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Abstract
Background Infections due to multidrug-resistant (MDR)
bacteria are increasing both in hospitals and in the community
and are characterized by high mortality rates. New molecules
are in development to face the need of active compounds
toward resistant gram-positive and gram-negative pathogens.
In particular, the Infectious Diseases Society of America
(IDSA) has supported the initiative to develop ten new anti-
bacterials within 2020. Principal targets are the so-called
ESKAPE pathogens (Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumanii,
Pseudomonas aeruginosa, and Enterobacteriaceae).
Purpose To review the characteristics and the status of devel-
opment of new antimicrobials including new cephalosporins,
carbapenems, beta-lactamase inhibitors, aminoglycosides,
quinolones, oxazolidones, glycopeptides, and tetracyclines.
Conclusions While numerous new compounds target resistant
gram-positive pathogens and have been approved for clinical
use, very few new molecules are active against MDR gram-
negative pathogens, especially carbapenemase producers.
New glycopeptides and oxazolidinones are highly efficient
against methicillin-resistant S. aureus (MRSA), and new
cephalosporins and carbapenems also display activity toward
MDR gram-positive bacteria. Although new cephalosporins
and carbapenems have acquired activity against MRSA, they
offer few advantages against difficult-to-treat gram-negatives.
Among agents that are potentially active against MDR gram-
negatives are ceftozolane/tazobactam, new carbapenems, the

combination of avibactam with ceftazidime, and plazomicin.
Since a relevant number of promising antibiotics is currently
in development, regulatory approvals over the next 5 years are
crucial to face the growing threat of multidrug resistance.
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Introduction

The dramatic increase in resistance of both gram-negative and
gram-positive pathogens poses a great concern since these
infections are characterized by high mortality rates, prolonged
hospitalization, and associated costs [1, 2]. Bacteria bearing
resistance to one or more antimicrobials from at least three
different antimicrobial classes, defined as multidrug resistance
(MDR) bacteria, have become increasingly common, espe-
cially in the hospital setting [3].

The acronym BESKAPE pathogens^ refers to the most fre-
quently reported MDR bacteria, including Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacteriaceae, and it underlines their ability to escape
the antimicrobial treatment [1].

Specifically, gram-negative bacteria have shown increasing
resistance to penicillins, cephalosporins, and quinolones [4].
In particular, the emergence of MDR strains of P. aeruginosa
and extended-spectrum beta-lactamases (ESBLs)-producing
Enterobacteriaceae has significantly narrowed the choices
for a targeted antimicrobial therapy [4]. As a consequence,
broad-spectrum antimicrobials (e.g., piperacillin/tazobactam,
carbapenems, fluoroquinolones) have registered a progressive
increase in their use, leading to the emergence of isolates that
are resistant to all current available molecules, called extreme
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drug-resistant strains (XDR) [5, 6]. In the past decades, the
increase in gram-negative MDR bacteria has not been
counterbalanced by the availability of new molecules; thus,
the emergence of infections for which there are limited treat-
ment options currently represents a critical unmet medical
need [7].

Due to the limited therapeutic options, clinicians aiming to
target MDR gram-negative bacteria had to rediscover the use
of old drugs, such as polymixins and fosfomycin, or to in-
crease the recommended dose of broad-spectrum antimicro-
bials, such as carbapenems or tigecycline, in order to achieve
therapeutic benefit. Nevertheless, these strategies may be cor-
related to an increase in drug-related toxicity.

Novel pharmaceutical molecules such as linezolid, dapto-
mycin, and tigecycline have been discovered and introduced
into clinical practice in the last few years to target resistant
gram-positive bacteria. Neverthelass, pathogens such as
methicillin-resistant S. aureus (MRSA) and vancomycin-
resistant Enterococci (VRE) are still extremely challenging
to eradicate. Furthermore, S. aureus (including MRSA) is
the leading cause of hospital-acquired infections (HAI) in
the USA, with the global spread of some strains approaching
epidemic proportions [8]. Although vancomycin has been
considered the drug of choice for MRSA and is still extensive-
ly used for this indication, recent studies suggest that vanco-
mycin is less effective against MRSA in the presence of min-
imum inhibitory concentration (MIC) values that are at the
high end of the susceptibility range [9–11].

In this dramatic scenario, the need of new molecules to
address the presence of both gram-negative and gram-
positive pathogens is mandatory. In the past 10 years, the lack
of new antibiotics has been the main concern of professional
agencies such as the Infectious Diseases Society of America
(IDSA) that have stressed the necessity of new pharmaceutical
investments in the area of antimicrobial development [12]. In
2010, the IDSA launched the so-called 10× ′20 initiative in
order to develop ten new antibiotics by 2020 and address the
limited number of novel therapeutics in development to treat
drug-resistant pathogens [13].

In this review, we have reported the characteristics of the
most recently developed antimicrobials for the treatment of
resistant gram-positive and gram-negative bacteria that have
completed at least phase 2 trials.

Beta-lactams

Cephalosporins

Cephalosporins are among the most prescribed antimicrobials
due to their broad spectrum of activity and a favorable safety
profile. Like other beta-lactams, their mechanism of action
consists in binding to penicillin-binding proteins (PBPs)

leading to irreversible inhibition of the bacterial cell wall
synthesis.

