
Abstract. A majority of cortical areas are connected via
feedforward and feedback ®ber projections. In feedfor-
ward pathways we mainly observe stages of feature
detection and integration. The computational role of the
descending pathways at di�erent stages of processing
remains mainly unknown. Based on empirical ®ndings
we suggest that the top-down feedback pathways sub-
serve a context-dependent gain control mechanism. We
propose a new computational model for recurrent
contour processing in which normalized activities of
orientation selective contrast cells are fed forward to the
next processing stage. There, the arrangement of input
activation is matched against local patterns of contour
shape. The resulting activities are subsequently fed back
to the previous stage to locally enhance those initial
measurements that are consistent with the top-down
generated responses. In all, we suggest a computational
theory for recurrent processing in the visual cortex in
which the signi®cance of local measurements is evaluat-
ed on the basis of a broader visual context that is
represented in terms of contour code patterns. The
model serves as a framework to link physiological with
perceptual data gathered in psychophysical experiments.
It handles a variety of perceptual phenomena, such as
the local grouping of fragmented shape outline, texture
surround and density e�ects, and the interpolation of
illusory contours.

1 Motivation

The brain is steadily confronted with a massive infor-
mation ¯ow that arrives via several sensory channels. In
vision, pattern arrangements that signal coherent surface
quantities must be somehow reliably detected and
grouped into elementary items. Such a grouping enables

the segregation of ®gural components from cluttered
backgrounds as well as the adaptive focussing of
processing capacities while suppressing unimportant
parts of the scene (Grossberg 1980; Crick 1984).

A characteristic feature of the cortical architecture is
that the majority of (visual) cortical areas are linked
bidirectionally by feedforward and feedback ®ber pro-
jections. So far, the precise computational role of the
descending feedback pathways at di�erent stages of pro-
cessing remains largely unknown. Previous computa-
tional models incorporate feedback mechanisms to
complete initially fragmented contours (Grossberg and
Mingolla 1985) or, more recently, to carry top-down
shape templates to generate the representation of residu-
als from the di�erence between templates and the sensory
input (Mumford 1991, 1994). A comprehensive discus-
sion of these and other approaches is given in Sect. 5.

Recent empirical evidence supports the view that top-
down projections primarily serve as a modulation
mechanism to control the responsiveness of cells in the
primary visual cortex (Lamme 1995; Salin and Bullier
1995). Based on these ®ndings, our model proposes
computational principles of feedforward and feedback
interaction between a pair of cortical areas. In the lower
area, mechanisms of local feature or signal detection
process the input whereas in the higher area these local
measurements are integrated and matched against model
information, or priors, of coarse shape outline. By way
of recurrent projection, these activities feed a gain con-
trol mechanism to selectively enhance those initial esti-
mates that are consistent with a broader visual context
provided by the stimulus contour and shape outline.
This facilitates the segmentation of the surface layout
and ®gure-ground segregation. Since, so far, no all-em-
bracing neural theory of surface perception has been
developed, the proposed model contributes to a better
understanding of the general computational principles
involved in grouping and surface segmentation. The
model links physiology and psychophysics, incorporat-
ing empirical data from both research directions, and
provides a common framework for distinct perceptual
phenomena.
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2 Summary of empirical ®ndings

The computational model proposed here has the fol-
lowing key components: feedforward and feedback
processing between a pair of model areas, localized
receptive ®eld processing, lateral competitive interac-
tion, and lateral horizontal integration within areas.
Empirical evidence is widespread and not entirely
coherent. In order to justify the computational stages
of the model, we review recent physiological and
morphological ®ndings speci®cally emphasizing data
about cortico-cortical feedback processing. This sum-
mary is accompanied by recent psychophysical data on
spatial grouping and interpolation that relates to
broader visual contexts integrating localized measures.

2.1 Morphology and physiology

The majority of areas in the cortex are connected in a
bidirectional fashion. Thus, for pairs of areas mostly a
forward as well as a backward stream can be identi®ed.
The functional role of the feedback stream in the
reciprocal wiring between areas is not yet clearly
established. This also holds for V1±V2, the focus of
our interest in this contribution. Feedforward projec-
tions from monkey V1 selectively couple cells within
separate processing streams, e.g. for form, color and
motion/depth (DeYoe and Van Essen 1988). The
pattern of feedback connectivity shows a precise
retinotopic correspondence; however, the reciprocated
connections diverge from V2 to multiple clusters in V1
(Rockland and Virga 1989) and possibly enhance the
integration of visual information across di�erent chan-
nels (Krubitzer and Kaas 1989). Whether this is due to
intrinsic divergent backprojection is not entirely clear.
It has been concluded that indirect e�ects re¯ecting the
convergence of information ¯ow within V2 could also
be the underlying reason for the substantial divergence
(Rockland and Virga 1989). In the cat, Bullier et al.
(1988) found that feedback connectivity to area 17
from sites in areas 18 and 19 is in precise retinotopic
correspondence. Thus, the V1±V2 reciprocity may
indeed be mainly guided by a point-to-point connec-
tivity scheme as was suggested for the linking of cells in
cytochrome oxidase blobs and bands (Livingstone and
Hubel 1984). Concerning the processing of visual form
information, it has been shown that V1±V2 forward
connections link patches of similar orientation selec-
tivity (Gilbert and Wiesel 1989). Receptive ®eld sizes in
V2 are substantially larger than those in V1 (von der
Heydt et al. 1993). Horizontal connections of oriented
V2 cells link targets of a wide range of orientation
preference but avoid those with orthogonal orienta-
tions (Malach et al. 1994). Thus, one can conclude that
the structure of the wiring scheme supports the
speci®city of contrast orientation and curved shape
outline.

Several physiological studies (with monkey and cat)
indicate that activation of the V2 feedback pathway is
primarily excitatory and acts to modulate the output of

the striate cortex (Salin and Bullier 1995). Feedback
activation alone is not su�cient to drive V1 neurones if
they are not stimulated by a visual feeding input (Sandell
and Schiller 1982). Inactivation of area V2 reduces V1
cell responsiveness while leaving orientation and direc-
tion selectivity unimpaired (Sandell and Schiller 1982;
Mignard and Malpeli 1991). It is thus believed that the
modulation is excitatory such that feedback enhances
activity of V1 neurones (Sandell and Schiller 1982; Salin
and Bullier 1995). Recent ®ndings in a related study by
HupeÂ et al. (1998) strongly support this view. These
authors studied the in¯uence of feedback from area V5
to areas V1, V2 and V3 in monkey. The results dem-
onstrate that activation of the higher area has a facili-
tatory e�ect by modulating activities in the lower areas.
Feedback connections from the higher stage thus realize
a gain enhancement or gating mechanism. Further evi-
dence is gained by recent studies on ®gure-ground seg-
regation. For static orientation patterns as well as
motion displays, cell activities in monkey V1 are mod-
ulated in a context-dependent way (Lamme et al. 1997).
The modulation is abolished when the animal is
anesthetized (Zipser et al. 1997). Structure detected in
higher-order areas contributes to the context-sensitive
regulation of activity in a lower area such that activity
modulation serves as a general mechanism for ®gure-
ground segregation already at the early stage of V1 and
V2 processing (Lamme 1995).

The modulatory in¯uence of the visual context on the
response of a target cell to an individual stimulus ele-
ment has also been demonstrated. V1 cell responses to
isolated optimally oriented bars are reduced if the bar is
supplemented by a texture of oriented bars of the same
type. Reduction is maximal for a texture de®ned by bars
of the same orientation as in the center, weaker reduc-
tion is observed for randomly oriented bars, and even
weaker e�ects occur for a surround pattern with or-
thogonally oriented bars (Knierim and VanEssen 1992).
Cell responses are raised again ± even beyond the level of
individual stimulation ± if the central element is supplied
by colinearly arranged co-oriented ¯anking items while
keeping the surround texture. The aligned bars de®ne a
perceptually salient contour segment and ``pop-out''
pre-attentively (Knierim and VanEssen 1992; Kapadia
et al. 1995).

The integration or grouping of aligned items requires
a mechanism of long-range interaction between orient-
ed contrasts. Candidate mechanisms are V2 contour
cells which respond to oriented contrast stimuli as well
as to illusory contours of the same orientation (von der
Heydt et al. 1984). The magnitude of response for il-
lusory contours in line gratings increases monotonically
with increased line density of gratings. A contour cell
can be maximally excited by a physical contrast such as
a bar (von der Heydt and Peterhans 1989). Such a
gradual variation indicates that the strength of the
feeding input mainly determines the contour cell re-
sponse instead of an all-or-none classi®cation of co-
herent input. V2 contour neurons have been probed
with illusory-bar stimuli. They selectively respond to
coherent arrangements having both half-®gures of an
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illusory bar intact. If one half is missing, the cell re-
sponse drops to the level of spontaneous activity (Pe-
terhans and von der Heydt 1989). This suggests that V2
contour cells signal the presence of locally coherent
stimulus patterns where the response to the whole is
greater than the sum of responses to individual pattern
items.

