CELLULAR NEUROPHYSIOLOGY

Natasha Solovyova · Alexei Verkhratsky

Neuronal endoplasmic reticulum acts as a single functional Ca²⁺ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca²⁺] recordings in single rat sensory neurones

Received: 24 March 2003 / Accepted: 3 April 2003 / Published online: 23 May 2003 © Springer-Verlag 2003

Abstract We addressed the fundamentally important question of functional continuity of endoplasmic reticulum (ER) Ca²⁺ store in nerve cells. In cultured rat dorsal root ganglion neurones we measured dynamic changes in free Ca^{2+} concentration within the ER lumen ($[Ca^{2+}]_L$) in response to activation of inositol-1,4,5-trisphosphate receptors (InsP₃Rs) and ryanodine receptors (RyRs). We found that both receptors co-exist in these neurones and their activation results in Ca^{2+} release from the ER as judged by a decrease in $[Ca^{2+}]_L$. Depletion of Ca^{2+} stores following an inhibition of sarco(endoplasmic)reticulum Ca²⁺-ATPase by thapsigargin or cyclopiazonic acid completely eliminated Ca²⁺ release via both InsP₃Rs and RyRs. Similarly, when the store was depleted by continuous activation of InsP₃Rs, activation of RyRs (by caffeine or 0.5 μ M ryanodine) failed to produce Ca²⁴ release, and vice versa, when the stores were depleted by activators of RyRs, the InsP₃-induced Ca²⁺ release disappeared. We conclude that in mammalian neurones InsP₃Rs and RyRs share the common continuous Ca²⁺ pool associated with ER.

Keywords Calcium signalling · InsP₃R/RyR · Endoplasmic reticulum calcium stores · Sensory neurones

Introduction

The endoplasmic reticulum (ER), represented by a threedimensional intracellular network of tubules and cisternae, serves as an integrating signalling organelle, which co-ordinates fast physiological Ca^{2+} signalling and longlasting adaptive responses controlled by post-translational

N. Solovyova · A. Verkhratsky (🖂)

The University of Manchester,

School of Biological Sciences,

1.124 Stopford Building, Oxford Road, Manchester,

M13 9PT, UK

e-mail: alex.verkhratsky@man.ac.uk Tel.: +44-161-2755414

Fax: +44-161-2755948

protein processing within the ER lumen [2, 4, 6, 9, 14]. Many ER-resident chaperones responsible for correct folding of proteins are regulated by the concentration of free Ca²⁺ within the ER lumen ($[Ca^{2+}]_L$), and therefore the latter bestows the link between fast physiological events and protein turnover [28, 51]. Fluctuations of $[Ca^{2+}]_L$ are determined by the balance between Ca²⁺ release and Ca²⁺ uptake.

Two types of ligand-gated Ca²⁺ channels, the inositol-1,4,5-trisphosphate receptors (InsP₃Rs) and ryanodine receptors (RyRs), provide the route for Ca²⁺ release and underlie the excitability of the ER membrane [3, 32, 36, 47]. Both types of Ca^{2+} release channels are abundantly expressed in nerve cells [50, 52], although their intracellular distribution shows considerable heterogeneity. That is, dendritic spines of Purkinje neurones are rich in InsP₃Rs but are devoid of RyRs, although the latter are found in quantity in the dendritic shafts and in the cell body [27, 37]. In contrast, RyRs are predominant in dendrites of CA1 hippocampal neurones [38]; they are also preferentially expressed in axons and synaptic terminals of cerebellar basket neurones [25]. In agreement with such peculiar distribution, different types of Ca²⁺ release are activated upon physiological stimulation in distinct neuronal sub-compartments. Stimulation of synaptic inputs triggers InsP3-mediated Ca2+ release in the spines of Purkinje cells [13, 46], whereas Ca²⁺-induced Ca²⁺ release generated through RyRs plays an important role in postsynaptic Ca²⁺ signalling in hippocampus ([1, 12] but see [24]) and controls multivesicular neurotransmitter release in cerebellar synaptic terminals [25].

Therefore heterogeneous localization of Ca^{2+} release channels provides for a spatial control of Ca^{2+} signals, which is particularly important for highly polarized nerve cells. Yet, such a heterogeneity does not implicitly entail the existence of separate Ca^{2+} pools associated with different Ca^{2+} release mechanisms. This particular issue recently became a matter of controversy [5, 34].

