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Abstract
Introduction Pancreatic ductal adenocarcinoma (i.e., pan-
creatic cancer) is an almost universally lethal disease. The
identification of precursor lesions of pancreatic cancer
provides an opportunity for early detection and potential
therapeutic intervention before the development of invasive
cancer.
Discussion It is now established that pancreatic cancers do
not arise de novo but rather exhibit a sequential histological
and genetic progression of precursor lesions culminating in
frank, invasive neoplasia. Pancreatic intraepithelial neopla-
sia (PanIN) is the most common non-invasive precursor
lesion of pancreatic cancer. The development of a consen-
sus nomenclature scheme for PanINs has facilitated
research into pancreatic cancer precursors and enabled
standardization of results across institutions.
Conclusion PanINs harbor many of the molecular alter-
ations observed in invasive pancreatic cancer, confirming
their status as true non-invasive precursor lesions. Recently
developed genetically engineered mouse models of pancre-
atic cancer also demonstrate the stepwise PanIN progres-
sion model, underscoring the commonalities in pancreatic
neoplasia between mouse and man.
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Introduction

Pancreatic cancer is a disease with a dismal prognosis. In
the United States, approximately 33,000 patients are
diagnosed with pancreatic cancer annually, and nearly an
equal number will die from their malignancy. Worldwide
pancreatic cancer causes an estimated 213,000 deaths each
year [1]. For all stages combined, the 1-year survival rate is
around 20%, and the overall 5-year survival rate is only 4%
despite the availability of improved surgical and medical
avenues [2, 3].

The high mortality rate for pancreatic cancer is primarily
because of the advanced stage at which the neoplasm is
diagnosed and because there are no sensitive and specific
tools to detect the disease at an earlier stage. More than
80% of the patients with pancreatic cancer have locally
advanced or distant metastastic disease at the time of
diagnosis, rendering their malignancies surgically inopera-
ble. Currently, surgical resection remains the only curative
treatment. Studies from high-volume centers with optimal
staging report up to a 15–20% 5-year survival rate in
patients undergoing surgical resection [4, 5]. Even if
pancreatic cancer is diagnosed early and surgical resection
with curative intent is performed, nearly all patients
develop local recurrence and/or distant metastases after
surgery and eventually succumb to the debilitating effects
of metastatic growth [6]. Unfortunately, conventional
therapeutic modalities like chemo-radiation have had
minimal impact, and the long-term survival of patients
with pancreatic cancer has not improved in the last five
decades [7, 8].
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Improved patient survival has been achieved in a variety
of epithelial neoplasms (e.g., colorectal, lung, breast,
cervix, and prostate cancer), largely because of identifica-
tion of cancers at their primary anatomic sites at an early,
often pre-invasive stage [9, 10]. At this moment, however,
there is no equivalent of a “Pap smear” or a “PSA test” for
pancreatic cancer, which can conveniently detect early
neoplasia. Nevertheless, it is now recognized that, analo-
gous to other epithelial cancers, pancreatic cancers do not
arise de novo but rather undergo a stepwise progression
through histologically well-defined non-invasive precursor
lesions, culminating in frank, invasive neoplasia. Although
putative precursor lesions of pancreatic cancer were first
documented over a century ago [11], it was only in the
latter half of the last century that multiple lines of evidence
began to coalesce, associating invasive pancreatic cancer
with these lesions. For example, meticulous autopsy
studies confirmed that the prevalence of what are now
recognized as precursor lesions increased with age, thus
paralleling the frequency of invasive pancreatic cancer.
Similarly, most surgically resected pancreata harboring
invasive cancer also tend to demonstrate non-invasive
intra-ductular lesions in the surrounding parenchyma,
suggesting an etiologic association [12–14]. Most impor-
tantly, careful molecular analyses over the last 10 years
have unequivocally demonstrated that these precursor
lesions share many of the underlying genetic alterations
observed in the infiltrating cancer, underscoring their
precursor status [15–17].

