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It has long been known that pathogens such as Vibrio
cholerae, Bordetella pertussis, Clostridium difficile and
Escherichia coli secrete toxins that produce specific
changes in cell signalling in epithelial and other cells [7,
38]. These toxins have tended to be viewed as anomalies,
useful as examples to stir the interest of medical
students, and helpful for studies on signalling systems,
but without great significance for our overall understand-
ing of the interactions of pathogens with epithelia or the
development of the signs and symptoms of the induced
disease. Recent advances in the understanding of intra-
cellular signalling systems, the sequencing of an increas-
ing number of bacterial and viral genomes, and the avail-
ability of genetically modified mice, however, have
resulted in an explosive growth in the knowledge of the
molecular mechanisms by which pathogens affect epi-
thelial function. Studies on the responses of epithelia to a
wide variety of pathogens, including influenza viruses,
rotaviruses, Pseudomonas aeruginosa and Bordetella
pertussis, among others, have revealed a plethora of
unsuspected acute and long-term effects of pathogens on
epithelial function. Not only have they provided impor-
tant new information on the mechanisms by which
pathogens lead to disease, but they have also offered
unexpected insights and tantalizing glimpses into the
mechanisms controlling normal epithelial function.

In this overview, we will focus on the acute effects
that pathogens have on epithelia, i.e. the effects occurring
within minutes of the epithelium being exposed to a
pathogen or its toxin. In particular, we will focus on
recent progress in the elucidation of the roles of toxins
and of the attachment of pathogens to the cell surface, as

triggers for the pathological effects of bacteria and viruses
on epithelia. The examples chosen are only illustrative
and are intended merely to give some feeling about
current progress in the field.

The effects of toxins

As mentioned above, the concept that bacteria produce
diarrhoea by secreting enterotoxins is well established.
For example, Vibrio cholerae [38], enterotoxic Escherichia
coli [4, 38] and Clostridium difficile [35] produce their
effects by secreting protein toxins into the extracellular
medium: cholera toxin irreversibly activates the Gs

protein [38], E. coli heat-stable enterotoxin activates
guanylate cyclase [4], and clostridial toxins A and B
irreversibly inactivate the small G proteins rhoA, rac and
cdc42 [35]. The role of the toxins secreted by Bordetella
pertussis [2] in producing whooping cough is also
becoming increasingly well defined.

Enteropathogenic E.coli [45], Salmonella spp. [9, 11],
Shigella spp. [36], and Pseudomonas aeruginosa [47],
however, like many other Gram-negative bacteria, have
the capacity to adhere to the surface of the epithelium
and to inject effector proteins directly into the cytosol
[47]. Although the molecular targets for these injected
proteins have been studied extensively, the mechanisms
by which the proteins lead to altered epithelial transport
are obscure in most cases [45]. Salmonella spp., for
example, inject a variety of enterotoxins (Fig. 1), among
which SopE2 and SopB stimulate the small G protein
cdc42 [10, 49], and SopE stimulates cdc42 as well as the
closely related rac1 [10]. In polarized epithelial cells,
rac1 acts synergistically with the bacterial proteins SipA
and SipC to produce the cytoskeletal rearrangements
[11], evident as membrane ruffling, which mediate bacterial
entry into the cell across the apical membrane [5]. In
contrast, active cdc42 is the major mediator of bacterial
entry across the basolateral membrane, as it is across the
plasma membranes of nonpolarized cells, with rac1 play-
ing a lesser role [5, 11]. Following bacterial entry, a third
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enterotoxin, SptP, is injected which reverses both the
activation of the G proteins and the cytoskeletal changes
[11]. Tantalizingly, SopB also acts as an inositol phospha-
tase that increases the cytosolic concentration of the acti-
vator of Ca2+-activated Cl– channels, inositol 1,4,5,6-tetra-
kisphosphate (IP4) [9], while decreasing the concentration
of the inhibitor of these channels, phosphatidylinositol
3,4,5-trisphosphate (PI 3,4,5P3) [26]. In keeping with the
functional redundancy among the toxins injected by
Salmonella, SopE also appears to be able indirectly to
stimulate the breakdown of IP4 [49]. These changes in
phosphoinositide levels may act synergistically with the
increase in intracellular Ca2+ that accompanies cellular
invasion by Salmonella [11, 31] to activate Ca2+-activated
Cl– channels. This attractive model for the stimulation of
fluid and electrolyte secretion by Salmonella, however, has
not been tested extensively and the precise links between
the injected bacterial toxins and the derangements in epi-
thelial transport they produce remain unclear. In particu-