Experiments on neuronal preparations have shown that depletion of RyR-sensitive Ca²⁺ store in Purkinje neurones completely abolished responses to photoreleased

InsP₃ suggesting that both receptors share the same interconnected Ca²⁺ pool [21]. Similar overlap between InsP₃-sensitive and caffeine-sensitive Ca²⁺ pools was suggested for hippocampal [19], cerebellar granule [20, 39] and cultured myenteric [23] neurones. In contrast [Ca²⁺]_i imaging in adrenal chromaffin cells revealed two distinct Ca²⁺ pools sensitive to caffeine and InsP₃ respectively [8]. Finally the existence of separate Ca²⁺ pools in nerve cells was recently suggested by Blaustein and Golovina [5], who based their theory on a direct measurements of $[Ca^{2+}]_L$ in astrocytes and atrial myocytes [15, 16, 17]. In the present paper we addressed the question of internal continuity of the ER Ca²⁺ pools in mammalian sensory neurones using direct monitoring of $[Ca^{2+}]_L$. Our evidence suggests that in this preparation the InsP₃Rs and RyRs share the same functional Ca²⁺ pool.

Materials and methods

Real-time imaging of Ca2+ concentration in the store

Dorsal root ganglion neurones were enzymatically isolated from new-born (1–3 days old) Sprague-Dawley rats using a conventional treatment with 0.1% protease (type XIV) in HEPES-buffered MEM for 8 min at 37°C. Individual cells were separated mechanically and plated on poly-L-ornitine (1 mg/ml) and laminin (0.01 mg/ml) covered glass coverslips. Neurones were maintained in culture media (DMEM, supplemented with 10% horse serum, 50 U/ml penicillin/streptomycin mixture and 6 μ g/ml insulin) at 37°C in an atmosphere of air supplemented with 5% CO₂ for 1–2 days prior to the experiment. In the present study we investigated only large (proprioceptive) neurones with somas larger than 35 μ m in diameter.

For $[Ca^{2+}]_L$ recordings we have used Mag-Fura-2 ($K_D \sim 50 \ \mu$ M) suitable for detecting high intraluminal $[Ca^{2+}]$ levels [7, 31, 42]. The neurones were incubated with 5 μ M Mag-Fura-2 for 30 min at 37°C, and washed at 37°C for 1 h prior to the experiment (loading at 37°C promotes dye compartmentalization within the ER lumen [49]).

The cytoplasmic portion of dye was removed either via intracellular dialysis through the patch pipette (as described in our previous paper [43]) or by permeabilization of the plasmalemma with saponin [41, 42]. In the latter case the cellular membrane was permeabilized by brief (7–10 s) application of saponin (0.001%) in "intracellular" solution. The permeabilization technique was used exclusively for probing the neurones for InsP₃-induced Ca²⁺ release as InsP₃ does not penetrate through intact plasmalemma.

Calibration of Mag-Fura-2 signals

The $[Ca^{2+}]_L$ values were calculated using the 340/380 nm ratio with the equation $[Ca^{2+}]_L=K^*(R-R_{min})/(R_{max}-R)$. R_{min} , R_{max} and K^* were determined using exposure of Mag-Fura-2/AM loaded intact neurones or saponin-permeabilized neurones to 20 μ M ionomycin and four calibrating solutions with $[Ca^{2+}]<10$ nM (10 mM EGTA); 100 μ M; 400 μ M and 10 mM; solutions were prepared as described previously [43]. The calibration procedure on permeabilized cells consistently yielded higher (~40%) values for K*, most likely due to a higher Mag-Fura-2 K_D within the ER lumen. As we assumed this being more accurate, the values from the latter procedure were used throughout. Values of R_{min} , R_{max} and K^* were 0.3, 1.9 and 287 μ M respectively. Real-time video-imaging

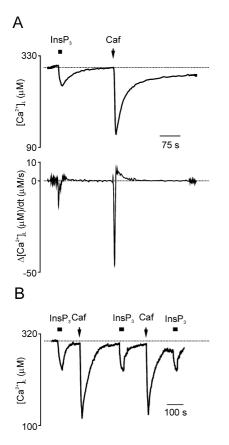
Fluorescence images were captured using an Olympus IX70 inverted microscope (40x UV objective) equipped with a chargecoupled device (CCD) cooled intensified camera (Pentamax Gene IV, Roper Scientific, UK). The specimen was alternately illuminated at 340, 380 and 488 nm by a monochromator (Polychrom IV, TILL Photonics, Germany) at a cycle frequency 0.5–5 Hz. Control over the experiment, image storage and off-line analysis was performed by use of MetaFluor/MetaMorph software (Universal Imaging Corporation, USA) running on a Windows 98 workstation.

Electrophysiology and solution exchange

Whole-cell recordings were made by using EPC-9 amplifier run by the PC-based PULS software (both from HEKA, Germany). The pipette resistance was $3-5 \text{ M}\Omega$. All solutions were applied using a fast local superfusion technique [53] which ensured complete exchange of the milieu surrounding the cell within 100 ms.