By the late 1990s, over 70 different terminologies were
in use to describe these non-invasive ductal lesions, leading
to considerable difficulties in comparing inter-institutional
studies. Therefore, there was a dire need for the establish-
ment of an international nomenclature scheme for precursor
lesions of pancreatic adenocarcinomas. In 1999, the
National Cancer Institute hosted a Pancreatic Cancer Think
Tank at Park City, Utah, from which meeting emerged a
consensus nomenclature scheme for precursor lesions of
pancreatic cancer. The “Pancreatic Intraepithelial Neopla-
sia” (PanIN) scheme for classifying these lesions, first
proposed by Klimstra and Longnecker, has since become a
gold standard at academic centers worldwide [18, 19].

Histology

The detailed histopathological grading of PanIN lesions and
their distinction from other neoplastic and non-neoplastic
conditions in the pancreas have been described elsewhere
[18, 19]. The reader is also directed to a freely accessible
“teaching site” on the World Wide Web for this purpose,
located at http://pathology.jhu.edu/pancreas_panin. Briefly,
PanINs are microscopic lesions in the smaller (less than

5 mm) pancreatic ducts. PanINs can be papillary or flat, and
they are composed of columnar to cuboidal cells with
varying amounts of mucin. PanINs are classified into a four-
tier classification, including PanIN-1A, PanIN-1B (low-
grade PanINs), PanIN-2 (intermediate grade PanINs),
PanIN-3 (high-grade PanIN), reflecting a progressive in-
crease in histologic grade culminating in invasive neoplasia.
The lowest grade PanIN lesions can be flat (1A) or papillary
(1B) but are characterized by absence of nuclear atypia and
retained nuclear polarity. PanIN-2 lesions are architecturally
slightly more complex than PanIN-1 lesions, and they have
more nuclear changes including loss of nuclear polarity,
nuclear crowding, variation in nuclear size (pleomorphism),
nuclear hyperchromasia, and nuclear pseudostratification.
Mitoses are rarely seen. In contrast, PanIN-3 lesions, also
referred to as “carcinoma-in-situ”, demonstrate widespread
loss of polarity, nuclear atypia, and frequent mitoses.
However, as a pre-invasive lesion, PanIN-3 is still contained
within the basement membrane [18, 19]. As discussed
above, PanINs are often present in the pancreatic parenchy-
ma adjacent to infiltrating adenocarcinomas, and several case
reports have documented patients with high-grade PanINs in
the remnant pancreas who later developed an infiltrating
pancreatic cancer [15]. In summary, just as there is a
progression in the colorectum from adenoma, to adenoma
with dysplasia, to invasive cancer, so too is there histologic and
genetic progressions from PanIN-1, to PanIN-2, to PanIN-3, to
invasive ductal adenocarcinoma in the pancreas [20].

It is important to note that PanINs are the most common,
albeit not the only, recognized precursor lesions for pancreatic
cancer. Two “macroscopic” precursor lesions (so called
because they present typically as radiologically detectable
cysts in the pancreas [21]) are intraductal papillary mucinous
neoplasm and mucinous cystic neoplasms (MCNs). Intra-
ductal papillary mucinous neoplasms (IPMNs) are mucin-
producing epithelial neoplasms, which arise within the main
pancreatic duct or one of its branches, and that often,
although not always, have a papillary architecture [19, 22].
By definition, IPMNs involve the larger pancreatic ducts.
Those that involve the main pancreatic ducts are designated
“main duct type”, while those that involve the secondary
branches of the main pancreatic duct are designated “branch
duct type” [18, 19, 23]. Two features characterize MCNs at
the light microscopic level. First, the cysts are lined by
columnar, mucin-containing epithelium. Second, the under-
lying stroma has the appearance of ovarian stroma, and in
fact, expresses hormonal receptors like estrogen and proges-
terone [24, 25]. Similar to PanINs, the cystic precursor
lesions also demonstrate a multi-step histological and genetic
progression to invasive neoplasia but will not be discussed
within the scope of the current review.