lar, none of these toxins has yet been linked to the increase
in expression of epithelial Galanin-1 receptors which, on
the basis of studies in mutant mice, has been postulated as
an essential precursor to the onset of diarrhoea [27].

Among the known targets of toxin action, rho, rac and
cdc42 are notable for being targeted by many secreted
[35] and injected toxins [9, 11, 36, 45]. These toxins are
usually thought to be concerned principally with triggering
cytoskeletal re-organization leading to alterations in para-
cellular permeability [11, 37], although recent reports
that these small G proteins regulate transporters, including
Na+-H+ exchangers (NHEs) [40, 43] and aquaporins
[20], suggest that they may play an important role in
producing the transport defects that accompany the early
phase of epithelial infections.

Additional targets for bacterial toxins continue to be
identified. The α-hemolysin of uropathic E. coli, for
example, has recently been shown to induce Ca2+ oscilla-
tions in renal epithelial cells by a mechanism that
appears to involve both L-type Ca2+ channels and IP3-
gated Ca2+ stores [44]. Similarly, recent studies have
shown that Pseudomonas aeruginosa induces apoptosis
in epithelial cells by stimulating Jun N-terminal kinases
and up-regulating CD95 [19], which in turn inhibits Na+-
H+ exchange in T-lymphocytes [24].

340

Fig. 1 Effects of the effector proteins injected by Salmonella species
on signalling pathways in epithelial cells [9, 11]. The role of rac1
in regulating invasion of the bacterium across the apical membrane,
in contrast to the more widely recognized role of both cdc42 and
rac1 in regulating invasion across the basolateral membrane, is
reported in Criss et al. [5]. The role of cdc42, rac and PAK kinases
in triggering the responses of the nucleus to Salmonella infection
is described in Galán and Zhou [11]. The roles of SopB, PI3,4P2
and the Akt kinase in mediating the effects of Salmonella on cell
survival are described in Marcus et al. [26] and in Steele-Mortimer
et al. [39]. In step 1, a bacterium has engaged the apical membrane
of the cell and is injecting proteins SipA, SipC, SopE, SopE2 and
SopB (red lettering and broken red arrows) which then catalyse
the transformations indicated. One outcome of the activation
process is the initiation of membrane ruffling which, in turn, facili-
tates bacterial invasion. Once within the cell, the bacterium releases
another protein (SptP) which acts on cdc42 and rac1 and reverses
membrane ruffling. [InsP5 Inositol 1,3,4,5,6 pentakisphosphate,
InsP4 inositol 1,4,5,6 tetrakisphosphate, PI3,4,5P3 phosphatidyl-
inositol 3,4,5 trisphosphate, PI3,4P2 phosphatidylinositol 3,4
bisphosphate]

Fig. 2 A The mechanism by which the NSP4 enterotoxin of rota-
viruses activates Cl– channels [29] and inhibits SGLT1 [16] in
intestinal epithelial cells. Although Ca2+ release from intracellular
stores is shown as triggering Ca2+ influx across the apical membrane,
in fact it is not yet known whether this influx takes place across
the apical or the basolateral membrane, or both. B Mechanism by
which influenza hemagglutinin inhibits epithelial Na+ channels in
respiratory and other epithelia [21]. [DAG Diacylglycerol, IP3
inositol 1,4,5 trisphosphate, PIP2 phosphatidylinositol 4,5-bisphos-
phate, PKC protein kinase C, PLC phospholipase Cb, SGLT1 Na+-
glucose cotransporter 1]



Bacteria are not the only pathogens that disturb epithe-
lial function by means of toxins. Rotaviruses, an impor-
tant cause of diarrhoeal disease in children, have been
shown to produce an enterotoxin, NSP4. This viral glyco-
protein activates phospholipase C in colonic crypt cells
leading to the production of inositol 1,4,5-trisphosphate,
increased intracellular Ca2+ [6, 30, 48] and Cl– secretion
from crypt cells (Fig. 2A; [30]): it also alters paracellular
permeability [41] and noncompetitively inhibits the
intestinal Na+-glucose cotransporter, SGLT1 [16].