New, fifth generation cephalosporins include ceftaroline
and ceftobiprole that are characterized by an extended spec-
trum of activity toward resistant gram-negative pathogens and
a unique activity against MRSA

Ceftaroline fosamil is a novel semisynthetic anti-MRSA
cephalosporin with broad-spectrum activity, which is current-
ly completing phase 4 clinical trials. Ceftaroline presents en-
hanced activity towardMDR gram-positive pathogens includ-
ing MRSA, heteroresistant vancomycin-intermediate
S. aureus (hVISA), and vancomycin-resistant S. aureus
(VRSA). Its activity against MRSA is due to a higher effect
on PBP2a inhibition compared to other beta-lactams [14].
Although ceftaroline maintains good activity against gram-
negative pathogens, increased MIC and potential selection of
resistance have been shown toward AmpC-producing strains
[15, 16]. Furthermore, the activity of ceftaroline was lower
compared to aztreonam toward P. aeruginosa and Proteus
mirabilis [17]. Ceftaroline has been approved by the US
Food and Drug Administration (FDA) in 2010 and by the
European Medical Agency (EMA) in 2012 for the treatment
of acute bacterial skin and skin structure infections (ABSSSIs)
and community-acquired pneumonia (CAP). Pooled success
frequency in the treatment of CAP, including infections with
MDR S. pneumoniae, was 84.3 % [18]. For the treatment of
ABSSSI, including infections with MRSA, pooled success
frequency was 91.6 % [17].

Ceftobiprole medocaril is a new cephalosporin with ex-
panded activity against gram-positive bacteria. Similarly to
ceftaroline, it has high affinity for PBP2a. Ceftobiprole is sta-
ble against class A temoneira (TEM-1) and class C
AmpC beta-lactamase but, similarly to ceftazidime, is labile
to hydrolysis by class B, class D, and class A ESBL and
carbapenemases [19]. Ceftobiprole is active against
Enterococcus faecalis but not against E. faecium. Toward
P. aeruginosa, ceftobiprole activity is superior to that of cefe-
pime [20]. In vitro activity of ceftobiprole against
S. pneumoniae showed MIC90 of 0.5 μg/mL, the lowest
among all other cephalosporins. Ceftobiprole has been ap-
proved for use in Canada and Switzerland and is under review
in the USA and Europe. In phase 3 trials, ceftobiprole was
non-inferior to linezolid in association with ceftazidime or
ceftriaxone in hospital-acquired pneumonia (HAP) and CAP
requiring hospitalization, respectively [21]. In patients with
ventilator-associated pneumonia (VAP), ceftobiprole is not
recommended since its non-inferiority was not demonstrated
in this subset of patients. Good results were also shown in the
treatment of complicated SSSIs [22]. Ceftobiprole was gener-
ally well tolerated.

Ceftozolane/tazobactam represents the association of a
novel cephalosporin and the beta-lactamase inhibitor tazobac-
tam. The chemical structure of ceftolozane is similar to that of
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ceftazidime, with the exception of a modified side chain at the
third position of the cephem nucleus, which confers potent
antipseudomonal activity. Ceftolozane displays increased ac-
tivity against gram-negative bacilli, including those that har-
bor classical beta-lactamases such as TEM-1 and SHV-1 [23].
Similar to other cephalosporins, such as ceftazidime and cef-
triaxone, ESBL and carbapenemases may compromise its ac-
tivity. The addition of tazobactam expands its spectrum and
allows activity against ESBL-producing bacteria and
Bacteroides spp. [24]. Thanks to its ability to escape various
resistance mechanisms (e.g., PBP mutations, efflux pumps),
ceftolozane offers unique activity versus P. aeruginosa, in-
cluding carbapenem, piperacillin/tazobactam, ceftazidime-re-
sistant, and MDR isolates [25]. Overall efficacy including
superiority to levofloxacin in complicated urinary tract infec-
tions (cUTIs) and comparable efficacy to meropenem in com-
plicated intra-abdominal infections (cIAI) have been recently
demonstrated in phase 3 trials [26–29]. A favorable safety
profile was demonstrated in phase 3 cUTI and cIAI trials in
which ceftolozane/tazobactam was administered intravenous-
ly (IV) as 1.5 g every 8 h. A phase 3 trial to assess the safety
and efficacy of ceftolozane/tazobactam at a dose of 3 g every
8 h compared to meropenem for the treatment of HAI is ex-
pected to be completed in 2018.

Carbapenems

Carbapenems are broad-spectrum beta-lactam antibiotics
characterized by stability to hydrolysis by the majority of
ESBLs. Currently, meropenem and imipenem/cilastatin are
widely used and are recommended for treatment of HAP,
cUTIs, cIAIs, and bloodstream infections (BSI). New mole-
cules differ regarding their activity toward difficult-to-treat
non-fermenting pathogens (such as P. aeruginosa and
A. baumannii) and MRSA. Similarly to other widely used
compounds, such as imipenem and meropenem, new carba-
penems that are active toward P. aeruginosa and A. baumannii
but not MRSA include doripenem and biapenem. Conversely,
tomopenem and razupenem display activity against MRSA
but not against non-fermenting bacilli. Panipenem and
tebipenem, like ertapenem, do not have activity against non-
fermenting pathogens and MRSA.