As discussed above, the strongest evidence establishing
the precursor lesional status for PanINs has been derived
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from comparative molecular analyses with invasive pan-
creatic cancer. Herein, we discuss some of the most
common seminal alterations that are seen in PanIN lesions
and likely contribute to the stepwise genetic progression
model of pancreatic cancer.

Oncogene mutations in PanIN lesions

Oncogenes can be activated through a variety of
mechanisms including point mutations within the gene
and amplification of the gene itself. A growing numbers
of oncogenes have been identified that are targeted in
pancreatic cancer. The most common activating point
mutation involves the KRAS oncogene, on chromosome
12p, in over 90% of pancreatic ductal adenocarcinomas
[26, 27]. This is the highest fraction of RAS alteration
found in any human tumor type. Frequent mutation sites
involve codons 12, 13, and 61, but in pancreatic ductal
cancers, the majority occur in codon 12 [28]. The KRAS
family proteins encode small GTP-binding cytoplasmic
proteins and regulate cell-cycle progression via the
mitogen-activated protein kinase and AKT cascades [29].
Activating mutations impair the intrinsic GTPase activity
of the KRAS gene product, resulting in a protein that is
constitutively active in intracellular signal transduction
[30]. Mutations of the KRAS gene are one of the earliest
genetic abnormalities observed in the progression model
of pancreatic cancer, demonstrable in approximately 36%,
44%, and 87% of cancer-associated PanIN-1A, PanIN-1B,
and PanIN-2/3 lesions, respectively [31]. The frequency of
KRAS gene mutations is somewhat lower (∼10%) in
PanIN lesions arising in the backdrop of chronic pancre-
atitis [32]. Of note is given that PanIN lesions and an
adenocarcinoma within the same pancreas may harbor
different KRAS gene mutations, suggesting that some
precursors evolve as independent clones from the one that
eventually progress to the invasive cancer [33]. The high
frequency of KRAS gene mutations in human PanINs
supports its role as an initiating event for pancreatic cancer
formation. This fact has been reiterated in several recent
animal models (see discussion below) where expression of
mutant Kras is a prerequisite for the development of ductal
pre-neoplasia and cancer [34, 35]. In addition to its role in
pancreatic cancer initiation, constitutive RAS signaling
appears to be required for pancreatic cancer maintenance
as well [36].

Tumor-suppressor gene mutations in PanIN lesions

Tumor-suppressor genes are genes that promote tumor
growth when inactivated. Tumor-suppressor genes are

recessive, which means that two copies need to be mutated
for loss of function, and they can be inactivated by a variety
of mechanisms: first, by an intragenic mutation in one allele
(copy of a gene) coupled with loss of the second allele;
second, by deletion of both alleles (homozygous deletion);
and third, by hypermethylation of the promoter of the gene,
thus silencing gene expression. In sporadic cancers, these
alterations are both somatic mutations acquired during life,
while patients with inherited forms of cancer inherit one
mutant allele in the germline, while the second allele is
somatically mutated in the cancer cells. Three tumor-
suppressor genes, p16INK4A/CDKN2A, TP53, and DPC4/
SMAD4/MADH4, are inactivated in a significant proportion
of PanINs, mirroring their relative frequencies of loss of
function in invasive adenocarcinomas.

