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Abstract The Na+/Ca2+ exchanger gene family encom-
passes three distinct proteins, NCX1, NCX2, and NCX3,
which mediate cellular Ca2+ efflux and thus contribute to
intracellular Ca2+ homeostasis. NCX1 is expressed ubiq-
uitously while NCX2 and NCX3 are limited to brain and
skeletal muscle. NCX1 exchanges 3 extracellular Na+ for
1 intracellular Ca2+. In addition to transporting Na+ and
Ca2+, NCX1 activity is also regulated by these cations.
NCX1 is especially important in regulating cardiac
contractility.

Keywords Calcium · Sodium · Antiport · Myocardium ·
Sodium-calcium exchange

Discovery of the SLC8 family

A Na+/Ca2+ countertransport mechanism was first de-
scribed in heart [75] and squid axon [2]. NCX1 was
cloned by screening an expression library with an
antibody [62]. NCX2 was isolated by screening a brain
cDNA library at low stringency with a probe derived from
NCX1 [46]. Degenerate oligonucleotide primers to an a-
repeat region and the exchanger inhibitory peptide (XIP)
region of NCX1 and NCX2 (see below) were used to

screen brain cDNA libraries and identify the other
isoform, NCX3 [64]. No other members of this family
are likely to exist in humans.

SLC8 together with SLC24 constitute a superfamily of
Na+/Ca2+ countertransporters. The latter also transports
K+ (see this volume). There is a cluster of orthologous
genes (COG0530) containing 23 members which are
named Ca2+/Na+ antiporters although functional data have
not yet been presented. An NCX-like protein in plants that
is a Mg2+/H+ antiporter has been described [80].

Functional characteristics

NCX1 is the most highly characterized member of this
family (Fig. 1), though NCX2 and NCX3 appear to have
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Fig. 1 Topological model of the Na+/Ca2+ exchanger NCX1.
NCX1 has 9 transmembrane segments (TMSs, Roman numerals)
with a large intracellular loop connecting TMSs 5 and 6. The a-
repeats (red) are each composed of two homologous segments
connected by a variable region. A residue involved in binding KB-
R7943 (yellow) is in a-2. The large intracellular loop contains the
regulatory Ca2+ binding site (green), b-repeats (blue), alternative
splice site (pink) and endogenous exchange inhibitory peptide (XIP)
region (brown)



similar characteristics. NCX1 catalyzes the consecutive
exchange of 3 Na+ for 1 Ca2+ ([35, 71]; though see [18]).
A current is generated during transport. Physiological
electrochemical gradients result primarily in forward
(cellular Ca2+ efflux) exchange activity though both
forward and reverse Na+-Ca2+ exchange currents are
readily measured in giant membrane patches [23]. The
stereotypic reverse Na+/Ca2+ exchange current displays
Na+

i-dependent inactivation (I1; [26]) and Ca2+
i-depen-

dent enhancement (I2; [24, 25]). All three NCX isoforms
display I1 and I2 regulation [48].

The three NCX isoforms have been compared in whole
cells or vesicles isolated from stably transfected cells [30,
48]. The apparent affinities for transported ions at either
membrane surface are similar in all three isoforms.
Responses to chymotrypsin, pH, or the inhibitor Phe-Arg-
Cys-Arg-Cys-Phe-CONH2 (FRCRCFa) are also similar.
Activities of NCX1 and NCX3 but not NCX2 are
increased modestly by activation of protein kinases A or
C. NCX1 and NCX2 but not NCX3 activities are
modulated by intracellular ATP levels.