Solutions and reagents

The extracellular bathing solution contained (in mM): NaCl 135, KCl 3, CaCl₂ 2, glucose 20, HEPES/NaOH 20, pH 7.4. The Ca²⁺-free solution contained 5 mM EGTA with no CaCl₂ added. The "intracellular" solution used in permeabilization experiments contained (in mM): KCl 140, Na₂ATP 3, MgCl₂ 2, CaCl₂ 0.4, BAPTA 5, HEPES/KOH 20, pH 7.2, free Ca²⁺ concentration ~70 nM). The intra-pipette solution used for intracellular dialysis contained (in mM): CsCl₂ 122, TEA-Cl 20; Na₂ATP 3, HEPES/CsOH 10, EGTA 0.1, pH 7.3. All reagents were obtained from Sigma (Dorset, UK), and fluorescent probes were obtained from Molecular Probes (Ore., USA).


Results

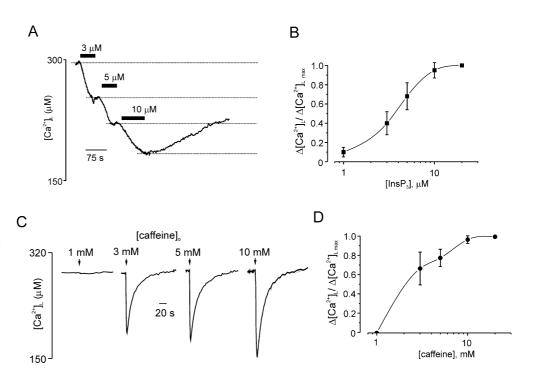
Sensory neurones co-express functional InsP₃Rs and RyRs

We monitored intraluminal Ca^{2+} dynamics in single sensory neurones using low-affinity Ca^{2+} probe Mag-Fura-2 compartmentalized within the ER lumen. The cytosolic portion of the dye was removed either by intracellular dialysis under whole-cell patch-clamp configuration [43], or by permeabilization of the plasmalemma by brief application of saponin [41, 42]. We used the latter technique to permit direct activation of InsP₃Rs by InsP₃, which otherwise cannot penetrate through the cell membrane.

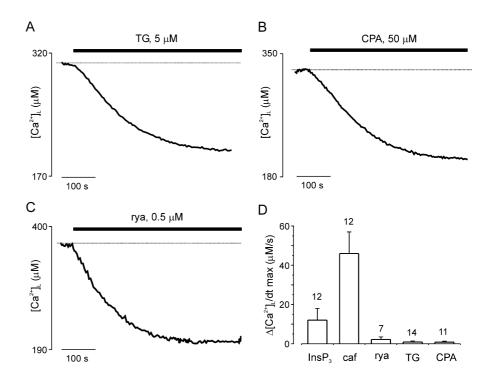
The resting $[Ca^{2+}]_L$ determined with both techniques varied between 100 and 400 μ M. Since $[Ca^{2+}]_L$ is an important determinant of the velocity and magnitude of Ca^{2+} release [43] we restricted our analysis to neurones with $[Ca^{2+}]_L$ higher than ~300 μ M.

Brief extracellular applications of both InsP₃ (3– 10 μ M; 10 s) and caffeine (20 mM, 5 s) to permeabilized neurones triggered transient fall in [Ca²⁺]_L, which recovered to the pre-stimulated level after washout (Fig. 1). We found these responses in all neurones subjected to such an application protocol (*n*=12). The InsP₃-induced [Ca²⁺]_L decrease was substantially slower as compared to that induced by caffeine: on average maximal velocity of

Fig. 1A, B InsP₃Rs and RyRs coexist in DRG neurones. **A** The endoplasmic reticulum lumen $[Ca^{2+}]_{L}$ ($[Ca^{2+}]_{L}$) recording (*top trace*) and its first derivative (*bottom trace*) obtained from permeabilized DRG neurone pre-loaded with Mag-Fura-2/AM. The neurone was challenged by 10 μ M InsP₃ and 20 mM caffeine as indicated on the graph. **B** The $[Ca^{2+}]_{L}$ recordings from another permeabilized DRG neurone alternately treated with 10 μ M inositol-1,4,5-trisphosphate (InsP₃) and 20 mM caffeine as indicated on the graph


 $[Ca^{2+}]_L$ decrease induced by InsP₃ was about three times lower as compared with $[Ca^{2+}]_L$ decrease induced by caffeine (12±6 μ M/s versus 41±10 μ M/s, respectively; n=12, see also Fig. 3). Quite obviously the depletion of ER store by InsP₃ required much more time as compared with caffeine (see for example Fig. 5). Such a difference may result from either lower density of InsP₃Rs or from denial of Ca²⁺-induced potentiation of IICR in heavily buffered "intracellular" solution in permeabilized experiments.