The p16INK4A/CDKN2A gene, located on the short arm
of chromosome 9 (9p), is one of the most frequently
inactivated tumor-suppressor genes in pancreatic cancer
[37]. Remarkably, virtually all pancreatic carcinomas have
loss of p16INK4A/CDKN2A function in 40% of pancreatic
cancer through homozygous deletion, in 40% by an
intragenic mutation coupled with loss of the second allele,
and in 15% by hypermethylation of the p16INK4A/
CDKN2A gene promoter [37, 38]. The p16INK4A/
CDKN2A gene encodes the cell-cycle checkpoint protein
p16, which binds to the cyclin-dependent kinases Cdk4 and
Cdk6, thereby inhibiting binding of cyclin D1, resulting in
G1-S cell-cycle arrest [39]. Loss of p16INK4A/CDKN2A
results in inappropriate phosphorylation of retinoblastoma
(Rb)-1, thereby facilitating progression of the cell cycle
through the G1/S transition [40]. Thus, the p16/Rb pathway
is inactivated in virtually all pancreatic cancers, leading to
an inappropriate progression through the G1 phase of the
cell cycle. Loss of p16 expression is also seen in cancer-
associated PanINs, with 30% of PanIN-1A and PanIN-1B,
55% of PanIN-2, and 71% of PanIN-3 lesions, demonstrat-
ing loss of nuclear p16 protein expression [41]. In contrast,
loss of p16 expression is less frequently observed in PanIN
lesions arising in the backdrop of chronic pancreatitis
(respectively, 0%, 11%, 16%, and 40% for PanIN-1A,
PanIN-1B, PanIN-2, and PanIN-3) [42].

The TP53 tumor-suppressor gene on chromosome 17p
encodes for the p53 protein [43, 44]. The p53 protein has a
number of important functions in the cell, including
regulation of the G1/S cell-cycle checkpoint, maintenance
of G2/M arrest, and the induction of apoptosis. The TP53
gene is inactivated in 55–75% of pancreatic cancers, almost
always by an intragenic mutation in one allele coupled with
loss of the second allele [44]. The loss of TP53 means that
two critical controls of cell number (cell division and cell
death) are deregulated in the majority of pancreatic cancers.
By immunohistochemistry, p53 accumulation is usually
seen in the advanced PanIN-3 lesions, which is consistent
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with TP53 gene mutations being a late genetic event in
pancreatic cancer progression [45, 46].

Another commonly inactivated tumor-suppressor gene in
pancreatic cancer is DPC4, also known as SMAD4/
MADH4. DPC4 is a tumor-suppressor gene on chromosome
18q and is one of the most commonly inactivated genes in
pancreatic ductal adenocarcinoma, detected in approximate-
ly 55% of the cases. Inactivation occurs either through
homozygous deletion, in approximately 30%, or loss of one
allele coupled with an intragenic mutation in the second
allele in approximately 25% [47–49]. The DPC4 gene
codes for the protein Smad4, and Smad4 plays a critical
role in signaling through the transforming growth factor
type β (TGF-β) pathway. The TGF-β pathway is activated
when the TGF-β proteins bind to specific cell surface
receptors. This triggers an intracellular cascade that results
in the nuclear localization of Smad4. Once in the nucleus,
Smad4 has growth controlling effects by regulating the
expression of specific target genes [29, 50]. Therefore, loss
of DPC4 and, thus loss of Smad4 protein, interferes with
the intracellular signaling cascades downstream from TGF-
β and activin, resulting in decreased growth inhibition via
loss of pro-apoptotic signaling or inappropriate G1/S
transition [51, 52]. Immunohistochemical labeling for
Smad4 protein expression mirrors DPC4/SMAD4/MADH4
gene status with rare exceptions, and like TP53, loss of
Smad4 expression is a late genetic event in pancreatic
carcinoma progression. Smad4 expression is intact in
PanIN-1 and PanIN-2 lesions, but loss of Smad4 expression
is observed in 31–41% of PanIN-3 lesions [48].