Tebipenem/pivoxil is a novel oral carbapenem for the treat-
ment of upper respiratory tract infections (RTIs). Its activity
includes MDR S. pneumoniae and other gram-positives,
K. pneumoniae and Escherichia coli [30]. Phase 2 clinical
studies are ongoing in Japan.

Panipenem/betamipron is a parenteral carbapenem ap-
proved in China, Korea, and Japan and for the treatment of
UTIs, lower RTI, obstetrical/gynaecological, and surgical in-
fections. The combination of panipenem with betamipron,
similarly to imipenem/cilastatin, is necessary because
betamipron inhibits the renal uptake of panipenem.

Panipenem is highly active against Enterobacteriaceae such
as E. coli, K. pneumoniae, Proteus spp. and Citrobacter spp.,
but is inactive against Stenotrophomonas maltophilia. Its ac-
tivity toward P. aeruginosa is comparable to imipenem but
significantly lower than meropenem. Good activity has also
been demonstrated against Bacteroides fragilis [31]. The clin-
ical efficacy of panipenem/betamipron was demonstrated in
three randomized phase 3 clinical trials in comparison with
imipenem/cilastatin for the treatment of adults with respiratory
and UTIs [32]. Panipenem/betamipron is administered as 0.5/
0.5 g twice daily. Mild adverse effects have been associated
with panipenem; its co-administration with valproic acid can
favor the occurrence of seizures and is contraindicated [32].

Doripenem has a molecular structure that confers beta-
lactamase stability and resistance to inactivation by renal
dehydropeptidases [33]. Doripenem is characterized by a
broad spectrum of activity against gram-negative pathogens.
Its activity is similar to that of meropenem against E. coli,
Citrobacter spp., and Burkholderia cepacia; higherMIC com-
pared with meropenem have been displayed toward ESBL-
producing K. pneumoniae, P. mirabilis, Serratia spp.,
B. fragilis, P. aeruginosa and A. baumannii. Doripenem is
active against MSSA, S. pneumonia, and CoNS but it is not
active against MRSA and VRE. Doripenem is effective
against ESBL or AmpC producers, but reduced activity has
been documented against metallo beta-lactamases [34].
Combination of doripenem with colisitin showed in vitro syn-
ergistic action against colistin-resistant, carbapenemase pro-
ducing K. pneumoniae (KPC). In vivo, doripenem has been
used with benefit used in dual carbapenem therapy (e.g., in
association with ertapenem) against pandrug-resistant KPC
infections [35–37]. The benefit was thought to be related to
a preferential affinity of carbapenemase for ertapenem that is
consumed by the enzyme leaving higher concentrations of
doripenem to exert its antibacterial effect. An alternative ex-
planation is based on the initial reduction in inoculum density
by ertapenem thereby permitting doripenem to express its
successful activity [38]. The recommended dosage of
doripenem is 500 mg IV every 8 h with dose adjustments in
patients with moderate renal impairment [39]. Doripenemwas
approved by the FDA in 2007 for the treatment of pyelone-
phritis, cUTI, and cIAIs. Doripenem has also been approved
by the EMA for the treatment of HAP and VAP. The most
frequent adverse events reported are nausea (3.7 %) and diar-
rhea (2.5 %); the incidence of seizures with doripenem was
lower compared to other carbapenems [39].

Biapenem is a new parenteral carbapenem that has been
approved in Japan in 2002, and it is currently undergoing
phase 2 clinical studies in the USA. Biapenem is characterized
by an optimal penetration in the respiratory tissue along with a
broad spectrum of activity including penicillin-resistant
S. pneumoniae , A. baumanni i , ESBL-producing
Enterobacteriaceae, E. cloacae, S. marcescens, and
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Citrobacter freundii. Moderate activity has been displayed
against P. aeruginosa; biapenem is not active against MRSA
and Enterococci [40]. Biapenem is administered at a dosage of
300 mg twice daily and requires dose adjustment in case of
reduced glomerular filtration rate. A multicenter randomized
controlled clinical study comparing biapenemwith imipenem/
cilastatin in RTIs and UTIs showed similar efficacy and toler-
ability profile [41]. The most commonly reported adverse ef-
fects with biapenemwere nausea, skin eruption, vomiting, and
diarrhea in 2 to 3.4 % of cases [42].

Tomopenem (CS-023) is characterized by a spectrum of
activity that includes both MDR gram-positive and gram-
negative strains. Tomopenem has a good activity against
penicillin-resistant S. pneumoniae, ceftazidime-resistant
P. aeruginosa, ESBL-producing Enterobacteriaceae, and
MRSA [43, 44]. Other favorable features include a wide dis-
tribution in vivo due to a low rate of protein binding and a
reduced potential for selection of resistances [45].
Tomopenem has been studied for the treatment of cSSSI and
HAP.

Razupenem (PTZ601) has a broad-spectrum activity
against gram-positive and gram-negative pathogens, includ-
ing penicillin-resistant S. pneumoniae MRSA, vancomycin-
resistant E. faecium, ampicillin-resistant H. influenzae, and
ESBL-producing bacteria [46, 47]. Razupenem has reduced
activity against AmpC enzymes and carbapenemases [46, 48].
Razupenem has shown excellent activity in the treatment of
cSSSI.