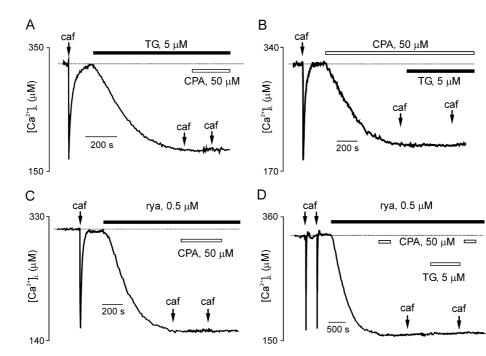
Both agents, caffeine and InsP₃, triggered $[Ca^{2+}]_L$ decrease in a dose-dependent fashion (Fig. 2). The responses to InsP₃ saturated at 10 μ M, i.e. at a rather high concentration, which might reflect either hampered diffusion of InsP₃ towards ER membrane even in permeabilized preparation, or generally lower sensitivity of neuronal InsP₃Rs to InsP₃ [22]. Responses to caffeine saturated at concentrations higher than 10 mM. Therefore, these experiments demonstrate that ER membrane in DRG neurones possesses both InsP₃-induced and Ca²⁺induced Ca²⁺-release mechanisms (IICR and CICR, respectively).


Inhibition of SERCA pumps and direct activation of RyR deplete the Ca^{2+} store

The ability of the ER Ca^{2+} store to generate Ca^{2+} signals is regulated by intraluminal free Ca^{2+} concentration, so that store depletion prevents development of Ca^{2+} release. We have already demonstrated that the store replenishment following CICR (induced either by caffeine or by Ca^{2+} entry) is determined by thapsigargin (TG)-sensitive sarco(endoplasmic)reticulum Ca^{2+} -ATPase (SERCA) pumps [43]. Here we investigated the mechanisms of

Fig. 2A–D Dose-dependence of InsP₃-induced and caffeineinduced Ca^{2+} release in DRG neurones. A The changes in $[Ca^{2+}]_L$ measured from permeabilized DRG neurone in response to applications of increasing concentrations of InsP₃. **B** The concentration dependence of InsP₃-induced decrease in $[Ca^{2+}]_L$. The data are mean±SD from 5 cells. C The changes in $[Ca^{2+}]_L$ measured from dialysed DRG neurone in response to applications of increasing concentrations of caffeine. $\breve{\mathbf{D}}$ The concentration dependence of caffeine-induced decrease in $[Ca^{2+}]_L$. The data are mean±SD from 5 cells

Fig. 3A–D Activation of RyRs and inhibition of SERCA pumps deplete the Ca²⁺ store. **A–C** Examples of $[Ca^{2+}]_L$ recordings from Mag-Fura-2 pre-loaded dialysed DRG neurones in response to extracellular application of thapsigargin (*TG*), cyclopiazonic acid (*CPA*) and ryanodine (*rya*). **D** Average values (mean±SD, *n* is indicated on the graph) of maximal rate of $[Ca^{2+}]_L$ decrease induced by 10 μ M InsP₃, 20 mM caffeine, 0.5 μ M ryanodine, 5 μ M TG and 50 μ M CPA


store depletion in greater detail. Conceptually the stores can be depleted either by inhibition of Ca²⁺ uptake, which leaves the resting Ca²⁺ leakage unopposed, or by stimulation of Ca²⁺ release channels. In DRG neurones the inhibition of SERCA pumps by both TG (5 μ M; n=14) and cyclopiazonic acid (CPA, 50 μ M; n=11) triggered a progressive decrease in $[Ca^{2+}]_L$ which stabilized after complete depletion of the store (Fig. 3A, B). Alternatively the stores can be depleted by activation of the Ca^{2+} release route. For this purpose we incubated the neurones with a low (0.5 μ M) concentration of ryanodine. At this concentration the latter is known to promote opening of RyRs either by direct interaction with gating mechanisms [40] or by a dramatic (~1,000-fold) increase in RyRs sensitivity to cytosolic Ca²⁺ [26]. As shown in Fig. 3C, application of 0.5 μ M of ryanodine effectively decreased $[Ca^{2+}]_L$, thus indicating the depletion of the ER store. The maximal velocities of [Ca²⁺]_L decrease initiated by various pharmacological agents (caffeine, InsP₃, ryanodine, TG and CPA) are compared in Fig. 3D.

RyRs and InsP₃Rs share the common pool sensitive to TG and CPA

The experiments described above have evidently demonstrated that the ER in DRG neurones is endowed with functional InsP₃Rs, RyRs as well as with TG and CPAsensitive SERCA pumps. These data enabled us to address the central question of this study, i.e. whether all these mechanisms operate within a single Ca²⁺ pool or the ER Ca²⁺ store is represented by several independent compartments. For this purpose we utilized the ability of the agents described above to deplete the ER store. After Ca^{2+} pool was depleted by one of these agents, we tested the ability of others to initiate a further decrease in $[Ca^{2+}]_L$. The appearance of such a decrease would indicate the coexistence of separate Ca^{2+} pools.