2.2 Psychophysics

Perceptual organization is an elementary principle to
achieve ®gure-ground segregation and surface segmen-
tation. The underlying perception of various grouping
phenomena has been investigated in order to understand
the encoding of spatial information. Di�erent morphol-
ogies in random dot interference patterns have been
studied in Glass patterns (Glass and PeÂ rez 1973). The
detectability of local dot correlations has been suggested
to be facilitated by local cortical line detectors (Hubel
and Wiesel 1968), whereas the global integration might
rely on neural pattern recognition mechanisms (Glass
1969). Several authors (e.g. Smits et al. 1985) suggested
that dot patterns are grouped on the basis of proximity
that can be measured by directionally weighted averag-
ing, or low-pass ®ltering. However, the introduction of
``energy'' di�erences in feature-pair items, the inversion
of contrast polarity, and the use of triple-dot items
allows the disruption of a coherent perception of Glass
patterns (Prazdny 1984, 1986). These e�ects indicate
that more complex local mechanisms are involved in
order to explain the results. Prazdny (1986) conjectured
that local non-linear mechanisms may be supplied by
top-down mechanisms. A study by Sagi and KovacÂ s
(1993) con®rmed the contribution of a process which
involves oriented long-range interactions. The detection
of spatial arrangements of oriented Gabor patches
within a ®eld of distractors is facilitated by target
elements which are placed and oriented along the path
axis in the grouping direction (Field et al. 1993; Polat
and Sagi 1994). Kapadia et al. (1995) systematically
investigated contrast threshold reduction e�ects for
target line detection. The distance along the axis of
colinearity, displacement orthogonal to this axis and
deviation in an orientation were critical parameters for
optimal placements of ¯anking bars. Spatial support
could be disrupted through items that destroy feature
continuity.

The strength of grouping line-like items (instead of
dots) also depends on stimulus features such as edge
alignment, orientation, length, and contrast magnitude
(Beck et al. 1989), but not on contrast polarity (Gilchrist
et al. 1997). Similar selectivities have been observed as
critical for the visual interpolation in illusory contour
perception (Prazdny 1983; Kellman and Shipley 1991;
see the overview by Lesher 1995). Surface segmentation
and ®gure-ground segregation necessitates contour
completion over gaps where fore-ground/background
luminance di�erences are missing (Peterhans and von
der Heydt 1991). Consequently, contour completion
depends on discontinuities (inducers) which are oriented

in the direction of the interpolated contour. Completion
occurs in the same direction as the inducing contrast as
well as orthogonal to line endings (Kanizsa 1976;
Prazdny 1983; Shipley and Kellman 1990). Some au-
thors claim that basic visual ®ltering at di�erent spatial
resolutions is the primarily mechanism for subjective
contour perception (Ginsburg 1987). However, this view
is challenged by investigations using stimuli (Kanizsa
squares) of the same average luminance for ®gure and
ground in which illusory ®gure brightening is abolished.
Subjective contours remain robust, which indicates
causal e�ects of spatial con®guration as the main feature
(Kellman and Loukides 1987). The strength of visual
interpolation between edges depends on the ratio of
physical edge (inducer) length to total contour length
(Shipley and Kellman 1992). Such a mechanism is eco-
logically valuable since the formation of perceptual units
remains invariant under changing viewing distances.
This indicates that illusory contour generation is related
to surface segmentation that cannot be simply explained
by spatial ®ltering.

In all, a rich set of properties for perceptual contour
and unit formation has been identi®ed. Speci®c local
features in stimulus con®gurations initiate the integra-
tion into coherent percepts. The more global mecha-
nisms evaluate the arrangement of local responses
according to relatable stimulus properties. The local
e�ects of feature detection can already be linked to
neural mechanisms such as simple and complex cell
processing. Oriented horizontal intra-cortical long-range
connections do also exist in V1. This machinery might
help to explain several facilitatory e�ects that involve
feature alignment and orientation. However, since V1
cells only connect to other cells over a distance of a few
hypercolumns, one cannot explain completion, facilita-
tion, and reduction e�ects that occur over ranges of 5�
up to 8� visual angle (von der Heydt et al. 1993; Zipser
et al. 1996). Moreover, the cause of variations in the
strength of perceptual contours depending on various
local and global stimulus features remains unknown.
Neither do we have a solid theory of neural mechanisms
of surface perception. Taken together, this calls for
additional mechanisms that involve much larger spatial
integration ®elds. Rather informal experiments highlight
how local stimulus elements appear perceptually
di�erent depending on more global con®gurations and
context. Barrow and Tenenbaum (1981) demonstrated
how identical shading gradients represent di�erent sur-
face curvatures depending on changing shapes of object
silhouettes. Similarly, Mumford (1994) showed how a
given shading patch appears di�erently depending on
the global surface arrangement. Perceptual elements can
be absorbed by the structure of the whole such that a
perceiver cannot even see it anymore (Kanizsa 1968).
This again indicates that more global aspects of visual
stimuli in¯uence local feature measurements. We sug-
gest that recurrences provide ``. . . a plausible functional
role for the ubiquitious feedback pathways in visual
cortex, that of providing a broader context for the ®ring
of cells in lower areas.'' (Knierim and Van Essen 1992,
p. 978).
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3 Computational model

3.1 Functionality and computational mechanisms

We suggest that the variety of empirical ®ndings can be
explained within a framework of basic computational
mechanisms. In the ascending processing stream, the
local contrast orientation is initially measured by cells
with oriented receptive ®elds (RF), such as cortical
simple and complex cells. Thus, for a pair of bidirec-
tionally connected cortical areas (V1 and V2 in our case)
the ``lower'' area serves as a stage of feature measure-
ment and signal detection. Activities from local
measurements are subsequently contrast enhanced and
normalized by a mechanism of divisive inhibition
(Fig. 1a; compare with Heeger 1992 and Heeger et al.
1996). The resulting activations are fed forward to the
``higher'' area where they are subsequently integrated by
cells utilizing oriented long-range RF integration. Due
to their increased RF size, such an integration along an
oriented path bridges gaps including those correspond-
ing to perceived illusory contours. The e�ectivity of local
integration is based on a multitude of stimulus features,
such as relative spatial position, alignment, and local
orientation. An arrangement of items in a spatial
neighborhood of a target cell facilitate its response in a
graded fashion. A signi®cant contrast element in a
particular con®guration is likely to occur in conjunction
with other items that are arranged curvilinearly. Thus,
on a functional level, the weighting pattern of these RFs
can be viewed as to embody the laws of spatial

proximity, good continuation, and similarity that have
been quali®ed as perceptual rules by the Gestaltists
(Ko�ka 1935). The e�ective weightings between the
target location and other elements in a space/orientation
neighborhood should encode the likelihood of occur-
rence of smooth stimulus shape segments. In other
words, spatial weightings of V2 cells with oriented long-
range selectivity represent ``models'' of visual entities, or
local gestalts, that frequently occur in regular visual
form patterns (Fig. 1b; compare with Grossberg and
Mingolla (1985) and Zucker (1985) for ®rst models of
oriented space/orientation integration). The ``higher''
area locally matches ``model templates'' (or priors; see
Mumford 1994) of expected visual structure against the
incoming data carried by the ascending pathway.

The matching process generates an activity pattern in
the higher area that is propagated backwards via the
descending feedback pathway. In V1 responses of cells
that match position and orientation of activated V2,
contour cells are selectively enhanced; those that do not
are inhibited (Fig. 1b). Thus, any feedback activation
signals the degree of consistency between local mea-
surements and model expectations (Grossberg 1980).
Such expectations are generated by the spatial
arrangement of localized contrast activity in a local
neighborhood that is sampled by the oriented lobes of
V2 cell RFs. Feedback is modulatory realizing an ex-
citatory gain control mechanism that enhances already
active cells in V1 (compare HupeÂ et al. 1998). The
modulation is accompanied by competitive interactions
to realize a ``soft gating'' mechanism that selectively
®lters activities corresponding to salient input arrange-
ments while suppressing spurious signals that are incon-
sistent with the top-down priors or shape templates. The
computational competence of the proposed recurrent
scheme is thus to preferentially enhance those localized
items that are part of a coherent arrangement of shape
outline. Evidence for the presence of such an outline is
accumulated by the weighted integration of measure-
ments in an oriented space/orientation neighborhood.

3.2 Description of mechanisms

We implemented the model architecture to demonstrate
the functionality of interaction between areas V1 and
V2. All network levels are modeled as consisting of
single compartment cells with gradual saturation-type
®rst-order activation dynamics.

3.2.1 Model V1
At the initial measurement stage of model area V1, input
luminance stimuli are processed by oriented masks of
local contrast direction resembling cortical simple cells
(Hubel and Wiesel 1968). We utilize linear simple cell
models with odd-symmetric RF pro®les for K � 8
di�erent orientations, h � kp=K with k � 0; 1; . . . ; K ÿ 1.
Responses of simple cells sensitive to opposite contrast
polarity, sLDih and sDL

ih [for light-dark (LD) and dark-light
(DL) selectivity, respectively], are subsequently pooled
to generate complex cell responses, cih, selective to

Fig. 1. Model components. (a) Feeding input is processed by localized
V1 cells with oriented receptive ®elds whose responses are modulaed
by top-down activation. Responses are subsequently normalized by a
shunting competition among cells in a local neighborhood N
(compare Heeger et al., 1996). (b) Model V2 cells resembling `contour
templates' integrate V1 activations from elongated RF branches. The
example case shows two horizontally oriented V1 complex cells each
sending their activity to one lobe of V2 cell RF. Once the V2 target cell
at the center location is activated from both branches it sends
excitatory feedback activity (+) to a V1 cell at the corresponding
position and orientation. Inhibitory activity ()) is sent to cells in the
local space/orientation neighborhood thus realizing a recurrent ON-
center/OFF-surround interaction. The coaligned similarly oriented
items signal the presence of a salient shape outline. In the
computational scheme the activity of the central horizontally oriented
cell is strengthened by the in¯uence of ¯anking coaligned items. V2
cells sample the feedforward input con®guration generated by V1. The
individual ¯anking V1 cells therefore also receive excitatory input
from V2 contour cells at their corresponding locations
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orientation but insensitive to local contrast polarity.
Subscript i denotes the spatial location.