Beta-lactamase inhibitors

Beta-lactamase inhibitors enhance the activity of beta-lactam
agents by protecting them from enzymatic hydrolysis. The
goal of the new combinations of beta-lactam/beta-lactamase
inhibitors is to expand the activity against class C and class D
beta-lactamases.

Avibactam (NXL104) is a beta-lactamase inhibitor charac-
terized by high affinity with class A and class C beta-
lactamases and the potential to inhibit ESBLs, KPCs, OXA,
and AmpC [49].

Avibactam is currently being investigated in phase 3 stud-
ies in combination with ceftazidime and is in clinical devel-
opment in association with ceftaroline and aztreonam (phase 1
trials). Specifically, its combination with aztreonam offers a
potential option against NDM-1 producing bacteria [50].

Ceftazidime/avibactam combination has shown in vitro ac-
tivity against strains OXA-48, ESBL or AmpC strains, and
Klebsiella KPC, but not against metallo-beta-lactamase pro-
ducers [51, 52]. Results of ceftazidime-avibactam phase 2
trials in cUTIs compared to imipenem reported 70.4 and
71.4 % success rates, respectively [53]. In cIAIs with
meropenem as comparator, success rates among

microbiologically documented infections were over 90 % in
both arms. Among isolates presumed to be ESBL producers,
the clinical efficacy of both arms was 96 % [54]. Phase 3
studies are ongoing to investigate the activity of avibactam/
ceftazidime in cIAIs, cUTIs, HAP, and VAP.

MK-7655 is a novel beta-lactamase inhibitor under inves-
tigation in combination with imipenem/cilastatin showing
in vitro activity against class A and class C carbapenemases
[55]. Two phase 2 trials are ongoing for the treatment of cIAIs
and cUTIs [9].

Glycopeptides

Glycopeptides include well known molecules such as vanco-
mycin and teicoplanin. Glycopeptides display a limited spec-
trum of action and are effective mainly against gram-positive
cocci. Their mechanism of action consists in the inhibition of a
late stage in bacterial cell wall synthesis binding to acyl-D-
alanyl-D-alanine in peptidoglycan [56]. New derivatives of
this class, telavancin, oritavancin, and dalbavancin, have been
developed to overcome the emergence of MRSA strains with
reduced susceptibilities to vancomycin and to increase the
penetration into tissues and into the cerebrospinal fluid.
These new molecules are lipoglycopeptides (i.e., they present
a lipophilic side chains linked to glycopeptides) and are char-
acterized by longer half-life compared to vancomycin, this
allowing for infrequent dosing, greater potency, and less po-
tential for development of resistant organisms.

Telavancin is a vancomycin derivative characterized by the
addition of a hydrophobic side chain and a hydrophilic group.
Its mechanism of action consists in the blockage of both the
transpeptidation and transglycosylation steps and in a direct
effect on the bacterial membrane causing changes in cellular
permeability. Telavancin has a time-dependent killing activity.
Its half-life is around 8 h, and it has shown a high level of
protein binding (93 %) in plasma [57]. Compared with van-
comycin, telavancin is administered once daily and character-
ized by a potent in vitro antibacterial activity against a broad
range of gram-positive bacteria, including MRSA, penicillin-
resistant S. pneumoniae, and isolates with reduced glycopep-
tide susceptibility including glycopeptide-intermediate
S. aureus (GISA) and Van-A type Enterococci [58–61].
Specifically, telavancin displays excellent activity toward
Staphylococci. MICs for MRSAwere two to eight times lower
than those observed for vancomycin, teicoplanin, and linezo-
lid [62]. Regardless of MRSA subset, telavancin had MIC90
andMIC100 results of 0.06 and 0.12μg/mL, corresponding to
a susceptibility of 100 % [63]. Telavancin received approval
from the FDA for the treatment of cSSSI. Results from phase
2 and 3 clinical trials demonstrated similar efficacy and toler-
ability compared to standard anti-staphylococcal beta-lactams
and vancomycin [64–67]. The overall results of the two phase
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3 studies, including a total of 40% documentedMRSA cSSSI,
were analyzed [68]. Cure rates were 91 % for telavancin and
90 % for vancomycin among patients with major abscesses,
87 % and 88 % for telavancin and vancomycin-treated pa-
tients, respectively, in infective cellulitis and 85 % in the
telavancin group and 86 % in the vancomycin group in pa-
tients with wound infections. Cure rates for each type of cSSSI
in patients infected with MRSA were similar between the
treatment arms and among patients infected with Panton-
Valentine leucocidin (PVL)-positive MRSA. Telavancin has
also shown good penetration in the alveolar macrophages, and
unlike daptomycin, its activity is not affected by pulmonary
surfactant [62]. Telavancin demonstrated non-inferiority com-
pared to vancomycin for the treatment of HAP, including HAP
due to MRSA [69, 70]. Nevertheless, in patients with pre-
existing renal impairment (CrCl<50 mL/min), telavancin pre-
sented an increasedmortality compared to vancomycin. Based
on the results of the clinical trials, telavancin was approved by
EMA for the treatment of adult with HAP and VAP suspected
or known to be caused byMRSA only when other alternatives
are not suitable. Telavancin use has been related to the poten-
tial elevation of serum creatinine. Otherwise, it displays a
favorable safety profile, with gastrointestinal discomfort being
the most common side effect [71]. A phase 3 is ongoing to
evaluate the efficacy of telavancin in S. aureus bacteremia
[72].