Genome-maintenance genes mutations in PanIN lesions

Genome-maintenance genes are those that function to
identify and repair damage to DNA. They do not directly
influence cell growth and proliferation but rather prevent
the accumulation of DNA damage and maintain genomic
fidelity. When a genome-maintenance gene is inactivated,
DNA damage is not repaired efficiently, and DNA
mutations accumulate. If these mutations occur in cancer-
associated genes, they can contribute to tumorigenesis [53].
Although gross chromosomal abnormalities are frequent in
pancreatic ductal adenocarcinomas, genetic instability also
occurs through DNA mismatch repair defects [54]. The
DNA mismatch repair genes hMLH1 and hMSH2 are
examples of genome-maintenance genes targeted in pan-
creatic cancer [49]. Their encoded proteins work together to
repair small insertions, deletions, and other sequence
mismatches in newly replicated DNA. Either by mutation
or promoter hypermethylation, one of these genes can be
inactivated. As a result, DNA repair is compromised, and
mutations accumulate in repetitive tracts, producing alter-

ations known as “microsatellite instability” (MSI). Approx-
imately 4% of pancreatic cancers have MSI, and these
cancers have a specific microscopic appearance called
“medullary histology”. Medullary histology is characterized
by pushing borders, syncytial growth pattern, and lympho-
cytic infiltrate. Furthermore, MSI is associated with poor
differentiation and lack of KRAS and TP53 mutations, and
germline mutations of this gene are associated with the
human non-polyposis colorectal cancer syndrome [55–57].

Another class of genome-maintenance genes includes
the Fanconi anemia family of genes. Fanconi anemia is a
hereditary cancer susceptibility disorder, with the occur-
rence of hematologic abnormalities or acute myelogenous
leukemia at an early stage, usually leading to death before
the age of 20. Patients who survive into adulthood often
develop solid tumors [58]. The genes that mutated in
pancreatic cancer include the BRCA2, the FANCC gene, and
the FANCG gene [58, 59]. These genes are targeted in a
small percentage of pancreatic cancers, namely less than
10%. Of these, BRCA2 appears to be particularly signifi-
cant, because germline BRCA2 mutations, including a
founder germline mutation prevalent in the Ashkenazi
Jewish population, result in a predisposition to pancreatic
cancer in the affected kindred [60]. In ductal pancreatic
cancers 7% to 10% harbor an inactivating intragenic
inherited mutation of one copy of the BRCA2 gene
accompanied by loss of heterozygosity [61, 62]. Among
the three cases of pancreatic cancer with germline mutation
of BRCA2, loss of remaining wild-type allele was present in
a single PanIN-3 lesion but none in 13 low-grade PanINs,
confirming that bi-allelic inactivation of the BRCA2 gene,
like the TP53 gene, is a late event in pancreatic cancer [63].

Telomere length abnormalities in PanIN lesions

Telomeres are structures present at the ends of linear
chromosomes, comprising hexameric DNA repeat sequen-
ces (TTAGGG) in association with telomere-binding
proteins. These telomeric repeat sequences prevent fusion
between ends of chromosomes, and so we can assume that
telomeres serve as sort of protective “caps”. It appears that
telomeres become abnormally short very early in the
development of pancreatic neoplasia [64]. These shortened
telomeres can presumably lead to the abnormal fusion of
chromosome ends and in this fashion to chromosome
instability, promoting further neoplastic progression in
these cells [53]. Such a chromosome fusion leads to so-
called anaphase bridges during mitosis [65]. During cellular
replication, these anaphase bridges frequently break, gen-
erating unstable chromosome ends that are subject to
abnormal fusion events and subsequent chromosomal
rearrangements [66]. Telomere length abnormalities are
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one of the earliest event in the pancreatic progression
model, with more than 90% of even the lowest grade PanIN
lesions demonstrating marked shortening of telomeres as
compared with normal ductal epithelium [64]. It is believed
that this loss of telomere integrity in PanIN lesions is one of
the major causes for the loss of tumor-suppressor genes and
the gain of oncogenes described earlier.