Complex cell responses are fed to a sequence of
competitive interactions in model area V1, the ®rst stage
of which modulates the output of oriented contrast de-
tection through feedback activation generated by V2
contour cells. This recurrent processing generates activ-
ities l�1�ih by the following shunting interaction;

@

@t
l�1�ih � ÿa1l

�1�
ih � b1cih 1� C h�2��W�

n o
ih

� �
ÿ f1l�1�ih h�2��Wÿ�Kÿ

n o
ih
: �1�

The constants a1; b1 and f1 de®ne the parameters of the
dynamics of cell interaction, where a1 determines the
activity decay and b1 and f1 denote constant shunting
parameters for excitatory and inhibitory response am-
plitudes, respectively. The constant C represents the gain
factor of top-down modulation via V2 contour cell
activations. Weighted averaging of activities is denoted
by a convolution operation (�) utilizing weighting
functions K and W in the space and orientation domains,
respectively. Excitatory and inhibitory interactions are
denoted by `�' and `ÿ', respectively.

Activities h�2�ih denote feedback activations delivered
by the descending pathway. The scheme resembles a
recurrent ON-center/OFF-surround anatomy similar to
the type analyzed by Grossberg (1973). In our model,
the feedback mechanism, is also selective to the orien-
tation domain (compare Fig. 1b). Closer inspection of
Eq. (1) demonstrates that the enhancement via feed-
back activation is only e�ective at those positions with
non-zero V1 complex cell response. Such a modulatory
interaction is similar to the linking mechanism pro-
posed by Eckhorn et al. (1990). The spatial shape and
extent of inhibitory interaction follows a Gaussian
distribution consistent with recent investigations by
Kastner et al. (1996). In contrast to approaches such as
those of Grossberg and Mingolla (1985) and Grossberg
et al. (1997), in our model no activity spreading or
completion occurs for locations between inducing ele-
ments of a salient perceptual contour arrangement.
Thus, here the computational competence of feedfor-
ward and feedback interaction is the context-sensitive
selection and enhancement of early signal and feature
measurements.

The top-down modulated activities subsequently
undergo a second stage of shunting ON-center/OFF-sur-
round competition between activities in a spatial and
orientational neighborhood

l�2�ih �
b2l�1�ih ÿ d2 l�1��Wÿ�Kÿ� 	

ih

a2 � f2 l�1��Wÿ�Kÿf gih
; �2�

where a2, b2, d2, and f2 are constants. With this
competitive interaction, the initial top-down modulated
activities are contrast enhanced and normalized by
subtractive and divisive inhibition. Together, simple-cell
processing, enhancement, and subsequent normalization
is consistent with recent experimental and theoretical
work (DeAngelis et al. 1993). Without incorporating

any auxiliary compressive signal function, as suggested
in other models (Heeger 1992; Heeger et al. 1996), model
V1 cells generate locally normalized responses that have
been selectively enhanced by a context-dependent mod-
ulating input from cells in model V2 (Knierim and Van
Essen 1992). In all, the combination of both competitive
processing stages in model V1 generating activities l�1�ih
and l�2�ih realizes a soft-gating mechanism: V1 activities
which are selectively enhanced by matching V2 contour
cell activation in turn provide more inhibitory energy in
the normalization stage. Thus, salient contrast arrange-
ments will be enhanced while at the same time spurious
and perceptually irrelevant responses will be suppressed
by way of inhibition. In Appendix 1, we present details
of this soft-gating mechanism.

3.2.2 Model V2
Arrangements of graded contrast activities are fed
forward to orientation-selective contour cells in area
V2. Local contrasts appear as part of smooth continu-
ously shaped contour outlines. Therefore, a signi®cant
response measured by localized contrast cells is fre-
quently part of a curvilinear arrangement of co-occur-
ring contrast cell responses. The presence of coherent
outlines of di�erent curvature is encoded in a weighting
pattern of connectivity that preferentially links cells of
smooth contours in a space/orientation domain which
tangentially pass through the target location. An
oriented RF weighting function of a contour cell is thus
considered as ``contour template'' (compare Mumford
1994) to match the likely presence of smooth shape
outlines. Using this mechanism, in the ®rst stage of
model V2 the signi®cance of a target cell response for a
given orientation is evaluated on the basis of the
accumulation of weighted input in the spatial neighbor-
hood. In order to reduce the uncertainty of measurement
along its axis of elongation, we partition the ``contour
template'' into several components. Each component
contributes to the ®nal matching activity of the V2 target
cell. We designed the connectivity structure of such cells
taking into account that they connect with a fan-like
spread and link with other cells having a wide range of
orientation preferences but avoiding orthogonal orien-
tation domains (compare Malach et al. 1994). The
weighting functions de®ne a bipartite RF by sampling
opposite half-planes along their symmetry axis utilizing
separate lobes (see Fig. 2a). A non-linear accumulation
stage subsequently integrates the activities from a
colinear pair of lobes (Grossberg and Mingolla 1985;
Peterhans and von der Heydt 1989) which requires input
activation from both branches. Functionally, such a
mechanism implements an AND-gate of activities from
opposite half-planes such that a contour cell only
becomes activated if it signals a continuous contour
segment (Fig. 2b). This is consistent with physiological
®ndings about non-linearities in the response of V2
contrast cells (e.g. von der Heydt et al. 1984; see Sect. 2).

Theweighting functionsofbothbranches consist ofON-
and OFF-sub®eld components (Fig. 2c) denoted by C�;Lih
and C�;Rih , respectively. ON-sub®elds display the pattern of
excitatoryweightings in space/orientation for ``relatable''
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contrast cells to facilitate the V2 target cell (Kellman and
Shipley 1991)1. Figure 2c shows such a cell that is tuned to
horizontal orientation. This cell is tangent to an in®nite
number of circular arcs of di�erent radii. Cells in the
neighborhood that are also tangentially oriented to one of
these arcs provide maximal support for the target cell ac-
tivation (see Appendix 2). An additional inhibitory
weighting pattern is de®ned by the OFF-sub®eld. This in-
corporates the ``non-relatability'' constraint making the
space/orientation integration more selective and tuned to
aligned contrast arrangements. We investigated di�erent
patterns of inhibitory weighting, including maximal sup-
pression for orientations orthogonal to the supportive

contrast orientations.Asimple scheme inwhich inhibitory
cells are similarly oriented as the target cell provided ro-
bust results for a broad range of stimulus con®gurations
(Fig. 2c, bottom; see Appendix 2). In order not to lose
selectivity to activity patterns that are aligned along the
RF symmetry axis, the excitatory weighting pattern is bi-
ased to compensate for the inhibition. Input activation
from both branches of a ``contour template'' at position i
fororientationh is computedby the convolutions l�2��C�;Lih
and l�2��C�;Rih . Since contributions of excitatory and in-
hibitory weightings enter in an additive fashion, we get
v L

ih � max�fl�2���C�;L ÿ Cÿ;L�gih; 0� and v R
ih � max�fl�2��

�C�;R ÿ Cÿ;R�gih; 0�. Incorporating a recti®cation opera-
tion prevents incompatible contrast con®gurations from
generating dominant-negative responses via OFF-sub®eld
integration.

Our V2 RF model is based on the bipole concept of
long-range interaction ®rst suggested by Grossberg and
Mingolla (1985). However, unlike their approach, we
utilize a micro-circuit that realizes the functionality of an
AND-gate via a mechanism of self-inhibition and dis-
inhibition. In addition to the computation of vL

ih and vR
ih

Fig. 2. Integration of input activation
in position/ orientation space utilizing
contour cell RFs with bipole sub®eld
organization. (a) No target cell re-
sponse is elicited if forward input is
supplied only from one side of the RF
sampling (top), in order to get the target
cell activated requires input from both
input branches (bottom) (compare with
the model proposed by Grossberg and
Mingolla (1985) and the ®ndings by
Peterhans and von der Heydt (1989)).
(b) Model circuit that implements the
functionality of a V2 contour cell tuned
to horizontal orientation h � 0. Three
sub-stages process the input activation
gathered from both branches before
being integrated at the ®nal stage
to generate h�1�ih responses (see text for
details). (c) Display of the ON (top) and
OFF (bottom) sub®eld components of
elongated weighting functions of V2
contour cells. Each particular spatial
location contains a polar plot of the
relative contributions of cells from
di�erent orientations

1Kellman and Shipley (1991) de®ned feature relatability as a
property that characterizes the mutual support of individual items
getting integrated to form a more abstract entity [compare with the
compatibility constraint de®ned by Zucker (1985)]. Any two ori-
entations at given spatial positions are spatially relatable if they can
be smoothly interpolated by a curve that does not bend by more
than 90� and which contains no in¯ection point. Any two features
that do not ful®ll the relatability constraint are thus labeled as non-
relatable.