The effects of attachment

A striking finding of recent studies with both bacteria
and viruses is that attachment of the pathogen to the
epithelium, the first stage in the process of infection, is
itself sufficient to trigger pathological changes in epithelial
function. Thus, binding of Pseudomonas aeruginosa to
airway epithelium has been reported to inhibit transepi-
thelial Na+ transport [8] and to trigger mucin over-
production via the Ras-MAPK-pp90rsk pathway [25].
Which receptor is responsible for these effects is unclear.
At least in the case of increased mucin production [25],
the Toll-like receptor 4 (TLR4) [42] and CD14 [1],
which are believed to mediate epithelial responses to
lipopolysaccharide from Pseudomonas aeruginosa and
other Gram-negative bacteria, appear not to be involved.
Conversely, binding of lipopolysaccharide to the cystic
fibrosis transmembrane conductance regulator (CFTR)
has been proposed as a critical step in the endocytosis by
epithelia of Gram-negative bacteria such as Pseudomonas
aeruginosa and Salmonella spp. [33].

Viral attachment also influences epithelial transport.
Thus, we have recently demonstrated that influenza virus
induces a marked down-regulation of epithelial Na+

channel activity in respiratory, gastrointestinal and renal
epithelia [21]. This down-regulation is the result of the
hemagglutinin in the viral coat binding to an apical
membrane receptor which then activates phospholipase
C and protein kinase C (Fig. 2B). This effect of influenza
hemagglutinin can be reproduced by other hemagglutinins,
including concanavalin A [21] and the B-oligomer of
pertussis toxin (Kunzelmann and Cook, unpublished
data) and, unlike the rotavirus NSP4 enterotoxin [16],
does not affect SGLT1 activity [21]. Furthermore, epi-
thelia have been reported to show increased activation of
the Raf/MEK/ERK signalling cascade within 5 min of
exposure to influenza virus [34]. It thus appears likely
that other infectious agents with hemagglutinating activity,
for example rhinoviruses and parainfluenza viruses, may
similarly lead to decreased Na+ transport and fluid accu-
mulation in respiratory epithelia. Recent reports that res-
piratory syncytial virus activates protein kinase C and
MAP kinase [28], that rhinoviruses activate p38 MAP
kinase [15], and that the B-oligomer of pertussis toxin
activates p42/p44 MAP kinase [12] further suggest that
receptor binding by viruses and other pathogens may be
an important trigger in epithelia for the changes in the

rate of transport of electrolytes as well as the secretion of
proteins such as cytokines and mucins which accompany
infection. Interestingly, the surface receptors for respira-
tory syncytial virus appear to include both TLR4 and
CD14 [23], the same two proteins that mediate responses
to lipopolysaccharide.

Summary

The study of the mechanisms by which viral and bacterial
toxins and attachment factors alter epithelial function is
progressing rapidly. The recent molecular identification
of key epithelial transporters such as rSK4 [46], the
increasing sophistication of our understanding of the
mechanisms regulating epithelial transporters [3, 17, 18,
22], and the ongoing development of novel techniques
for measuring the properties of epithelia [13, 14] all sug-
gest that this process will accelerate. The substantial
commonality of these mechanisms among viruses and
bacteria suggests that the new knowledge gained in this
area will be of general significance to the understanding
of epithelial infection, rather than of just limited applica-
bility to a single organism or strain. Furthermore, studies
on the signalling systems used by these pathogens to
modify epithelial behaviour will shed new light on the
control of normal epithelial function.

Given recent discussion about the future of physiology
[32], it is reassuring that physiologists can look forward
not only to playing a key role in linking genes to func-
tion, but also in making a major contribution to the
understanding of how infectious diseases produce their
characteristic pathologies.
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