First we tested the ability of TG and CPA to deplete the caffeine-sensitive Ca²⁺ pool. As shown in Fig. 4A, dialysed neurones were initially challenged with caffeine to probe for the existence of a caffeine-sensitive pool. Subsequently the neurones were incubated with 5 μ M TG which resulted in a decrease in $[Ca^{2+}]_L$. After complete depletion of the pool (as was judged by stabilization of $[Ca^{2+}]_{L}$ in the presence of TG) the cells were challenged with 20 mM caffeine and 50 μ M CPA. In all nine neurones exposed to such a protocol neither caffeine nor CPA were able to affect $[Ca^{2+}]_L$ after the stores were depleted by TG. Similar results were obtained when Ca²⁺ pool was initially depleted by 50 μ M CPA: both caffeine and TG applied in the presence of CPA failed to affect $[Ca^{2+}]_L$ (Fig. 4B, *n*=8). Likewise, depletion of stores with 0.5 μ M ryanodine rendered caffeine, CPA and TG, applied in the presence of ryanodine, totally ineffective (*n*=7; Fig. 4C, D).

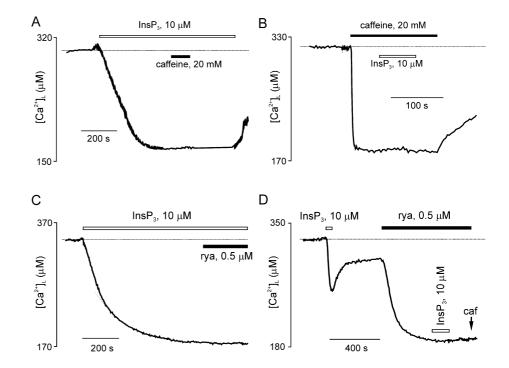

After completion of these experiments we switched to permeabilized neurones, thus gaining the possibility to test for InsP₃-induced Ca²⁺ release. The cells were initially incubated with 10 μ M InsP₃, which resulted in a drop in [Ca²⁺]_L. The [Ca²⁺]_L stabilized at a steady-state level after complete depletion of the InsP₃-sensitive pool. Application of caffeine performed at this moment failed to further affect [Ca²⁺]_L (Fig. 5A, *n*=7). Vice versa, when the stores were depleted in the presence of 20 mM of caffeine, application of 10 μ M InsP₃ did not induce any changes in [Ca²⁺]_L (Fig. 5B, *n*=6). Despite the clarity of the traces resulting from the protocols described above,

Fig. 4A–D Ryanodine- and caffeine-releasable Ca^{2+} pool is sensitive to sarco(endoplasmic)reticulum Ca^{2+} -ATPase (SERCA) inhibition by TG and CPA. All traces represent $[Ca^{2+}]_L$ recordings from Mag-Fura-2 pre-loaded dialysed DRG neurones. **A** $[Ca^{2+}]_L$ recording in response to applications of 20 mM caffeine, TG and CPA.

Depletion of Ca²⁺ store by TG completely eliminates responses to caffeine and CPA. **B** Similarly to **A** depletion of Ca²⁺ store by CPA prevents [Ca²⁺]_L responses to 20 mM caffeine and to TG. **C**, **D** Activation of RyRs by 0.5 μ M ryanodine depletes Ca²⁺ store and abolishes [Ca²⁺]_L responses to CPA, TG and 20 mM caffeine

Fig. 5A-D InsP₃Rs and RyRs share a common Ca²⁺ pool in sensory neurones. All traces represent [Ca²⁺]_L recordings from Mag-Fura-2 pre-loaded permeabilized DRG neurones. A Depletion of Ca²⁺ store by incubation with 10 μ M InsP₃ completely abolishes [Ca²⁺]_L response to 20 mM caffeine. B Similarly, depletion of the Ca²⁺ store in continuous presence of caffeine eliminates the InsP₃induced Ca²⁺ release. C Depletion of Ca²⁺ store by incubation with 10 μ M InsP₃ completely abolishes $[Ca^{2+}]_L$ response to ryanodine. **D** When the Ca²⁺ store was depleted by 0.5 μ M ryanodine neither InsP₃ nor caffeine (20 mM) were able to produce further Ca²⁺ release

doubt remained, as caffeine is known as an effective inhibitor of InsP₃Rs [11, 33, 54]. Therefore, we looked for alternative means to specifically activate RyRs, and used 0.5 μ M ryanodine for this purpose. Once more, after the Ca²⁺ pool was depleted by incubation with 10 μ M of InsP₃, ryanodine was unable to induce any further

fluctuations in $[Ca^{2+}]_L$ (Fig. 5C; n=5). Likewise, when the permeabilized neurone was treated with 0.5 μ M ryanodine to achieve full exhaustion of the Ca²⁺ pool, neither InsP₃ nor caffeine were able to activate any additional Ca²⁺ release (Fig. 5D, n=5).