Epigenetic abnormalities in PanIN lesions

In addition to genetic changes, we now know that
epigenetic abnormalities are a common hallmark of cancers.
Epigenetic abnormalities in cancer occur predominantly
trough methylation of CG dinucleotides (“CpG islands”) in
the promoter region of genes, leading to silencing of
transcription [67]. In cancers, there is preferential methyl-
ation of the gene promoter in the neoplastic cells but not in
the corresponding normal cells within the tissue of origin.
Numerous studies have showed promoter hypermethylation
of several genes, which have a function in tumor
suppression and/or critical homeostatic pathways, to be an
important mechanism for gene inactivation in many types
of cancer [68, 69]. A recent study of a large number of
microdissected PanIN lesions has found that as many as
70% of the earliest PanIN-1A lesions demonstrate evidence
of aberrant promoter methylation [70]. In addition to
previously documented genes −p16 and proenkephalin, this
study found evidence of progressive hypermethylation in
NPTX2, SARP2, Reprimo, and LHX1 [70–73]. These results
suggest that aberrant CpG island hypermethylation begins
in early stages of PanINs, and its prevalence progressively
increases during neoplastic progression. The aberrantly
methylated genes in PanIN lesions can be detected with
methylation-specific PCR, making them potentially attrac-
tive for early detection. For that reason, the detection of
aberrantly methylated genes in the pancreatic juice of
patients with pancreatic carcinoma might be a promising
diagnostic strategy [74].

Alterations in apomucin expression in PanIN lesions

The apomucins MUC1, MUC2, and MUC5 are frequently
overexpressed in epithelial cancers, particularly those
arising in the gastrointestinal tract and pancreas [75].
MUC1 is expressed in the normal pancreatic ducts and
acini and is responsible for the maintenance of lumen
formation. MUC1 expression is also often encountered in
invasive pancreatic ductal adenocarcinomas [76, 77].
Maitra et al. showed that MUC1 expression was present
43% in PanIN-2 and 85% in PanIN-3 but in only 6% and
5% in PanIN-1A/B. Thus, in the multi-step progression of

pancreatic adenocarcinomas, MUC1 expression within
normal intra- and interlobular ducts appears to be decreased
in the low-grade PanINs (PanIN-1A and 1B). However,
MUC1 appears to be subsequently re-expressed in the
advanced PanIN lesions, and this expression persists into
invasive adenocarcinoma. Of interest, unlike MUC1, the
expression of the apomucin MUC2 is uncommon in both
normal pancreas and in invasive ductal adenocarcinomas
[45, 76]. In contrast, MUC2 expression is commonly seen
in IPMNs and their associated invasive colloid carcinomas
[78]. These mucins can be used to distinguish PanINs from
IPMNs, because PanINs, in contrast to IPMNs with
intestinal differentiation, do not express MUC2. Further-
more, MUC5 is similar to MUC1 in that it is also expressed
in the majority of invasive ductal adenocarcinomas. In
contrast to MUC1, however, MUC5 is not expressed in
normal ducts, but its expression is up-regulated even in the
earliest PanIN lesions and persists thereafter in the majority
of lesions of all histologic grades [45, 79]. These mucins
are also potentially detectable by imaging [80], and they
may be useful for screening and as therapeutic targets for
the treatment of precursor lesions [81, 82] (Fig. 1).

Aberrant expression of proteins in PanIN lesions

The protein cyclin D1 is a co-factor in the phosphorylation
and inactivation of the Rb protein, which plays a central
role in cell-cycle regulation [39]. Over-expression of the
cyclin D1 protein has been documented in 60–85% of
invasive pancreatic adenocarcinoma in imunohistochemis-
try studies [83, 84]. Cyclin D1 overexpression in pancreatic
cancer has been associated with a poor prognosis and
decrease in survival [85]. In the development of pancreatic
cancer, cyclin D1 overexpression appears to be an
intermediate step with nuclear overexpression in 29% of
PanIN-2 lesion and 57% of PanIN-3 lesions but no
expression in normal pancreatic ducts, PanIN-1A, or
PanIN-1B lesions [45].