430



activities, two additional network stages establish the
AND-gate functionality generating h�1�ih responses
(Fig. 2b). Consider the case in which only one branch,
say the left one, receives activation. Along the left
branch, initial vL

ih activity excites the rL
ih cell which is

inhibited by qL
ih. Since the opposite branch has zero-level

activation, self-inhibition of vL
ih activity leaves the target

cell unexcited. Now consider the case where both
branches receive non-zero activation. As in the ®rst case,
initial activation from left and right branches generates
excitations rL

ih and rR
ih that are self-inhibited via qL

ih and
qR

ih activation, respectively. In addition, now cross-inhi-
bition of self-inhibitory nodes generate a disinhibition of
activity for each branch. Only now can the node at the
®nal stage be activated to generate a h�1�ih response. Over
all, the mechanisms of self-inhibition of individual lobes
and disinhibition of activation among sub®eld branches
guarantee that the target cell generates a response only
when both branches are activated simultaneously.

The di�erent stages of the micro-circuit generate ac-
tivities on the basis of steady-state shunting interactions.
The net e�ect of a lumped representation of h�1�ih cell
response results in a multiplicative, or gating-like,
combination of activity from both branches, vL

ih and vR
ih.

Formally, we get the equilibrium activity

h�1�ih � vL
ihvR

ih

2
f3
� vL

ih � vR
ih

1
f3

2 � 1
f3

vL
ih � vR

ih

ÿ �� vL
ihvR

ih

: �3�

In Appendix 3, we present the individual stages of the
micro-circuit that generate the ®nal response in Eq. (3).
Parameter f3 determines the shape of the compressive
non-linear function that transforms the input activation
and therefore determines the responsiveness to graded
V1 input. Within the limit f3 !1, the contour response
is de®ned by the sum of input from both bipole branches.
In all, contour cells are devices which selectively respond
only for cocircularly aligned contrast arrangements
measured at both sides of a target location. In addition,
we investigated the activation in response to imbalanced
input arrangements. For constant average input, �vih, the
contour cell encodes any imbalance in the input through
a monotonic reduction of responsiveness. The shape of
the response function is de®ned by

h�1�ih �k� � 2 �vih ÿ 1� k2

f3�1ÿ k2�
� �

; �4�

where k 2 �0; 1� denotes the deviation of input activity
from a given average level. Thus, the cell is selective to
the structural coherence of the input such that any
imbalance of input from both branches reduces the
response amplitude in a monotonic fashion. In Appen-
dix 3 we present details of this investigation.

Similar to V1, h�1�ih activities from the the previous
matching stage undergo a center-surround competition
between activations in a local spatial neighborhood over
orientations to generate the new activation h�2�ih . A
shunting mechanism realizes a saturation-type normal-
ization by divisive inhibition. Again, we assume fast
relaxation to equilibrium response such that we use the

resulting steady-state response of the local ®rst-order
interaction

h�2�ih �
b4h

�1�
ih ÿ d4 h�1�ih �Wÿ�Kÿ

n o
ih

a4 � f4 h�1�ih �Wÿ�Kÿ
n o

ih

; �5�

where a4, b4, d4, and f4 are constants. The h�2�ih
activations are subsequently fed back via the descending
pathway to enhance the activities of initial measure-
ments from V1 oriented contrast cells (see Eq. 1).

4 Computational experiments and simulation results

The network architecture has been implemented and
tested on a variety of stimuli. All linear equations for
local feedforward interaction have been solved at equi-
librium. The non-linear Eq. (1) was solved numerically
using a fourth-order Runge Kutta scheme with adaptive
step size control (Press et al. 1989). We subsequently
compared the ®nal arrangement of responses with those
acquired by an approximate scheme using ®x-point
iteration of equilibrated responses of Eq. (1). Yet there
were no observable di�erences in results after four
iterations of the recurrent network. Therefore, in order
to reduce computing time, we have used the approximate
scheme to generate the set of simulation results shown
below. In Appendix 4 we summarize the equations and
provide all parameter settings.

We conducted a series of computational experiments
with the primary goal demonstrating the role of recur-
rent interaction. Speci®cally, we show the in¯uence of a
broader context represented by V2 contour cell activa-
tions to modulate more localized measurements at the
earlier stage in V1. In addition, we investigated several
phenomena summarized in Sect. 2 in order to demon-
strate the explanatory capacity of the proposed model.

4.1 Initial test on an arti®cial stimulus

In order to demonstrate the action of recurrent feedfor-
ward and feedback interaction, we ®rst show the
behavior of the network for an arti®cially generated
input con®guration. Figure 3 (top, left) illustrates the
spatial outline of the test stimulus. We utilized a dark
rectangle on a light background where a small strip with
the background intensity covers part of the rectangle
and thus splits the ®gure into two segregated parts. In
order to demonstrate the functionality of the recurrent
scheme, we generated an input con®guration of arti®-
cially generated model V1 complex cell responses. In this
test case, cells are active for each spatial location inside
the ®gure but inactive at all background locations. For
an unbiased input, all orientations receive the same
activation (Fig. 3, top, right).2

2At each spatial location we have cells that prefer K di�erent
discrete orientations. To visualize individual activations we display
polar plots each centered at the individual spatial locations (in
discrete pixel coordinates).
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Figure 3 (center) shows the model V1 cell responses
for the ®rst stage after fusion of bottom-up and top-
down pathways (left) and for the second stage after
space/orientation competition and normalization (right).
After four iterations, responses along the border of the
compact input arrangement are enhanced and show an
increased selectivity along the local boundary orienta-
tion. Responses at locations inside the region remained
largely unspeci®c to orientation but are reduced in
magnitude. After the second stage of competition, only
responses along the ®gural boundary remained. They
show a high orientation selectivity along the contours
but slightly reduced activation around corners. At the
vertex positions responses are increased but more un-
speci®c with respect to orientation. This result might be
attributed to a localized end-stop behavior. It should be
emphasized that no additional V1 activity is generated
by the recurrent interaction. Thus, feedback from a V2
cell is not an activator but rather a gain enhancer, as
suggested by HupeÂ et al. (1998).

In Fig. 3 (bottom), model V2 cell responses are
shown for the stage of the contour cells integrating
feedforward V1 cell responses (left) and for the activity
distribution after space/orientation competition and
normalization (right). Sharp responses are generated
along the outline boundary of the rectangular items. In
addition, since the two segregated parts are spatially

aligned, the contour integration bridges the gap to form
a rectangular unit. After normalization, the weaker re-
sponses are enhanced. These boundary activations are
fed back to selectively enhance those V1 activations that
are consistent in position and orientation. This provides
the means by which the recurrent interaction sharpens
the responses generated in the lower area (model V1 in
our case). Since V2 contour cells require input from both
RF branches, they will be inactive at locations around
corners and sharp bends. Therefore, model V2 cells do
not generate any gain enhancement in the neighborhood
of corners and vertices. We suggest that mechanisms
selective to second-order input con®gurations will also
contribute to the top-down process of soft gain control.
This is, however, beyond the scope of the proposal re-
ported in this paper.

In all, these simulations show the competence of each
processing stage in the proposed network model. Based
on these results we have further investigated the pro-
cessing of real input stimuli that have been preprocessed
by a stage of orientation selective contrast cells.

4.2 Texture patterns and saliency

In order to investigate the magnitude of facilitation
provided by the top-down gain control mechanism we

Fig. 3. Processing of an arti®cially
generated input activity distribution.
Top: Outline of test stimulus (left),
synthetically generated input activity
distribution (right); Center: Equili-
brated model V1 cell responses, l(1)

(left) l(2) (right); Bottom: Equilibrated
model V2 contour cell responses
utilizing elongated RFs, h(1) (left),
and responses after normalization,
h(2) (left). Responses saturate after
four cycles of iteration
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utilized texture stimuli of the type used by Kapadia et al.
(1995). We claim that the feedback of contour code
patterns generates `extra-RFmodulation' ofV1 responses
(Zipser et al. 1996) that contributes to the surround
inhibition in textures (Knierim and VanEssen 1992;
Kapadia et al. 1995). An individual bar has been pro-
cessed to obtain initial responses that are used as a
reference. The same barwas then embedded in a texture of
randomly orientated bars. Subsequently, the central bar
was supplied by a row of aligned same-orientation bars
(Fig. 4, left and center). Stimulus processing in model V1
generates a representation of sharply localized contrast
responses for individual bar items.ModelV2 contour cells
generate local candidate groupings of low activation for
random orientations. As a result, only minor feedback is
generated for the central bar. In the stimulus with aligned
bars which are supplied colinearly salient grouping is
generated andahigher-order unit is formedbyV2 contour
processing. The resulting feedback activity selectively
enhances the bar at the center of the texture. Figure 4
(right) con®rms the prediction by showing the percentage
change in activation in comparison to the isolated bar. In
order to demonstrate the in¯uence of the feedback gain
constant C in Eq. (1), we show results for two di�erent
magnitudes. The values have been chosen to lie within the
bounds derived in Appendix 1. Interestingly, an increase
in the gain not only increases the facilitation in the
supplement case but also increases the suppression e�ect
for the random texture. In the model, the latter is a
consequence of the stronger surround inhibition that
develops in the course of several iterations at the stages of
normalizing V1 and V2 cell responses, respectively.