It has to be noted that SERCA inhibitors, caffeine and InsP₃ all decreased $[Ca^{2+}]_L$ to the same, relatively high residual level. As we have demonstrated before [43] application of ionomycin in Ca²⁺-free extracellular solution following TG and/or CPA treatment reduced $[Ca^{2+}]_L$ to zero (R_{\min}) . This high residual $[Ca^{2+}]_L$ can reflect a limitation of the method, suggesting that part of the signal comes from an intracellular compartment not connected with the caffeine- or TG-sensitive portion of the ER. Nonetheless, as we already discussed in our previous paper [43] it may also represent an intrinsic property of the ER store, when severe depletion of the later may inhibit further release through Ca²⁺release/k leakage

Discussion

channels.

Here we report the first direct measurements of intraluminal Ca²⁺ dynamics in mammalian neurones during Ca²⁺ release produced by activation of InsP₃Rs and RyRs. We found that these two types of Ca²⁺ release, the IICR and the CICR, not only coexist in sensory neurones but they share a common Ca²⁺ pool. Our suggestion contradicts a recent hypothesis postulating the existence of functionally separate ER Ca2+ pools in both excitable and nonexcitable cells, including neurones [5]. The idea of separate Ca²⁺ pools was instigated by experiments employing direct imaging of intra-ER Ca2+ movements in astrocytes and atrial myocytes [15, 16, 17]. These studies concluded that excitable and non-excitable cells have at least two separate Ca²⁺ pools sensitive to InsP₃ and caffeine, respectively. This was based on the finding that inhibition of SERCA pumps by TG and CPA depletes the InsP₃-sensitive Ca²⁺ stores and abolishes responses to metabotropic agonists; however, this manipulation does not affect Ca²⁺ release triggered by caffeine. Although this finding explicitly implies the existence of a specific Ca²⁺-uptake pathway replenishing the caffeine-sensitive pool, the authors of the cited studies failed to hypothesize on it.

The experiments described in this paper do not support the hypothesis of separate Ca^{2+} pools. On the contrary, in a series of direct approaches, we have demonstrated that depletion of Ca^{2+} stores by either opening of RyRs or InsP₃Rs or by SERCA inhibition is always complete, and it precludes any further Ca^{2+} release irrespective of its mechanism. The most direct evidence for a common Ca^{2+} pool was obtained from the protocols shown in Fig. 5. These experiments show that depletion of the Ca^{2+} store due to an activation of RyRs by caffeine or ryanodine completely abolishes InsP₃-induced Ca^{2+} release, and vice versa, when the stores are depleted following InsP₃Rs activation, the RyR-mediated Ca^{2+} release is fully blocked.

Our suggestion of the continuity of the neuronal ER Ca^{2+} store is in line with a multitude of morphological evidence which describes neuronal ER as a continuous interconnected network [44]. Furthermore, a direct ap-

proach aimed at investigating the continuity of the ER in Purkinje neurones with a lypophylic fluorescent dye travelling exclusively in ER membranes [48] has clearly demonstrated the continuity of the ER. Similarly, a wealth of experimental data obtained in non-neuronal cells favours, to a very large extent, the idea of ER continuity. For instance, relatively large molecules, such as ERtargeted GFP, were reported to rapidly diffuse within the ER luminal space [10, 45]. In addition, a series of refined experiments on pancreatic acinar cells [30] have convincingly demonstrated that (1) fluorescent Ca²⁺ probes can diffuse freely within the ER lumen, and (2) even more importantly that $[Ca^{2+}]_L$ rapidly equilibrates within the ER lumen following local photorelease of caged calcium.

The existence of a continuous Ca^{2+} pool connected through the ER lumen could be very important for neuronal function. First, rapid Ca²⁺ diffusion through the ER "Ca²⁺ tunnels" [29] supports Ca²⁺ release in cell subcompartments by preventing severe store depletion following intensive local stimulation. Second, the same intraluminal Ca2+ diffusion may be instrumental in conveying Ca²⁺ signals from distal neuronal processes toward the nucleus [34], as was suggested by recent findings showing the importance of ER Ca²⁺ uptake in nuclear Ca^{2+} signalling [18, 35]. Third, intra-ER Ca^{2+} equilibration could facilitate clearance of local excessive Ca^{2+} loads. Finally, the existence of a continuous ER Ca^{2+} store can be very important in guarding against profound store depletion (which may happen more easily in small, separated Ca²⁺ pools), thus protecting normal functioning of intraluminal chaperones and therefore supporting cell functioning.