Expression patterns

The Na+/Ca2+ exchanger family members NCX1, NCX2,
and NCX3 are products of separate genes (Table 1) [64].
NCX1 mRNA is nearly ubiquitous and NCX2 and NCX3
mRNAs have been detected only in brain and skeletal
muscle [41, 64]. The NCXs are plasma membrane
proteins and exchange Na+ for Ca2+, though Ca2+/Ca2+,
Na+/Na+, Na+/Mg2+, Na+/Ba2+, Na+/Sr2+, and Na+/Ni2+

exchanges have been described [5, 14, 65, 81, 84]. In
heart, NCX1 is localized to both surface and T-tubular
sarcolemma of cardiomyocytes with increased density in
T-tubules in some studies [16, 37, 79, 87]. In the kidney,
NCX1 protein is expressed preferentially in the basolat-
eral membrane of cells from distinct sections of the cortex
[9, 17, 72]. In rat brain, NCX1 mRNA shows a specific
regional pattern [50, 89] and NCX1 protein is distributed
in discrete sites on the plasmalemma, some of which are
in proximity to intracellular Ca2+ stores [32, 49].
Furthermore, NCX1, NCX2, and NCX3 proteins are
expressed differentially in a cell-specific manner in
distinct portions of rat brain [83]. The sarcolemma of
rat skeletal muscle cells expresses both NCX1 and NCX3
in a muscle fiber-specific manner [11, 17]. A region at the
C-terminus of the large intracellular loop of NCX1 and
NCX3 undergoes extensive alternative splicing in a
tissue-specific, developmentally regulated manner [38,
70]. Expression of mutually exclusive exons in NCX1
splice variants from kidney and brain gives rise to distinct
ionic regulatory phenotypes [13].

Physiological implications

The Na+/Ca2+ exchanger proteins primarily mediate
cellular Ca2+ efflux and thus help maintain intracellular T
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Ca2+ homeostasis. In heart, NCX1 contributes to muscle
relaxation by extruding Ca2+ that entered cardiomyocytes
to initiate systole (Fig. 2). Transgenic mice or cultured
cells over-expressing NCX1 show altered Ca2+

i transients
[1, 77, 82, 83, 88] and SR Ca2+ content [82] as well as
altered responsiveness to cardiovascular stresses [10, 20].
Furthermore, over-expression of a NCX1 mutant lacking
I1 and I2 leads to alterations of cardiac contractile
properties [55]. Homozygous NCX1 knockout mice are
embryonic lethal at �11 days post-coitum [9, 40, 74, 85].
Heart tubes from day 9.5 NCX1 knockout embryos have
been useful for studying excitation-contraction coupling
in the absence of Na+/Ca2+ exchange [40, 73, 74]. The
functional role of NCX1 in other tissues is not as well
defined as in the heart [5]. Although isoform-specific
cellular expression patterns suggest distinct functions for
each of the three exchangers [17, 83], the physiological
roles of NCX2 and NCX3 in brain and skeletal muscle
remain elusive.

Regulation of expression

Expression of the NCX1 gene is controlled by alternative
promoters [3, 60] in a tissue-specific [3, 41, 58] and
transcription factor-specific manner [8, 57, 59]. The
NCX1 heart promoter is sufficient to control cardiac-
specific expression of NCX1 during development in mice

and in hypertrophic hearts [56]. In vitro, the NCX1 heart
promoter is regulated by adrenergic agents and the
calcineurin inhibitor cyclosporin A [3, 8, 31, 57]. In
many tissues, expression of NCX1 [6, 7, 39, 70], NCX2
[44], and NCX3 [11, 17] is regulated developmentally.
Ca2+ is critical for the expression of all NCX isoforms in
cerebellar neurons but only NCX2 transcription is con-
trolled by calcineurin [44]. Elevated exchanger transcript
and/or protein levels in animal models of heart failure, in
the human failing heart [15, 21, 26, 66, 67], and in cardiac
hypertrophy [34, 56, 86] have been reported.

Biochemical and structural characteristics

The amino acid sequences of the three NCX isoforms are
about 70% identical. All biochemical and structural
information comes from studies involving NCX1. The
current topological model for NCX1 is shown in Fig. 1.