4.3 Shape processing and contour integration

Consider a stimulus of noisy fragmented shape outline
(Fig. 5, top, left; see Williams and Thornber 1997). V1
simple cells respond to luminance contrasts of individual
bars. Cell responses that signal opposite contrast
polarities are subsequently pooled to generate complex

cell responses (Fig. 5, top, right). The subsequent stage
of contrast enhancement and normalization slightly
reduces the space/orientation uncertainty but still leaves
a fuzzy representation of bar items. These activities are
fed forward to V2 cells which match ``contour tem-
plates'' against the arrangement of initial responses.
Those items which are part of coherent curvilinear shape
outlines generate high contour activation whereas more
isolated items produce only minor activation. By way of
long-range integration using bipolar weighting func-
tions, the fragmented shape is interpolated to generate a
continuous representation of shape in V2. In addition,
other con®gurations also generate candidate groupings,
although represented by weaker responses compared to
the central ®gure (Fig. 5, bottom, right). We suggest that
the contrast enhanced and normalized V2 activity
distribution represents an adaptive code pattern (Gross-
berg 1980; Mumford 1994) that is used to modulate the
inital contrast measurements at V1. In other words, the
activities of an interpolated shape selectively enhance
initial V1 activations via an increased gain from
retinotopic feedback connections. The result of recurrent
feedforward/feedback processing is a distribution of
sharply localized V1 contrast responses (Fig. 5, bottom,
left) which, in turn, also help sharpen the interpolated
contour groupings in V2.

In order to demonstrate the usefulness to deal with
real world images, we show the processing results for a
grey level image that has been generated in a cytological
smear inspection. Figure 6 (top, left) shows the raw
grey-level image taken as input. Initial contrast re-
sponses of model V1 complex cells are shown in Fig. 6
(top, right). The results of subsequent processing stages
in model V1 after contrast enhancement and normal-
ization as well as candidate groupings generated by
normalized V2 cell responses are shown in Fig. 6 (bot-
tom, left and right, respectively).

The result again demonstrates that the responses
generated by V2 contour cells help to shape the orien-
tation selectivity of V1 cells and reduce the spatial un-
certainty of initial responses. Also, no extra activation

Fig. 4. Processing results for a
texture stimulus composed of ori-
ented bars. Left: Stimulus pattern
with a central bar embedded in a
texture with randomly oriented
bar items; Center: Texture stimu-
lus in which the central bar item is
supported by aligned bars of the
same orientation; Right: Equili-
brated model V1 cell responses
l(1) for the central bar as a
function of the top-down gain
control parameter C (see Eqn. 1)
for di�erent stimuli. Percent
change in activation is shown
relative to the activity in response
to an isolated bar. Shaded bars
display results for di�erent values
of the gain control factor C
(black: C = 5, grey: C = 10)
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Fig. 6. Processing of a noisy grey
level image from medical routine
cytological smear inspections. Top
left: Input image; Top right: Re-
sponses of contrast detection stage
utilizing oriented ®lters (complex
cells), c; Bottom left: Equilibrated
normalized model V1 cell responses,
l(2); Bottom right: Equilibrated mod-
el V2 cell responses utilizing `contour
templated', h(2). Responses saturate
after four cycles of iteration

Fig. 5. Processing of a noisy fragmented
shape outline (from Williams and Thornber,
1997). Top left: Input image; Top right;
Responses of contrast detection stage utiliz-
ing oriented ®lters (complex cells), c; Bottom
left: Equilibrated normalized model V1 cell
responses, l(2); Bottom rightL Equilibrated
model V2 cell responses utilizing `contour
utiling templates', h(2). Responses saturate
after four cycles of iteration
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has been generated at the stage of model V1. The most
salient activities have been enhanced whereas the initial
clutter and spurious responses have been suppressed.
Cells in model V2 respond to ®gural outlines represented
by luminance contrasts. In addition, candidate group-
ings of relatable contrast elements are generated. These
activations in turn are fed back to stabilize those initial
estimates that are consistent with the `expectations' that
are generated by the long-range integration and group-
ing process.

4.4 Contour interpolation and context e�ects

Experiments by Baumgartner and coworkers (Ba-
umgartner et al. 1984; von der Heydt and Peterhans
1989) have demonstrated that V2 contour cells respond
to occluding contours generated by oriented abutting
gratings (Fig. 7, left). Our network simulations demon-
strate that V1 cells signal the boundaries of individual
bars whereas, at V2, contour cells also generate sharply
localized interpolations between line endings, thus
generating illusory contours (Fig. 7, center and right).
Our focus of investigation again is the top-down

modulation of V1 measurements. We investigated the
response of cells tuned to di�erent orientations at a line
ending in the center of the stimulus. Initially, responses
for di�erent orientations were rather unspeci®c. Thus,
each individual cell shows a broad orientation tuning
(compare Ringach et al. 1997). Now, the signi®cant
grouping of cell responses at V2 for the horizontal
orientation kicks in and, in turn, by way of feedback
gain control, selectively enhances V1 cells for the
corresponding orientation (h � 0 in Fig. 8, left). V1 cell
responses saturate after four cycles of iteration. Along
this time course, we observe that responses for the
horizontal orientation are signi®cantly increased where-
as, at the same time, responses for the other orientations
are reduced.

In all, the tuning curves of the target cells were shifted
by the inhibition of ¯anking items. Using our model such
an e�ect can be explained as a combination of increased
gain for a di�erent dominant orientation which, in turn,
increases the inhibition for a target cell. Our model pre-
dicts that, compared to a physical contrast, the illusory
contour strength for the grating develops more gradually
over time. Initially, since the V1 cells respond rather
unspeci®cally, the interpolated contour should also be

Fig. 7. Processing an abutting grating pattern composed of oriented bars. Left: Input pattern Center: Equilibrated model V1 cell responses l(2)

that highlight the boundaires of the individual bars. Right: Equilibrated model V2 cell responses h(2) for the grating pattern. Cell activities are
generated for horizontal illusory contour locations with high activation level at the center and with less activation at the top and bottom line
(compare von der Heydt and Peterhans, 1989)

Fig. 8. Temporal evolution of cell responses. Left: Initial processing at line ends shows an unspeci®c l(1) response corresponding to a broad
orientation tuning. Recurrent interactions signals a perceptually signi®cant horizontal (illusory) contour. In the course of temporal evolution over
four cycles of iteration the activity saturates with a reduced orientational uncertainty building up a dominant selectivity to these horizontal
orientation. Right: Temporal development of V2 cell responses h(2) for a contour at real contrasts (solid curve) and an illusory contour (dotted
curve)
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shallow. As the V1 cell selectivity is sharpened by con-
sistent top-down enhancement, V2 contour cells generate
localized responses of high amplitude. Figure 8 (right)
shows this result for two selected model V2 cells. A lu-
minance contrast is already registered in the ®rst pass of
bottom-up processing. The initial response is further
enhanced to generate a saturated activity for the contour
of a vertical bar. For the horizontal illusory contour in
the center, the response develops more gradually. In the
beginning, a minor response is present (see the discussion
in von der Heydt and Peterhans 1989). This response
increased over time until saturation as the responses for
the horizontal orientation are progressively enhanced via
feedback interaction. The saturated illusory contour re-
sponse is even higher than for the luminance contrast.

A ®nal experiment investigates the dependency of
contour perception on spatial con®guration e�ects.
Figure 9 (left) shows four squares. If a borderline is
surrounded by bar segments of the same thickness, the
individual line of the square boundary gets lost, de-
pending on the density of the ¯anking bars (compare
with Kanizsa 1968). As suggested by Mumford (1994), a
perceptual system should generate a representation that
is in accordance with the spatial context. Thus, indi-
vidual responses based on local measurements might
appear di�erent in varying contexts of visual stimula-
tion. Figure 9 (center and right) demonstrates this for
the dense arrangement as well as the wider separated
¯anking bars. In the ®rst case, V2 contour cells generate
a rectangular shape outline for the texture. Top and
bottom endings are interpolated generating an illusory
contour. The line that belongs to the square is almost
absorbed by a signi®cant reduction in contour response.
If the texture bars were increasingly more separated
spatially, responses were generated for individual lines.
The central square line appears at the same strength as
the other bars. Their perceptual belonging is represented
by the interpolation between their aligned top and bot-
tom line endings. We suggest that the mechanisms of our
model therefore play an important role in surface seg-
mentation and shape recognition.