Acknowledgements This research was supported by a BBSRC research grant to A.V. (ref. 34/C12751). The authors are grateful to Prof. D. Tomlinson for helpful comments on the manuscript.

References

- Alford S, Frenguelli BG, Schofield JG, Collingridge GL (1993) Characterization of Ca²⁺ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J Physiol (Lond) 469:693–716
- Aridor M, Balch WE (1999) Integration of endoplasmic reticulum signaling in health and disease. Nat Med 5:745– 751
- 3. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26
- Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signalling organelle. Cell Calcium 32:235–249
- Blaustein MP, Golovina VA (2001) Structural complexity and functional diversity of endoplasmic reticulum Ca²⁺ stores. Trends Neurosci 24:602–608
- 6. Bootman MD Petersen OH, Verkhratsky A (2002) The endoplasmic reticulum is a focal point for co-ordination of cellular activity. Cell Calcium 32:231–234
- Camello C, Lomax R, Petersen OH, Tepikin AV (2002) Calcium leak from intracellular stores-the enigma of calcium signalling. Cell Calcium 32:355–361
- Cheek TR, Barry VA, Berridge MJ, Missiaen L (1991) Bovine adrenal chromaffin cells contain an inositol 1,4,5-trisphosphateinsensitive but caffeine-sensitive Ca²⁺ store that can be

regulated by intraluminal free Ca^{2+} . Biochem J 275:697–701

- Corbett EF, Michalak M (2000) Calcium, a signaling molecule in the endoplasmic reticulum? Trends Biochem Sci 25:307–311
- Dayel MJ, Hom EF, Verkman AS (1999) Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum Biophys J 76:2843–2851
 Ehrilch BE, Kaftan E, Bezprozvannaya S, Bezprozvanny I
- Ehrilch BE, Kaftan E, Bezprozvannaya S, Bezprozvanny I (1994) The pharmacology of intracellular Ca²⁺ release channels. Trends Pharmacol Sci 15:145–149
- Emptage N, Bliss TV, Fine A (1999) Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron 22:115–124
- Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396:753–756
- 14. Glazner G, Fernyhough P (2002) Neuronal survival in the balance: are endoplasmic reticulum membrane proteins the fulcrum? Cell Calcium 32:421–433
- Golovina VA, Blaustein MP (1997) Spatially and functionally distinct Ca²⁺ stores in sarcoplasmic and endoplasmic reticulum. Science 275:1643–1648
- Golovina VA, Blaustein MP (2000) Unloading and refilling of two classes of spatially resolved endoplasmic reticulum Ca²⁺ stores in astrocytes. Glia 31:15–28
- Golovina VA, Bambrick LL, Yarowsky PJ, Krueger BK, Blaustein MP (1996) Modulation of two functionally distinct Ca²⁺ stores in astrocytes: role of the plasmalemma Na/Ca exchanger. Glia 16:296–305
- Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4:261–267
- Imanishi T, Yamanaka H, Rhee JS, Akaike N (1996) Interaction between the intracellular Ca²⁺ stores in rat dissociated hippocampal neurones. Neuroreport 7:1421–1426
- Irving AJ, Collingridge GL, Schofield JG (1992)L-Glutamate and acetylcholine mobilise Ca²⁺ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca²⁺ sensitivities. Cell Calcium 13:293– 301
- Khodakhah K, Armstrong CM (1997) Inositol trisphosphate and ryanodine receptors share a common functional Ca²⁺ pool in cerebellar Purkinje neurons. Biophys J 73:3349–3357
- 22. Khodakhah K, Ogden D (1993) Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes and peripheral tissues. Proc Natl Acad Sci USA 90:4976–4980
- Kimball BC, Yule DI, Mulholland MW (1996) Caffeine- and ryanodine-sensitive Ca²⁺ stores in cultured guinea pig myenteric neurons. Am J Physiol 270:G594–603
- Kovalchuk Y, Eilers J, Lisman J, Konnerth A (2000) NMDA receptor-mediated subthreshold Ca(2+) signals in spines of hippocampal neurons. J Neurosci 20:1791–1799
- Llano I, Gonzalez J, Caputo C, Lai FA, Blayney LM, Tan YP, Marty A (2000) Presynaptic calcium stores underlie largeamplitude miniature IPSCs and spontaneous calcium transients. Nat Neurosci 3:1256–1265
- 26. Masumiya H, Li P, Zhang L, Chen SR (2001) Ryanodine sensitizes the Ca²⁺ release channel (ryanodine receptor) to Ca²⁺ activation. J Biol Chem 276:39727–39735
- Meldolesi J (2001) Rapidly exchanging Ca²⁺ stores in neurons: molecular, structural and functional properties. Prog Neurobiol 65:309–338
- Michalak M, Robert-Parker JM, Opas M (2002) Ca²⁺ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32:269–278
- 29. Mogami H, Nakano K, Tepikin AV, Petersen OH (1997) Ca²⁺ flow via tunnels in polarized cells: recharging of apical Ca²⁺ stores by focal Ca²⁺ entry through basal membrane patch. Cell 88:49–55

