, TG and CPA.
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doubt remained, as caffeine is known as an effective
inhibitor of InsP3Rs [11, 33, 54]. Therefore, we looked for
alternative means to specifically activate RyRs, and used
0.5 M ryanodine for this purpose. Once more, after the
Ca?* pool was depleted by incubation with 10 uM of
InsP3, ryanodine was unable to induce any further

fluctuations in [Ca>*]. (Fig. 5C; n=5). Likewise, when
the permeabilized neurone was treated with 0.5 uM
ryanodine to achieve full exhaustion of the Ca®* pool,
neither InsP; nor caffeine were able to activate any
additional Ca®* release (Fig. 5D, n=5).
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It has to be noted that SERCA inhibitors, caffeine and
InsP; all decreased [Ca®*]. to the same, relatively high
residual level. As we have demonstrated before [43]
application of ionomycin in Ca**-free extracellular solu-
tion following TG and/or CPA treatment reduced [Ca®*].
to zero (Rmin). This high residual [Ca®*]; can reflect a
limitation of the method, suggesting that part of the signal
comes from an intracellular compartment not connected
with the caffeine- or TG-sensitive portion of the ER.
Nonetheless, as we already discussed in our previous
paper [43] it may also represent an intrinsic property of
the ER store, when severe depletion of the later may
inhibit further release through Ca’'release/k leakage
channels.

Discussion

Here we report the first direct measurements of intralu-
minal Ca** dynamics in mammalian neurones during Ca*
release produced by activation of InsP3Rs and RyRs. We
found that these two types of Ca’* release, the IICR and
the CICR, not only coexist in sensory neurones but they
share a common Ca?* pool. Our suggestion contradicts a
recent hypothesis postulating the existence of functionally
separate ER Ca’* pools in both excitable and non-
excitable cells, including neurones [5]. The idea of
separate Ca’* pools was instigated by experiments
employing direct imaging of intra-ER Ca®* movements
in astrocytes and atrial myocytes [15, 16, 17]. These
studies concluded that excitable and non-excitable cells
have at least two separate Ca>* pools sensitive to InsP;
and caffeine, respectively. This was based on the finding
that inhibition of SERCA pumps by TG and CPA depletes
the InsPs-sensitive Ca* stores and abolishes responses to
metabotropic agonists; however, this manipulation does
not affect Ca’* release triggered by caffeine. Although
this finding explicitly implies the existence of a specific
Ca’*-uptake pathway replenishing the caffeine-sensitive
pool, the authors of the cited studies failed to hypothesize
on it.

The experiments described in this paper do not support
the hypothesis of separate Ca>* pools. On the contrary, in
a series of direct approaches, we have demonstrated that
depletion of Ca®* stores by either opening of RyRs or
InsP;Rs or by SERCA inhibition is always complete, and
it precludes any further Ca’* release irrespective of its
mechanism. The most direct evidence for a common Ca?*
pool was obtained from the protocols shown in Fig. 5.
These experiments show that depletion of the Ca’* store
due to an activation of RyRs by caffeine or ryanodine
completely abolishes InsPs-induced Ca®* release, and vice
versa, when the stores are depleted following InsP;Rs
activation, the RyR-mediated Ca®* release is fully
blocked.

Our suggestion of the continuity of the neuronal ER
Ca* store is in line with a multitude of morphological
evidence which describes neuronal ER as a continuous
interconnected network [44]. Furthermore, a direct ap-

proach aimed at investigating the continuity of the ER in
Purkinje neurones with a lypophylic fluorescent dye
travelling exclusively in ER membranes [48] has clearly
demonstrated the continuity of the ER. Similarly, a wealth
of experimental data obtained in non-neuronal cells
favours, to a very large extent, the idea of ER continuity.
For instance, relatively large molecules, such as ER-
targeted GFP, were reported to rapidly diffuse within the
ER luminal space [10, 45]. In addition, a series of refined
experiments on pancreatic acinar cells [30] have con-
vincingly demonstrated that (1) fluorescent Ca®* probes
can diffuse freely within the ER lumen, and (2) even more
importantly that [Ca®*]; rapidly equilibrates within the
ER lumen following local photorelease of caged calcium.

The existence of a continuous Ca®* pool connected
through the ER lumen could be very important for
neuronal function. First, rapid Ca®* diffusion through the
ER “Ca”* tunnels” [29] supports Ca’* release in cell sub-
compartments by preventing severe store depletion
following intensive local stimulation. Second, the same
intraluminal Ca’* diffusion may be instrumental in
conveying Ca’* signals from distal neuronal processes
toward the nucleus [34], as was suggested by recent
findings showing the importance of ER Ca’* uptake in
nuclear Ca* signalling [18, 35]. Third, intra-ER Ca**
equilibration could facilitate clearance of local excessive
Ca?* loads. Finally, the existence of a continuous ER Ca*
store can be very important in guarding against profound
store depletion (which may happen more easily in small,
separated Ca®* pools), thus protecting normal functioning
of intraluminal chaperones and therefore supporting cell
functioning.
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