5 Summary and discussion

5.1 Results

In this paper, we ®rst propose a computational frame-
work for bidirectional visual cortical processing, namely
of recurrent V1 and V2 interaction, that helps to link
physiology and psychophysics. Second, we present a
model of modulation of initial V1 responses by context-
dependent top-down V2 contour cell activation. In
general, for a pair of cortical areas, the ``lower area'' is
considered a stage of signal measurement whereas the
``higher area'' evaluates the signi®cance of arrangements
of local activity patterns based on context information.
The results of simulations unify several seemingly
unrelated experimental ®ndings. This suggests a novel
interpretation of the role of contour interpolation at V2
such that observable e�ects relate to the task of surface
segmentation and that this information is used to
evaluate and guide initial measurements at earlier stages
of processing. Thus, the model links physiological and
perceptual ®ndings. Finally, we propose a uni®ed scheme
for contour integration using ``contour templates'' that
incorporate selective sub®eld integration, spatial relat-
ability constraints and cocircularity measurements.

The model predictions are consistent with a number
of physiological and psychophysical ®ndings. For ex-
ample, the results for the bar texture patterns (Sect. 4.2)
are consistent with the experimental ®ndings of Knierim
and VanEssen (1992) and Kapadia et al. (1995), showing
a reduction of response when the bar is part of a random
texture. The alignment of multiple bars outside a V1 cell
RF increases the response at the target location (Ka-
padia et al. 1995; see also Sect. 4.3). This facilitation
e�ect is also consistent with perceptual e�ects of contour
detection in texture patterns (Field et al. 1993). Model
simulations also predict the generation of illusory con-
tours both along the contrast direction of inducers, such
as in classical Kanizsa square patterns (simulations not
shown), and of those generated orthogonal to line end-
ings, such as for abutting gratings (Sect. 4.4). V2 con-

Fig. 9. Demonstration of di�erent contour responses which depend on the local context and density of contour arrangement. Left: Input stimulus
with a plain square line arrangement and three versions of the same square overlayed with texture regions of varying line densities; Center: h(2)-
responses of model V2 cells for the square line pattern with a dense bar texture which appears as a coherent surface region in front of the square;
Right: h(2)-responses of model V2 cells for the same square line pattern overlayed by a texture of wide bar separation ± the region has lost its
structural coherence against the square and thus the apparent occlusion and ®gure-ground segregation disappears
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tour cells respond to fragmented shape outlines gener-
ated by grating bars and illusory bars (Peterhans and
von der Heydt 1989, 1993). A facilitation of threshold
contrast detection of the same amount has been ob-
served for line gaps as well as illusory contours (Rieger
and Gegenfurtner 1998). Moreover, the e�ects were in-
dependent of whole ®gural presentation, which suggests
a contour-oriented mechanism. The processing results
for grating patterns show how context e�ects signalled
at a higher processing stage can alter the responsiveness
of cells at an earlier stage. The ®ndings are consistent
with those investigating the change in orientation se-
lectivity of V1 cells by ¯anking bars (Gilbert and Wiesel
1990). The responses for the grating that represent an
interpolated illusory contour may be even higher than
the magnitudes of those generated for physical contrasts
(e.g. along the outline of an individual bar). This again is
consistent with the results reported by Baumgartner
et al. (1984) (see also von der Heydt et al. 1984), indi-
cating an increased cell response to the illusory contour
of abutting gratings than to a bar. We observe an in-
creasing strength of response as a function of the num-
ber of inducing line ends. This is consistent with the data
shown by von der Heydt et al. (1984). In its limit, an
arrangement of one-sided line endings merges to gener-
ate a continuous luminance contrast. The simulations
results in Fig. 8 (right) thus predict that the response
amplitude is reduced for increased density of bars due to
stronger inhibition generated by the feedback as well as
the competitive interactions at the stage of V1 interac-
tion. This, in turn, is consistent with the inverted U-
shaped function of perceptual contour strength mea-
sured by Lesher and Mingolla (1993) for Varin ®gures
with varying line density.

5.2 Related work

Our model is related to several other models. In order to
achieve better readability we subdivide the discussion of
other approaches according to those proposals that also
incorporate a stage of oriented long-range integration
(as in our model) and the discussion of more general
principles and computational frameworks.

5.2.1 Recurrent processes and mechanisms
of long-range integration
Other approaches have been proposed that utilize
recurrent processing for contour extraction. For exam-
ple, Grossberg and Mingolla (1985) proposed the Boun-
dary Contour System (BCS), which consists of a stage of
oriented contrast detection and a recurrent competitive-
cooperative loop for long-range contour integration. A
slightly revised version of the original BCS serves as a
basic modular building block for a model of recurrent
intracortical contour processing at V1 and V2 (Grossberg
et al. 1997). In their model, the modular design of cortical
circuits follows the suggestion that V1 and V2 circuitry
are spatially homologous utilizing increased RF sizes that
result in a more broadly tuned spatial scale at the higher
cortical area. Oriented lateral interactions of di�erent

spatial ranges using bipole weighting functions are
suggested to implement the function of horizontal
connections between oriented cells in V1 and V2 layers
2/3 (Gilbert, 1992; Malach et al. 1994). Our model di�ers
from the extended BCS in several ways. The key aspect of
the development is the recurrent interaction between
cortical areas V1 and V2. The claim is that activity
integrated from separate sites in the ``higher'' area (model
V2) is used to assess the activity distribution in the
``lower'' area (model V1). Thus, we suggest an instant-
iation of how cortico-cortical feedback interaction might
work to evaluate initial measurements in terms of a
broader visual context. Unlike the BCS, in our model
contour interpolation is mainly feedforward driven
without any inward spreading process that completes
(or ®lls in) activities between inducers. Spatially segre-
gated inducers are integrated along the bottom-up stream
by space/orientation ®ltering using elongated bipole
``contour templates''. The compatibility measure that is
encoded in the connectivity pattern of these weighting
functions utilizes a similar support function as proposed
by Parent and Zucker (1989). In order to enhance the
selectivity of the support function, these authors incor-
porated a binary predicate to evaluate the consistency of
symbolic curvature classes for candidate groupings
between tangents. In our scheme, the excitatory ®eld of
cocircular tangent orientations is supplied by a ®eld of
inhibitory weightings to penalize non-relatable pairs of
contrast orientation (Kellman and Shipley 1991). Fur-
thermore, we do not include any explicit symbolic
labeling of activities according to a discrete set of
curvature classes. Activities that might belong to con-
¯icting interpolations compete such that most prominent
arrangements will provide strongest top-down gain. In
turn, those activities compatible with such a dominant
grouping will further sharpen the representation of
spatially interpolated contour segments.

Similar to the BCS bipole cell functionality, but un-
like Zucker's scheme, the input from the two branches is
integrated in a non-linear way to resemble an AND-gate
functionality. The interpolation in a feedforward process
is in accordance with the model proposed by Heitger
et al. (1998). However, this model and a previous ver-
sion proposed by von der Heydt and Peterhans (1991)
build upon selective integration of end-stop responses
that are generated at corners and line terminations. This
grouping stage is kept separate from processing of
physical luminance contrasts. The output of the distinct
activity distributions is subsequently integrated to build
a ®nal contour representation. Such a selective integra-
tion of line terminators has also been used in the model
of Finkel and coworkers (Finkel and Edelman 1989;
Finkel and Sajda 1992) to explicitly signal the presence
of surface occlusions. Unlike Heitger's scheme, we do
not utilize any segregated processing streams which se-
lectively integrate responses from end-stop neurons.
Instead, activities from initial contrast measurement are
sharpened by way of feedback modulation ± an option
that has been abandoned in the models of Heitger and
von der Heydt et al.. The result of spatial integration of
contrast signals is supposed to serve as a reference, or
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``expectation'', to assess the signi®cance of individual
input measurements.

Zucker (1985) proposed a probabilistic relaxation
scheme for iterative updating normalized contrast ac-
tivities in di�erent orientations. Each measure of locally
oriented contrast is evaluated on the basis of the spatial
support from contrast activations in a local neighbor-
hood. We have instead segregated the assessment of
contrast activations via a gain control mechanism and
the contour interpolation into separate stages. In ac-
cordance with recent empirical data our model generates
representations of visual surface contours including (il-
lusory) contour interpolations and the context-depen-
dent modulation of local activity measurements. Li
(1998a,b) recently proposed a model of cortical contour
integration. This model also utilizes oriented weighting
functions for compatibility measurement in texture
boundary detection. As already pointed out by Li, her
model is similar to the V1 stage of processing of
Grossberg et al. (1997). Li, however, demonstrated that
model V1 cells ± by utilizing oriented excitatory inte-
gration and local inhibition ± can signal local orientation
contrast and thus help to segregate regions of dissimilar
texture regions. It should be noted that we do not deny
the existence of oriented horizontal long-range connec-
tions at the stage of V1 processing. In fact, in the model
outlined here, we wanted to focus exclusively on the is-
sues of top-down interaction. Therefore, we excluded
any additional components that might interfere with the
functionality of the recurrency. Our investigation is thus
complementary to these investigations as it provides the
so far excluded input from extrastriate processing as
suggested in our model.