Oritavancin is characterized by a rapid bactericidal activity
against gram-positive bacteria, including resistant MRSA,
methicillin-resistant CoNS, and VRE isolates [73]. No resis-
tance to oritavancin has been observed among S. aureus
strains including VISA, but VAN-A and VAN-B strains of
Enterococci with reduced susceptibility to oritavancin have
been obtained in vitro. Its concentration-dependent activity
and long half-life (393±73.5 h) allow for single-dose treat-
ment. Furthermore, oritavancin does not require dosage ad-
justment for renal or mild to moderate hepatic dysfunction.
The results of a randomized, double-blind trial in over 1000
adults with ABSSSIs receiving either a single intravenous
1200-mg dose of oritavancin or 7–10 days of vancomycin
have been recently published [74]. Clinical cure and propor-
tion of patients with at least 20% reduction in lesion area were
83 vs 81% and 85.9 vs 85.3% for oritavancin vs vancomycin,
respectively. The efficacy by pathogen, including MRSA, and
the frequency of adverse events were also similar between
treatment groups [73]. In 2014, the FDA approved oritavancin
for the treatment of ABSSSIs due to MSSA, MRSA,
Streptococcus spp,. and E. faecalis.

Dalbavancin

Dalbavancin has shown in vitro activity against MSSA,
MRSA, VISA, meticillin-resistant S. epidermidis (MRSE)

and Enterococci, although poor activity was demonatrated
toward VanA-type Enterococci and VRSA [75–77]. Due to
its long half-life (range, 147 to 258 h), the standard dose of
dalbavancin is 1000 mg once a week [78]. Two randomized
phase 3 studies showed non-inferiority of dalbavancin com-
pared to vancomycin and linezolid in ABSSTI [79, 80]. A
pooled analysis of the trials showed an early clinical response
in 80 % of patients in both dalbavancin and vancomycin–
linezolid groups. For patients infected with MRSA, clinical
success was 91 % for patients treated with dalbavancin and
94 % of those treated with vancomycin–linezolid. Adverse
events were less frequent in the dalbavancin group compared
to comparators and included nausea, diarrhea, and pruritus
[79].

In 2014, the FDA approved dalbavancin for treatment of
adults with skin infections, including those caused by MRSA.

Oxazolidinones

Oxazolidinone antibiotics are a relatively new class of syn-
thetic antibiotics with activity against a broad spectrum of
gram-positive pathogens includingMRSA and VRE. The first
member of this new class to be commercialized, linezolid, was
approved in 2000, and it is nowadays widely used in clinical
practice for the treatment of severe gram-positive infections.
Linezolid is characterized by excellent oral bioavailability and
tissue penetration in bone, lung, and cerebrospinal fluid. New
oxazolidinones with potent activity toward MDR gram-
positive pathogens have been recently developed.

Tedizolid phosphate (TR-701) has been studied for the
treatment of infections caused by MDR gram-positive bacte-
ria, including strains showing linezolid, vancomycin, or dap-
tomycin resistance [81]. Similarly to linezolid, tedizolid can
be administered both orally and intravenously and has shown
optimal tissue penetration, but its in vitro efficacy against
Staphylococcus spp., Streptococcus spp., and Enterococcus
spp. is superior than linezolid. Compared to linezolid,
tedizolid can be admnistered once daily and displays a better
safety profile. No hematological side effects were reported at
the therapeutic dose of 200 mg [82]. Furthermore, tedizolid
has low potential for interactions with serotonergic drugs
since it does not inhibit the monoamine oxidase pathway
[82]. Overall rates of related adverse effects were similar to
linezolid, with nausea being the most commonly reported ad-
verse effect associated with tedizolid use in 16 % of patients.
Tedizolid has been compared with linezolid in a phase 3 study
for the treatment of ABSSTI. In this indication, a short, 6-day
course of tedizolid was as effective as a 10-day course of
linezolid with 85 and 83 % of the patients achieving early
clinical response, respectively [83]. In 2014, tedizolid re-
ceived FDA approval for the use in ABSSSI. Studies
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investigating the potential role of tedizolid in the treatment of
pneumonia and bacteremia have been planned.

Radezolid (RX-1741) is characterized by an excellent ac-
tivity toward linezolid susceptible and resistant gram-positive
bacteria, as well as certain gram-negative bacteria commonly
found in CAP. Radezolid showed higher efficacy than linezo-
lid against S. pneumoniae and S. pyogenes. MIC90 values
ranged from 1 to 4 μg/mL for Staphylococci and from 0.5 to
1 μg/mL for Enterococci [84]. Among gram-negatives,
radezolid was active against H. influenzae and Moraxella
catarrhalis, with MIC90 of 1 and 0.5 μg/mL, respectively
[85]. Radezolid has succesfully completed two phase 2 clini-
cal trials. One trial was for uncomplicated SSSI in comparison
with linezolid and the other clinical trial was for CAP [86, 87].
Phase 3 studies to further assess its tolerability and efficacy are
awaited [88].