- Park MK, Petersen OH, Tepikin AV (2000) The endoplasmic reticulum as one continuous Ca²⁺ pool: visualization of rapid Ca²⁺ movements and equilibration. EMBO J 19:5729–5739
- Park MK, Tepikin AV, Petersen OH (2002) What can we learn about cell signaling by combining optical imaging and patch clamp techniques? Pflugers Arch 444:305–316
- Patel S, Joseph SK, Thomas AP (1999) Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25:247– 264
- Petersen OH, Cancela JM (1999) New Ca²⁺-releasing messengers: are they important in the nervous system? Trends Neurosci 22:488–495
- Petersen OH, Tepikin A, Park MK (2001) The endoplasmic reticulum: one continuous or several separate Ca²⁺ stores? Trends Neurosci 24:271–276
- Power JM, Sah P (2002) Nuclear calcium signaling evoked by cholinergic stimulation in hippocampal CA1 pyramidal neurons. J Neurosci 22:3454–3462
- Rossi D, Sorrentino V (2002) Molecular genetics of ryanodine receptors Ca²⁺ release channels. Cell Calcium 32:307–319
- 37. Satoh T, Ross CA, Villa A, Supattapone S, Pozzan T, Snyder SH, Meldolesi J (1990) The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J Cell Biol 111:615–624
- Sharp AH, McPherson PS, Dawson TM, Aoki C, Campbell KP, Snyder SH (1993) Differential immunohistochemical localization of inositol 1,4,5,-trisphosphate- and ryanodinesensitive Ca²⁺ release channels in rat brain. J Neurosci 13:3051–3063
- 39. Simpson PB, Nahorski SR, Challiss RA (1996) Agonist-evoked Ca²⁺ mobilization from stores expressing inositol 1,4,5-trisphosphate receptors and ryanodine receptors in cerebellar granule neurones. J Neurochem 67:364–373
- Sitsapesan R, McGarry SJ, Williams AJ (1995) Cyclic ADPribose, the ryanodine receptor and Ca²⁺ release. Trends Pharmacol Sci 16:386–391
- Solovyova N, Verkhratsky A (2002) Monitoring of free calcium in the neuronal endoplasmic reticulum: an overview of modern approaches. J Neurosci Methods 122:1–12
- 42. Solovyova N, Fernyhough P, Glazner G, Verkhratsky A (2002) Xestospongin C empties the ER calcium store but does not inhibit InsP(3)-induced Ca²⁺ release in cultured dorsal root ganglia neurones. Cell Calcium 32:49–52
- 43. Solovyova N, Veselovsky N, Toescu EC, Verkhratsky A (2002) Ca²⁺ dynamics in the lumen of the endoplasmic reticulum in sensory neurones: direct visualisation of Ca²⁺-induced Ca²⁺ release triggered by physiological Ca²⁺ entry. EMBO J 21:622– 630
- 44. Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17:190–203
- Subramanian K, Meyer T (1997) Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell 89:963–971
- Takechi H, Eilers J, Konnerth A (1998) A new class of synaptic response involving calcium release in dendritic spines. Nature 396:757–760
- Taylor CW, Laude AJ (2002) IP3 receptors and their regulation by calmodulin and cytosolic Ca²⁺ Cell Calcium 32:321– 334
- 48. Terasaki M, Slater NT, Fein A, Schmidek A, Reese TS (1994) Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc Natl Acad Sci USA 91:7510–7514
- 49. Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P (2000) A comparison of fluorescent Ca²⁺ indicator properties and their use in measuring elementary and global Ca²⁺ signals. Cell Calcium 28:213–223
- Verkhratsky A (2002) The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium 32:393–404

- 51. Verkhratsky A, Petersen OH (2002) The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. Eur J Pharmacol 447:141–154 52. Verkhratsky A, Shmigol A (1996) Calcium-induced calcium
- release in neurones. Cell Calcium 19:1–14 53. Veselovsky NS, Engert F, Lux HD (1996) Fast local superfu-
- sion technique. Pflugers Arch 432:351-354
- 54. Wakui M, Osipchuk YV, Petersen OH (1990) Receptor-activated cytoplasmic Ca^{2+} spiking mediated by inositol trisphosphate is due to Ca^{2+} -induced Ca^{2+} release. Cell 63:1025–1032