5.2.2 General principles and computational frameworks
Other approaches have focussed on the integration of
multiple visual cues to generate coherent percepts. For
example, Edelman and coworkers have presented large
scale simulations of the integration of coarse grain visual
representations between segregated visual areas. Finkel
and Edelman (1989) combine motion and contour
processing for the generation of coherent surface
percepts, whereas Tononi et al. (1992) focussed on the
interaction between multiple cortical areas utilizing a
lumped V1/V2 model on an even more abstract level of
description. Unlike our approach, their computational
strategies for dynamic con¯ict resolution are guided by
explicit occlusion properties and associated illusory
contour generation. This approach was further pursued
by Finkel and Sajda (1992), who proposed linking
together contrasts and surfaces in order to de®ne object-
related groupings instead of ``thingless'' units. We
appreciate the in¯uence of processing from even higher
cortical stages, such as MT, V4 and IT, on early V1
processing of surface-related information. However, we
have focussed our investigation on the more detailed
mechanisms of contour processing among V1 and V2.
Our investigation demonstrates how the dynamics of
such a scheme of recurrent interaction may resolve
ambiguities without the need for extra instances to
handle occlusion or top-down re-entrance con¯icts.

Our architecture integrates concepts of the more gen-
eral computational frameworks described by Mumford
(1991, 1994) and Ullman (1995). Inspired by basic prin-
ciples of pattern recognition, the descending pathways in
recurrent loops between cortical areas are suggested to
carry ¯exible templates which are compared with the
properties of the sensory input (Mumford 1991). A cen-
tral element of this proposal is that the measure of ®t
between signal data and a ¯exible template is represented
by their di�erence. Mumford suggested that the bottom-
up pathway should carry this residual activity pattern.
Rao and Ballard (1997) incorporated these concepts into
a hierarchical predictor for data processing formulated in
the framework of control and stochastic prediction the-
ory. In their approach, input stimuli are processed
through a hierarchical sequence of ®ltering stages. The
output of the associated feedforward projection deter-
mines the state of the network at the subsequent model
area. Given the bottom-up ®ltered signal data, a predic-
tion of the expected state of the previous area is generated
via a set of top-down ®lters. The di�erence between the
actual activity distribution (that determines the state) and
the predicted one results in a residual that is in turn ®l-
tered and fed forward again. The authors successfully
demonstrated the capability of the network in object
recognition tasks. They also show how end-inhibition in
V1 cells might be generated by the in¯uence of top-down
feedback (Rao and Ballard 1996). It should be noted, that
many of these principles are similar to the computational
mechanisms in ART networks for input registration and
stable category learning (Carpenter and Grossberg 1988;
see Grossberg 1980 for the general computational prin-
ciples). Unlike the proposal of processing residuals,
mismatches are detected which subsequently trigger a
reset signal to switch o� activated category nodes which
represent any object instances. In our model, top-down
activation is rather low-level and triggered by the current
stimulus con®guration. Therefore, any mismatch be-
tween input activation and top-down code pattern is
signalled more indirectly by a reduction in modulation
strength and subsequent reduction in activity via local
competitive processes. Thus, local signal measurements
that do not ®t the broader arrangement of contour shape
are weakened or even suppressed.

The weighting pattern of our V2 contour templates is
designed to support smooth contours of varying curva-
ture. These templates are ¯exible in that they carry seg-
ments of frequently occurring shapes including their
variance in terms of local curvature (Mumford 1994).
Ullman (1995) puts emphasis on necessary testing of
multiple alternatives of object hypotheses to be matched
against the signal data utilizing counter-streams of bot-
tom-up and top-down processing. We suggest that, in the
case of recurrent V1±V2 interaction, the ascending path-
way carries an input representation of the stimulus. The
``contour templates'' representing a range of curvatures
are matched for di�erent orientations. The result is a ®eld
of activities whose relative magnitudes are proportional
to the degree of matching strength derived by the contour
interpolation. These candidate groupings are fed back in
parallel along the descending pathway to selectively
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control the gain for enhancing the initial activations.
Thus, we suggest that the simultaneous testing of possible
alternatives (Ullman 1995; Mumford 1994) is realized by
the gain-control mechanism and subsequent center-sur-
round competition in the space/orientation domain.

5.3 Further mechanisms, limitations, and extensions

As already pointed out above, we have so far excluded
any additional long-range integration at the stage of
model V1. This restriction allowed us to selectively focus
our investigation on the computational principles of
inter-areal recurrences and the related computational
competencies. We suggest that V1 long-range interaction
further enhances the signal-to-noise ratio and the orien-
tation signi®cance of any noisy local measurement. This,
in turn, would help to generate even sharper and more
complete shape representations at locations with weak
initial input activations. Consider Fig. 6 again. Such a
mechanism might help to better signal the irregularly
shaped boundary between the overlapping cells (left and
center) and to close the boundary representation for the
isolated cell (right). A preliminary investigation already
successfully demonstrated the relevance of such a mech-
anism (Hansen and Neumann 1999).

The proposed scheme so far does not properly handle
intrinsically two-dimensional structures (see Sect. 1). V2
model contour cells have elongated RFs which are seg-
regated into two branches. These branches are colinearly
aligned along its major axis of elongation. Input from
both branches is required in order to activate a target cell.
As a consequence, the cell becomes unresponsive near a
corner or junction con®guration where no continuous
continuation in shape outline exists. We suggest that
feedback from even higher stages of processing, say from
area V4 or the IT cortex, can connect cells with a higher-
order shape selectivity (Tanaka 1993) to those located in
V1 and V2. This proposal, although speculative at the
moment, appears not entirely unrealistic in principle. For
example, Luck et al. (1997) have demonstrated e�ects of
selective attention modulation of cells in V1 and V2 and
HupeÂ et al. (1998) have shown that MT cells gate cells in
previous areas such as V1 and V2. Thus, even more ob-
ject-related representations with di�erent levels of feature
complexity may selectively control the responsiveness of
cells at an earlier stage of processing and thus help to
establish a reliable detection of junctions arrangements.

A ®nal remark is devoted to any possible learning
mechanism involved in establishing the speci®c connec-
tivity pattern of contour cells. Only recently, Grossberg
(1998) proposed a set of computational principles of how
processes of recurrent perceptual grouping and top-
down attention may interact. In our framework, V2 cell
activations are considered to generate attention signals
that, in turn, modulate V1 activities from long-range
groupings. Such an attentive mechanism, driven by even
higher processing stages (eg., V4 or IT), may also help to
stabilize the early development of long-range connec-
tions of V2 cells. Consider a connected pair of presyn-
aptic and postsynaptic cells where the e�cacy, or

weighting, of the connection can be modi®ed by a local
learning mechanism. Hebbian learning rewards the cor-
related activity of presynaptic and postsynaptic cells. In
its simplest form, the weight adaptation rule is given by
Dxij � gyi�t�xj�t�, where yi and xj denote activities of the
presynaptic and postsynaptic neurons, respectively. In
order to prevent any learning in cases where these cells
are active but do not belong to an ensemble of relatable
items, any weight adaptation for V2 cell inputs might be
controlled on the basis of more global information. A
modi®ed version of the weight adaptation mechanism
might read Dxij � gkiyi�t�xj�t� where ki represents a
function which provides an extra gain factor to properly
change the weight dynamics. We suggest that ki in-
corporates the V2 cell activation at location i, the cor-
responding V1 cell (for the corresponding orientation)
and the activity of a higher stage of integrative proces-
sing (e.g., from IT). This sample case is shown mainly for
illustration purposes and might be formalized by using
even more elaborated mechanisms. It demonstrates,
however, that the pattern of activity generated in a
greater context can be used to de®ne a semi-local learn-
ing rule for the control of Hebbian weight adaptation. It
is thus conceivable that the weighting functions that have
been de®ned for the contour cell RFs can be generated by
a process of weight adaptation and learning.

5.4 Conclusion

In sum, we suggest a computational framework of how
the feedback pathways might be used to assess localized
measurements in previous stages of the cortical hierar-
chy. We particularly focussed on the recurrent process-
ing of contour information in cortical areas of V1 and
V2. In this paper, we do not attempt to develop a model
that generates biologically realistic responses. Instead,
the di�erent stages represent abstractions of functional-
ity with the goal of describing the basic computational
principles of recurrent contour processing. The general
principles proposed in our model are not limited to the
early stage of V1 and V2. We claim that we can extend
our modeling for motion as well as shape processing
utilizing recurrences between areas V1/V2 and MT and
V4 and IT, respectively.
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Appendix 1: Properties of the gain control mechanism

We investigate the enhancement and reduction of responses via the
top-down feedback scheme depending on the structure of the input
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con®guration. In particular, we analyze the modi®cation of an
activation at a target location for one selected orientation by way
of the top-down gain control mechanism. Three idealized cases will
be considered: (1) the transformation of an isolated activity for a
given orientation, (2) conditions for the enhancement of a localized
activity that is supported by an arrangement of colinear activation,
and (3) conditions for the reduction of an activation that is em-
bedded in a dense ®eld of co-oriented activities in a spatial neigh-
borhood. For all input con®gurations, we assume unit input
activation at each discrete spatial location. Since we particularly
investigate one orientation ®eld of input activation, we can neglect
any cross-orientation interactions. We therefore simplify the fol-
lowing derivations by taking a unit weighting for the orientation
®elds, Wÿ00 � 1.

In the ®rst experiment, we assume a localized input activation
of unit magnitude for one orientation. This setup is de®ned by

ci0s � 1 for s � h ^ i0 � i
0 for s 6� h _ i0 6� i

�
:

In this case no feedback activation h�2�ih is generated. We get the
steady-state response of Eq. (1)

l�1�ih �
b1

a1
:

The l�1�ih response is a scaled version of the input. We use this level
as a reference to ®nd conditions to achieve the desired functionality
of enhancement and reduction of initial responses.