Quinolones

Quinolones were introduced into clinical practice with
nalidixic acid in 1962. Since then, new molecules have been
synthetized and widely used after the addition of a fluorine
atom. Fluoroquinolones have a unique mechanism of action
targeting two enzymes in DNA replication (i.e., DNA gyrase
and topoisomerase IV) and show a good tissue penetration
[89]. An activity mainly against gram-negative pathogens
was displayed by the fluoroquinolones that were initially used,
such as norfloxacin, ciprofloxacin, and ofloxacin [90]. To
meet the target of efficacy toward gram-positive pathogens,
new compounds such as moxifloxacin and gatifloxacin were
then developed and widely used in CAP andHAP. Quinolones
have shown an overall good safety profile and are currently
used in RTIs, UTIs, SSSI, and IAIs [90–92]. Starting from the
mid-1990s, the resistance to fluoroquinolones began to in-
crease in almost all gram-positive and gram-negative species.
Recent surveillance studies demonstrated a continued increase
in the resistance rates, preventing their use in certain clinical
indications [93]. New molecules in this class have been devel-
oped to be active against MDR bacteria and to provide a low
potential for developing bacterial resistance.

Delafloxacin has a chemical structure that differs from oth-
er fluoroquinolones since it lacks a strongly basic group at the
C-7 position, resulting in weak acidity. This feature enhances
its antibacterial potency in environments with reduced pH,
such as the urinary tract during infections and the
phagolysosomes where the MICs of delafloxacin are reduced
[94]. Various in vitro studies have supported delafloxacin low
potential for the selection of resistances due to a dual mecha-
nism of inhibition of DNA targets (i.e., gyrase and topoisom-
erase IV), supporting its potential use in empirical therapy
[95]. Delafloxacin has shown potent antibacterial activity
against quinolone susceptible and resistant strains of MRSA

and against gram-negative MDR isolates such as
K. pneumoniae and E. coli [95–97]. Furthermore, delafloxacin
demonstrated potent activity against resistant strains of
S. pneumoniae, H. influenzae, M. catarrhalis and against
Legionella thus representing a valid choice for the treatment
of CAP and HAP. Furthermore, delafloxacin can be adminis-
tered both IV and orally, this supporting its role in sequential
therapy. Delafloxacin showed comparable efficacy to tigecyc-
line in the treatment of cSSSI including S. aureus (85 % of
cases with approximately 70 % of MRSA strains) [74].
Delafloxacin’s MIC90 against all MRSA, including
quinolone-resistant MRSA strains, was 0.06 μg/mL.
Another phase 2 trial compared the efficacy of IV formula-
tions of delafloxacin (300 mg twice daily), linezolid, and van-
comycin in 256 adults with SSSI. Success rates for
delafloxacin, linezolid, and vancomycin were 74.4, 73.3,
and 68.4 %, respectively. A reduction of over 20 % of erythe-
ma was more common in delafloxacin-treated patients com-
pared to vancomycin [98]. Delafloxacin is currently evaluated
in two phase 3 studies for the treatment of ABSSSI caused by
gram-positive (including MRSA) and gram-negative bacteria
[99, 100].

Nemonoxacin (TG-873870) is a novel, non-fluorinated
quinolone characterized by an excellent activity against path-
ogens responsible for CAP. Since three different mutations are
required in resistance determining regions, nemonoxacin has a
low predisposition for selecting resistance [101].
Nemonoxacin has a half-life of more than 10 h. Higher effi-
cacy compared with levofloxacin has been demonstrated
against gram-positive bacteria including ciprofloxacin-
resistant MRSA, levofloxacin-resistant S. pneumoniae and
VRE, and gram-negative pathogens [102]. Similarly to
moxafloxacin, reduced activity has been shown toward
P. aeruginosa. Phase 2 and phase 3 studies of oral
nemonoxacin (500 or 750 mg once daily) and phase 2 studies
of IV nemonoxacin have been completed in patients with
CAP demonstrating its efficacy and safety compared to
levofloxacin [103, 104]. A phase 3 study of IV nemonoxacin
in the treatment of CAP is currently ongoing [105].

Zabofloxacin (DW-224a) is a novel fluoroquinolone that
showed higher activity compared to ciprofloxacin,
moxifloxacin, and gemifloxacin against gram-positive strains,
including MRSA, S. pyogenes, and E. faecalis. Zabofloxacin
has shown efficacy against pathogens involved in CAP and
COPD exacerbation such as S. pneumoniae, H. influenzae,
and M. catarrhalis [106]. Similarly to other new molecules
of this class, zabofloxacin displays a low potential for the
selection of resistances due to a double mechanism of binding
to the DNA–enzyme complex. No adverse effects on the
central nervous system, cardiovascular system and respi-
ratory system have been shown, although a QT interval
prolongation has been reported [107]. In a phase 2 clin-
ical trial, zabofloxacin administered 400 mg orally
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displayed the same clinical and microbiological results
as moxifloxacin in patients with mild-to-moderate CAP
[108]. The study comparing zabafloxacin with
levofloxacin in the treatment of CAP was terminated
for financial reasons [109].

Finafloxacin (BAY35) is characterized by lower MIC at
acidic pH against E. coli, K. pneumoniae, MRSA, and
P. aeruginosa compared to levofloxacin and ciprofloxacin.
For this reason, finafloxacin can be used to treat infections
located within the urinary tract, gastric mucosa, or skin where
the pH is lower [110]. Finafloxacin has also shown activity
toward ciprofloxacin-resistant strains of A. baumannii [111].
Compared to other fluoroquinolones, finafloxacin did not
show electrocardiogram changes or neurotoxicity during safe-
ty studies. A phase 2 study has been completed showing com-
parable efficacy finafloxacin administered 300 mg bid versus
ciprofloxacin 250 mg bid in uncomplicated UTIs [112]. A
phase 2 clinical trial is ongoing comparing IV and oral
finafloxacin (800 mg once daily) with ciprofloxacin (400 mg
bid IVor 500 mg bid orally) in cUTI and acute pielonephritis
[113].