Cyclooxygenase-2 (COX-2) regulates the metabolism of
arachidonic acid into prostaglandins and other pro-inflam-
matory products. COX-2 has been implicated in tumori-
genesis in which metabolites of COX-2 activate a range of
signaling pathways, leading to cancer cell proliferation,
survival, invasion, and angiogenesis [86]. These processes
may be secondary to activation of the MAP kinase
signaling pathway and nuclear factor kappa B (NF κB)-
mediated signaling [87]. In pancreatic cancer, COX-2 levels
are up-regulated, and also in PanIN lesions, COX-2 is
expressed. In general, COX-2 follows the trend of
expressions, which increases from normal pancreatic ducts
to PanIN to adenocarcinoma, with significantly higher
expression in PanIN-2/3 compared with PanIN-1A/1B
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[88]. The appearances of COX-2 in PanIN lesions suggest
the possibility of a potential target for chemoprevention
using selective COX-2 inhibitors [89].

Certain proteins were first identified as overexpressed in
pancreatic cancer based on global expression analyses and
subsequent validation in tissue sections. Many of these
proteins, not surprisingly, are also overexpressed in precur-
sor lesions. For example, protein prostate stem cell antigen
(PSCA) is overexpressed in 30% of PanIN-1 lesions, and
respectively 40%, 60%, and 60% in PanIN-2, PanIN-3, and
invasive cancer, mandating the classification of PSCA as an
early event in the progression model [45]. The patterns of
protein expression in PanIN lesions are important, because
the proteins expressed in low-grade PanINs may be
reasonable chemoprevention targets, while those expressed
late (in PanIN-3 lesions) are potential markers for the early
detection of pancreatic neoplasia.

Signaling pathways and PanIN lesions

It is known that several embryonic signaling pathways
(Notch, Hedgehog, and Wnt pathways) play an important
role in multiple tissues during development in utero, and these
pathways are for the most part turned off in adult somatic
cells, including the exocrine pancreas. Recently, abnormal
transcriptional activation of these pathways has been reported
in both human and mouse models of pancreatic neoplasia
[90–93]. The Notch signaling plays a critical role in

maintaining the balance among cell proliferation, differenti-
ation, and apoptosis. Over-expression of Notch pathway
receptors (Notch 1–4), ligands (Jagged 1–2), and transcrip-
tional targets (Hes 1) are up-regulated in PanIN lesions and
in invasive adenocarcinoma. Notch activation in PanIN
lesions appears to be ligand dependent, with Jagged-1
identified by micro-array analysis as one of the significantly
overexpressed genes in early PanIN lesions [90, 94].

Aberrant activation of the Hedgehog signaling pathway
has been reported in PanINs and pancreatic cancer, as well
as in genetically engineered murine models (see discussion
below) of PanIN [91, 92]. Global transcriptional profiling
of human PanINs revealed up-regulation of extra-pancreatic
foregut markers including pepsinogen C, MUC6, Sox-2,
KLF4, and TFF1 as a consequence of overexpression of
Gli1, a downstream mediator of Hedgehog signaling.
Furthermore, activation of the Hedgehog pathway in a
human pancreatic ductal epithelial cell line resulted in a
similar up-regulation of foregut markers seen in the early
PanIN lesions [95]. It is interesting to note that the
aberrantly expressed markers of foregut are not present in
normal ductal epithelium.

Activation of the Wnt signaling pathways usually occurs
via activating mutations of β-catenin or loss-of-function
mutations of the APC tumor-suppressor gene; either event
leads to stabilization and nuclear translocation of β-catenin
and transcription of Wnt target genes [96]. Several studies
demonstrated that Wnt pathway mutations are rare in
pancreatic ductal adenocarcinoma, although they are fre-

Fig. 1 A “PanINgram” illustrating some of the molecular alterations
that occur during the multi-step progression of pancreatic adenocarci-
nomas. The molecular abnormalities listed are not comprehensive, and

additional alterations are discussed in the text at the appropriate
juncture. Adapted from [45]
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quently observed in non-ductal tumors (e.g., solid pseudo-
papillary tumors, pancreatoblastomas, and acinar cell
carcinomas) [97, 98]. In PanIN lesions, nuclear β-catenin
expression is a rare event, and this reiterates the existence
of two distinct, genetically divergent pathways of neoplasia
in the pancreas: one resulting in the more common,
conventional ductal adenocarcinoma and the other resulting
in the less common non-ductal neoplasms [45].