NCX models contain nine transmembrane segments
(TMS) in two groups. Five TMSs near the amino terminus
are separated from four near the carboxy terminus by a
large intracellular loop. The extracellular amino terminus
and the loop connecting TMSs 6 and 7 are linked via a
disulfide bond [76]. The disulfide bond may aid in
expression of the exchanger [68]. Each NCX contains two
pairs of internal repeats, designated a- and b-repeats [78].
The a-repeats (PFAM01699) consist of two groups of
highly conserved residues separated by a short uncon-
served linker and are located in the groups of TMS. The
a-repeat regions have been implicated in ion binding and
transport [61] and may form membrane reentrant seg-
ments [30, 63]. The a-2 domain is involved in determin-
ing the sensitivity of the exchanger to the inhibitor KB-
R7943 [28]. The a-repeat regions interact with one
another in the tertiary structure of the protein [69]. The b-
repeats (PFAM03160) are in the intracellular loop and
share sequence similarity with a motif found in b4
integrin [78]. The function of this motif is unknown.

The intracellular loop is involved in I1 and I2
inactivation [54]. Regulatory Ca2+ associated with I2
binds to a portion of the intracellular loop comprised of
b1 and the b1-b2 linker [42, 43, 53]. Two groups of three
consecutive acidic amino acids are involved in binding
Ca2+.

Near the intracellular surface of the fifth TMS is a 20-
amino acid region designated XIP. A peptide with the
sequence of XIP inhibits the exchanger [47]. Mutations in
the XIP region [52] or in the intracellular loop between
transmembrane segments 1 and 2 [12] alter the properties
of Na+-dependent inactivation. The binding site on NCX1
for exogenously applied XIP is not known but XIP binds
to vesicles containing PIP2 [22]. PIP2 stimulates NCX1 by
removing Na+-dependent inactivation [23]. NCX1 binds
to ankyrin but the binding site has not been identified
[45].

Fig. 2 Na+/Ca2+ exchange and excitation-contraction coupling. The
cartoon shows a ventricular cardiomyocyte and the relevant
pathways of Ca2+ signaling during contraction and relaxation of
the heart. Ca2+ enters the cell through voltage-gated Ca2+ channels
(red) or possibly reverse Na+/Ca2+ exchange (NCX) to initiate
systole. Ca2+ influx triggers Ca2+ release from the junctional
sarcoplasmic reticulum (JSR) via the ryanodine receptor (RYR). To
produce diastole, Ca2+ is transported back into the SR by the SR
Ca2+ ATPase (SERCA) or is removed from the cytosol by the Na+/
Ca2+ exchanger (NCX), the sarcolemmal Ca2+-ATPase (blue), or by
the mitochondrial Ca2+ uniporter (pink). Orange, Na+/K+-ATPase.
Mitochondria also possess a poorly characterized Na+/Ca2+ ex-
changer. The Na+/Ca2+ exchanger is the dominant cellular Ca2+

efflux mechanism and regulates contractility. After D. Bers, with
permission
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Pathological implications

NCX1 regulates cardiac contractility by regulating the
amount of intracellular Ca2+. Nevertheless, the role of an
up-regulated exchanger in cardiac hypertrophy and heart
failure is controversial. An increase in Ca2+ extrusion may
preserve low diastolic Ca2+

i levels [21] but could also
deplete sarcoplasmic reticular Ca2+ stores. There has been
support for a role of reverse exchange, in which Ca2+ is
transported into the cell via NCX1; reverse exchange
through an up-regulated exchanger may contribute to
Ca2+-induced Ca2+ release from the sarcoplasmic reticu-
lum and could augment contractility in heart failure.
These possibilities have been debated widely [4, 19, 27].

Pharmacological and pharmaceutical aspects

NCX activity is blocked non-selectively by amiloride or
bepridil analogs [33] and by an isothiourea derivative
(KB-R7943) [28]. NCX is also inhibited by the synthetic
peptides XIP (see above) and FMRFa and its analogs [36].
SEA0400 is a recently described, potent exchange
inhibitor still under investigation [51]. NCX1 knockout
mice have been used to demonstrate that both KB-R7943
and SEA0400 are non-selective [73]. There is no known,
clinically useful Na+-Ca2+ exchange inhibitor. Further
development of exchange inhibitors may be useful in
combating the arrhythmias associated with heart failure.
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