Compound named JNJ-Q2 has a dual mechanism of action
on DNA enzymes similarly to other new molecules of this
group. Furthermore, its activity does not seem affected by
efflux pumps. JNJ-Q2 displays good activity against MRSA
(MIC50 values 0.12μg/mL); toward S. pneumoniae, it was 16
times and 128 times more potent than moxifloxacin and
levofloxacin, respectively. Good activity was also demonstrat-
ed against H. influenzae, M. catarrhalis, and N. gonorrhoeae
[114]. A phase 2 clinical trial in SSTI compared with linezolid
was successfully completed while a trial in CAP was
suspended because the number of participants recruited was
not sufficient [115, 116].

Other new quinolones include WCK771, that has high ac-
tivity against MRSA and S. pneumoniae, and two topic com-
pounds, ozenoxacin and besifloxacin [117]. Ozenoxacin has
excellent activity toward gram-positive pathogens and has
been studied to reduce the time of treatment of cSSSI [118].
Besifloxacin is a topical ophthalmic fluoroquinolone, ap-
proved by the FDA in 2009 to treat bacterial conjunctivitis.
Besifloxacin is active against S. aureus, S. pneumoniae,
H. influenzae, and VRE [119].

Table 1 Clinical indications of new antibiotics and FDA status

Antimicrobial class Molecule Clinical indication Development status

Cephalosporin Ceftaroline SSSI, CAP FDA approval (2010)

Ceftobiprole SSTI, HAP, hospitalized CAP Phase 3*

Carbapenem Tebipenem pivoxil RTIs Phase 3**

Panipenem metamipron RTIs, UTIs Phase 3

Doripenem UTIs, IAIs, HAP, VAP FDA approval (2007)

Biapenem RTIs, UTIs Phase 2

Tomopenem SSSI and HAP Phase 2

Razupenem SSSI Phase 2

Beta-lactam+ Ceftozolane/tazobactam UTIs, IAIs, HAP, VAP Phase 3

Beta-lactamase inhibitor Ceftazidime/avibactam cIAIs, cUTIs, HAP and VAP Phase 3

Glycopeptide Telavancin cSSTI, HAP, VAP FDA approval (2013)

Oritavancin SSSI FDA approval (2014)

Dalbavancin SSSI FDA approval (2014)

Oxazolidinone Tedizolid phosphate SSSI FDA approval (2014)

Radezolid CAP, SSSI Phase 2

Quinolone Delafloxacin SSSI Phase 3

Nemonoxacin CAP Phase 3

Zabofloxacin CAP Phase 2

Finafloxacin CAP Phase 2

JNJ-Q2 UTIs Phase 2

WCK771 SSSI Phase 2

Aminoglycoside Plazomicin IAIs and UTIs Phase 3

Tetracycline Eravacycline IAIs and UTIs Phase 2

Omadacycline SSSTI Phase 2

*Approved for clinical use in Canada and Switzerland

**Approved for clinical use in Korea, Japan, and China
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Aminoglycosides

The aminoglycosides are antibiotics mainly prescribed
alone or in combination with other molecules (e.g.,
beta-lactams or quinolones) for the treatment of infec-
tions caused by aerobic gram-negative bacilli. Although
resistance to this class has been increasing in the past
years, the emergence of strains resistant to molecules
such as gentamycin and amikacin is less common com-
pared to other antimicrobials.

Plazomicin (ACHN-490) is a new aminoglycoside
characterized by a dose-depending activity against both
gram-positive and gram-negative pathogens [120]. In
vitro synergism was shown with daptomycin and
ceftobiprole against MRSA and VISA and with
doripenem, imipenem, piperacillin/tazobactam, and cefe-
pime against P. aeruginosa [121]. A phase 2 study
showed comparable efficacy to levofloxacin in patients
with cUTI and acute pielonephritis [122]. A phase 3
clinical trial for the treatment of patients with BSI or
HAI due to carbapenem-resistant Enterobacteriaceae
comparing plazomicin to colistin in association with a
second antibiotic (e.g., tigecycline or meropenem) is
currently ongoing [123].

Tetracyclines

Tetracyclines are a group of broad-spectrum antibiotics whose
use in clinical practice has been reduced due to the develop-
ment of bacterial resistance. Doxycycline and minocycline are
nowadays used in certain indications. Tigecycline is the de-
fining member of a new class of tetracyclines known as
glycylcyclines, which greatly extend the spectrum including
tetracycline-resistant microorganisms.