Mouse models

Since the development of genetically engineered mouse
models with pancreatic cancer, our understanding of the
genetics of human PanINs and invasive pancreatic cancer
has improved a lot. A major breakthrough was achieved in
2003, when Hingorani and colleagues developed a mouse
model with pancreatic neoplasia that expressed an onco-
genic KRASG12D allele from its endogenous promoter
through Cre-mediated recombinant driven by Pdx1 regula-
tory elements [35]. Pdx1 is involved in early pancreatic cell
fate determination. Pdx1 expression is critical in pancreatic
development, and homozygous deletion of Pdx1 causes
pancreatic agenesis [99]. The Pdx1-Cre, LSL-KrasG12D

mice develop the entire histologic compendium of murine
PanIN (mPanIN) lesions observed in the cognate human
disease, and in a subset of mice, develop invasive
pancreatic carcinomas as well. Although expression of
mutant Kras itself is not enough for developing invasive
cancer, it is sufficient to initiate PanINs. The fact that these
animals developed PanIN lesions before they developed
invasive cancer has helped to validate the hypothesis that
PanINs can progress to invasive cancer. However, when
engineering mice that mis-express oncogenic Kras in the
pancreas were combined with bi-allelic INK4a/Arf deletion
or an oncogenic Trp53R172H allele, these mice developed
aggressive, metastatic pancreatic cancers, with complete
penetrance and shorter latency. On the other hand,
abrogation of either INK4a/Arf or TP53 signaling alone in
the absence of oncogenic Kras does not lead to the
development of pancreatic carcinomas or associated pre-
cursor lesions, underscoring the crucial importance of Kras
signaling in initiating the cascade of events, which result in
pancreatic carcinogenesis [34, 100, 101]. Of interest, the
mPanIN lesions in the various LSL-KrasG12D mice not only
demonstrate the morphological spectrum of human PanIN
lesions but they also carry many of the alterations described
above, such as overexpression of Notch, Hedgehog, and
COX-2 [35, 101]. These mouse models have significantly
facilitated defining the role of these genes in the progres-
sion of pancreatic neoplasia.

Mouse models can also be used to examine the role of
other medical conditions and environmental factors in the

development of pancreatic cancer [102, 103]. For example,
Guerra et al. reported that when Kras mutations are created
in adult mice, these genetically engineered mice do not
develop lesions or pancreatic cancer. However, if these
mice are challenged with a mild form of pancreatitis, they
will develop the full spectrum of PanINs and invasive
pancreatic carcinoma. This study provides an excellent
example of how genetics and environmental factors
interplay in the development of pancreatic cancer, especial-
ly when we translate these studies into human observations
[103, 104].

At last, mouse models are potentially useful tools to
explore pre-clinical diagnostic and therapeutic strategies for
pancreatic neoplasia. As already mentioned, these mouse
models recapitulate not only the morphology of the cognate
human disease but also many of the signaling pathways like
Notch, Hedgehog, and COX-2 [35, 101]. Thus, there is a
unique opportunity to explore chemoprevention and treat-
ment strategies in a biologically relevant pre-clinical model.

Conclusion

Putative precursor lesions of pancreatic cancer were
documented over a century ago. However, it took many
decades to define the various histological types of precursor
lesions in the pancreas and to credential these lesions as
true precursors to invasive adenocarcinoma. Nevertheless,
the detailed mechanisms involved in the initiation and
progression of these precursor lesions remain to be
elucidated. An improved understanding of the pathogenesis
of PanIN lesions will enable us to develop better tools for
primary and secondary prevention of pancreatic cancer, as
well as improve existing tools for early diagnosis.
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