Eravacycline is a novel, broad-spectrum fluorocycline de-
veloped for the treatment of infections caused by tetracycline-
resistant bacteria. Eravacycline is not subject to mechanisms
conferring specific resistance to other tetracycline derivatives
such as efflux pumps and ribosomal protection proteins [124].
Eravacycline has shown potent, broad-spectrum gram-posi-
tive and gram-negative antibacterial effect exhibiting activity
against MRSA, VRE, and Enterobacteriaceae expressing re-
sistance genes from multiple classes of ESBL or
carbapenemases [125, 126]. Compared with tigecycline,
eravacycline demonstrated lower MIC toward difficult-to-
treat gram-negative pathogens and, similarly to tigecycline,
has no activity against P. aeruginosa [126]. Eravacycline has
been studied for both IVand oral administration and is prom-
ising for the treatment of cIAI. In fact, its wide spectrum of

Table 2 Activity of new antibiotics against MRSA and ESBL and carbapenemases-producing gram-negative pathogens

Drug Antibiotic class Spectrum MRSA Carbapenemases

Biapenem Carbapenem Gram-negative and gram-positive − −
Ceftaroline Cephalosporin Gram-positive + −
Ceftazidime/avibactam Beta-lactam+beta-lactamase inhibitor MDR gram-negative (no metallo-beta-lactamases) − +/−
Ceftobiprole Cephalosporin Gram-positive + −
Ceftozolane/tazobactam Beta-lactam+beta-lactamase inhibitor Gram-negative − −
Dalbavancin Glycopeptide MDR gram-positive + −
Delafloxacin Quinolone Gram-negative and gram-positive + −
Doripenem Carbapenem Gram-negative − −
Eravacycline Tetracycline Gram-negative (no Pseudomonas) + +

JNJ-Q2 Quinolone Gram-positive + −
MK-7655 Beta-lactamase inhibitor Gram-negative − +

Nemonoxacin Quinolone Gram-positive and gram-negative + −
Omadacycline Tetracycline Gram-positive and gram-negative + +

Oritavancin Glycopeptide MDR gram-positive + −
Panipenem Carbapenem Gram-negative and gram-positive −
Plazomicin Aminoglycoside MDR gram-negative including metallo-beta-lactamase + +

Radezolid Oxalidinone MDR gram-positive + −
Razupenem Carbapenem Gram-negative and gram-positive + −
Tebipenem Carbapenem Gram-negative and gram-positive − −
Telavancin Glycopeptide MDR gram-positive + −
Telizolid Oxalidinone MDR gram-positive + −
Tomopenem Carbapenem Gram-positive and gram-negative + −
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activity includes pathogens from the enteric tract that are fre-
quently the cause of peritonitis and abdominal abscesses. One
prospective, randomized, double-blind, phase 2 study evalu-
ating the safety and efficacy of eravacycline dosed once or
twice daily versus ertapenem in cIAI has been completed.
The results demonstrated clinical cure rates above 90 %, in-
cluding infections caused by ESBL-producing, levofloxacin,
and ertapenem-resistant organisms [127]. This study also
displayed good tolerability for eravacycline when compared
with ertapenem. Phase 3 clinical trials are planned to further
evaluate its efficacy for the treatment of cIAIs and cUTIs.

Omadacyc l i n e (PTK796 ) i s a s emi syn the t i c
aminomethylcycline with in vitro activity against both gram-
positive and gram-negative bacteria. It presents activity against
MSSA, MRSA, VRE, S. pneumonia, K. pneumoniae, Proteus
spp., Providencia spp.,Morganella morganii, and Bacteroides
fragilis [128]. In a phase 2 study in SSSI, the efficacy of
omadacycline administered 100 mg once daily IV and subse-
quently 200 mg oral step-down was comparable to linezolid
[129]. A phase 3 study in ABSSSI has been suspended in order
to comply with the new FDA guidance on cSSTI trials.

Tables 1 and 2 summarize the indications, the development
status of the new drugs, and their spectrum of microbiological
activity.

Conclusions

The spread of MDR pathogens is causing an unprecedented
public health crisis. The incidence of MDR bacteria continues
to increase despite the efforts of implementing the antimicro-
bial stewardship and stringent measures of infection control in
hospitals. Gram-negative bacteria such as carbapenemase-
producing Enterobacteriaceae, XDR A. baumannii, and
P. aeruginosa present very limited therapeutic options and
remain a serious problem.

Among agents that are potentially active against gram-
negatives are ceftozolane/tazobactam, new carbapenems, the
combination of avibactam with beta-lactamsinhibitors and
plazomicin. Nevertheless, although fifth generation cephalo-
sporins and new carbapenems have acquired activity against
MRSA, they offer few advantages against difficult-to-treat
gram-negatives. Associations of beta-lactams with beta-
lactamase inhibitors seem promising against MDR pathogens,
but their real clinical utility will be known only after results of
large clinical trials are available.

Less critical appears the situation toward MDR gram-
positive pathogens. New glycopeptides and oxazolidinones
are highly efficient against MRSA and VRE, and new cepha-
losporins and carbapenems also display activity toward MDR
gram-positive bacteria.

Since 2010, when the IDSA established its initiative for
developing ten new antibiotics by 2020, five new antibiotics

have been approved (mainly targeting gram-positive bacteria)
and eight new antibiotics targeting MDR gram-negative ba-
cilli are in phase 2 or 3 trials. A relevant number of promising
antibiotics is currently in development and has reached a pre-
clinical stage or is involved in phase 1 trials. Thus, regulatory
approvals are crucial over the next 5 years to achieve the
possibility to use new antibiotics to face the growing threat
of multidrug resistance.

Conflicts of interest None.
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