In the second case, the initial response is supplied by two co-
linear ¯anking activations located at, positions i0 � i� D. This in-
put con®guration initiates a response at the stage of model V2
which, in turn, generates a feedback signal. This feedback activa-
tion de®nes the gain for enhancement of the activity at the target
location. The top-down activation also contributes an inhibitory
component which, in this con®guration, is scaled by the connection
strength at the center of the spatial weighting function K00. We ®nd
the steady-state response

l�1�ih �
b1 1� Ch�2�ih

� �
a1 � f1K

ÿ
00h�2�ih

:

In the colinear arrangement, the initial activation should be
strengthened in comparison to the case of having only an isolated
input activity. We ®nd the condition for enhancement of initial
response via top-down gating by

C >
f1
a1
� Kÿ00 :

The third case consists of a dense ®eld of equally oriented unit am-
plitude input activations. Again, we ®nd the steady-state response

l�1�ih �
b1 1� Ch�2�ih

� �
a1 � f1h�2�ih

:

The response thus di�ers from the second condition only by an
increased inhibitory contribution from the dense ®eld of like-ori-
ented activities. In this case now, we want to achieve a reduction of
response relative to the isolated input considered in the ®rst case.
We ®nd the corresponding condition for reduction of initial re-
sponse via top-down interaction by

C <
f1
a1

:

Appendix 2: Weighting functions of ``contour templates''

The connectivity patterns of the weighting functions consist of an
ON-sub®eld as well as an OFF-sub®eld for each lobe of the bipole,

C�;Lih and C�;Rih . The excitatory ON-connectivity is de®ned for
``relatable'' orientations. Kellman and Shipley (1991) de®ned ``re-
latability'' for tangent orientations to be interpolated by a smooth
curve which (1) contains no in¯ection point and (2) does not bend
to form an acute angle. Thus, we ®nd a range of
h� a � /� < h� p

2 to be relatable at location Q. We de®ne maxi-
mum support for contrast responses in a cocircular arrangement
(Zucker 1985; Parent and Zucker 1989). Figure 10b (top) sketches
the geometric arrangement of a cocircular contrast orientation at Q
that is supportive for the activation at P along h. Maximum ON-
connectivity is given for cocircular arrangements at /� � h� 2a
with a � tanÿ1 �yQ ÿ yP �=�xQ ÿ xP �

ÿ �
. Non-relatable orientations

de®ne the OFF-connectivity in the ``contour templates''. The max-
imum inhibitory weighting is de®ned for /ÿ � h [Fig. 10b (bot-
tom)]. We center Gaussian weighting functions at the orientations
of maximum excitatory and inhibitory strength, respectively, and
de®ne a localized excitatory in¯uence together with a more broad
inhibitory weighting, r�W < rÿW.

The elongated spatial weighting function of ``contour tem-
plates'' is assembled by two sub®elds. The integration of curved
structure in a smaller neighborhood as well as straight oriented
contrast along a longer range is supplied. Each sub®eld weighting
function can be synthesized by the superposition of an ellipse with a
circle that is shifted to either end of the ellipse [Fig. 10a (bottom)].
The resulting outline contours of the spatial weighting functions
are de®ned to follow the shape of a Poisson distribution along the
axis of elongation.

Appendix 3: V2 contour cell responses

The accumulation of normalized l�2�ih -activities is accomplished by a
micro-circuit of feedforward interaction. This circuit is designed
such that an oriented V2 contour cell only becomes activated if
signi®cant input is available from both branches of an elongated
bipartite RF (see Fig. 2). Superscripts � and ÿ identify the indi-
vidual ON-sub®eld and OFF-sub®eld weighting functions for the
segregated left and right branch of a ``curvature template''. The
weighted integration of activities in space/orientation domain is a
linear process. Thus, we superimpose the ON-weight and OFF-
weight by taking their di�erence. The single space/orientation
weighting functions for left and right branches are then convolved
against the normalized activity distribution of initial contrast re-
sponses. Negative responses are recti®ed. We get

vL
ih �max l�2�� C�;L ÿ Cÿ;L

ÿ �n o
ih
; 0

h i
; and

vR
ih �max l�2�� C�;R ÿ Cÿ;R

ÿ �n o
ih
; 0

h i
:

These activations are fed forward to the internal stages of the
micro-circuit (see Fig. 2b). The stages of the circuit at qL

ih and qR
ih,

respectively, combine the activities from both bipole lobes in a
cross-inhibitory fashion. We assume that the individual cell re-
sponses equilibrate fast such that we can utilize steady-state ac-
tivities. In particular, for the cross-inhibition between left and right
branches we have

qL
ih � vL

ih= 1� f3vR
ih

ÿ �
; and qR

ih � vR
ih= 1� f3vL

ih

ÿ �
;

where f3 de®nes the gain of the shunting inhibitory interaction. The
next stage realizes the self-inhibition of each lobe which is disin-
hibited if both branches are active. We get

rL
ih � vL

ih ÿ qL
ih; and rR

ih � vR
ih ÿ qR

ih :

Final pooling of equilibrated responses from individual input
branches results in

h�1�ih � rL
ih � rR

ih :

Consider the case that activity is contributed by only one branch,
say the left one. Activities at the ®rst stage can be easily calculated
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Table 1. Equations and parameter setting
for initial contrast detection Brief description cih Model simple and complex cells for initial contrast detection

(Gaussian derivative)

Responses Simple cells (LD: light-dark, DL: dark-light):

sLDih � cos�h�fL�Gxgi � sin�h�fL�Gygi (steering equation),
sDL

ih � ÿsLDih

Complex cells (insensitive to contrast polarity):
cih � sLDih � sDL

ih

Parameter setting Gaussian derivative kernels (5� 5 pixels): r � 0:7

Fig. 10. Structure of bipole `contour templates'. (a) Contour cell at position P with orientation h; for a given location Q in the spatial
neighborhood of the target cell (dashed ellipses) the orientation that is maximally `relatable' is de®ned by the tangent orientation in Q of the
osculating circle which passes through P and Q and is tangent to h (top). The spatial weighting functions for the sub®elds are described by
superimposed ellipses with shifted circular weighting (bottom). (b) Tangent orientations for a cocirular arrangement of contrast responses that
de®ne excitatory weights in the ON-sub®eld (top). Straight line l1 de®nes the orientation axis of the contour cell at P, line l3 denotes the virtual
line connnecting locations P and Q, and line l2 denotes the tangent orientations that are `relatable' and give maximum support for / � h� 2a.
The OFF-sub®eld de®nes inhibitory connections for those orientations that are not `relatable' (bottom)

Table 2. Summary of equations and
parameter settings for model area V1 Brief description l�1�ih Gain control via top-down activation and feedback competition

Activation dynamics @
@t l�1�ih � ÿa1l�1�ih � b1cih 1� C h�2��W�� 	

ih

� �
ÿ f1l�1�ih h�2��Wÿ�Kÿ� 	

ih

Parameter settings Shunting interaction: a1 � 1; b1 � 0:42; f1 � 13
Top-down gain factor: C � 5 �C � 10, Fig. 4)
Weightings: K: rÿK � 1:8; W: r�W � 0:7; rÿW � 2:5

Brief description l�2�ih Contrast enhancement and activity normalization via
space/orientation competition

Equilibrium response l�2�ih �
b2l�1�ih ÿd2 l�1��Wÿ�Kÿf gih

a2�f2 l�1��Wÿ�Kÿf gih

Parameter settings Shunting interaction: a2 � 1; b2 � 4; d2 � 4; f2 � 10
Weightings: K: rÿK � 1:3; W: rÿW � 2:5
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as qL
ih � vL

ih and qR
ih � 0. Self-inhibition in turn causes activities

rL
ih � rR

ih � 0 such that the target contour cell remains inactivated.
The micro-circuit implements the functionality of an AND-gate in
which both lobes of the ``contour template'' must be activated in
order to generate a contour cell response. If we lump together the
individual stages, the ®nal h�1�ih equilibrium response of the non-
linear circuit results in (see Eq. 3)

h�1�ih � vL
ihvR

ih

2
f3
� vL

ih � vR
ih

1
f3

2 � 1
f3

vL
ih � vR

ih

ÿ �� vL
ihvR

ih

: �6�

The activities of both lobes e�ectively combine in a multiplica-
tive fashion. Parameter f3 determines the shape of the non-linear
transfer function to compress the input activation and therefore
determines the responsiveness according to any graded V1 con-
trast input. Investigating the individual stages of the micro-cir-
cuit, we directly observe that a parameter setting f3 � 0 will
eliminate the disinhibitory e�ect and, as a consequence, virtually
inactivates the opposite lobe. As a result, contour cells will never
respond. Increasing values of f3 increase the disinhibitory e�ect
of cross-channel interaction. We investigate those cases in which
f3vR

ih � 1 and f3vL
ih � 1 where input con®gurations generate a

strong cross-inhibition e�ect. We get qL
ih � vL

ih=�f3vR
ih� and

qR
ih � vR

ih=�f3vL
ih�, respectively. With both lobes receiving input

activation we have

h�1�ih � vL
ih � vR

ih ÿ
1

f3
vL

ih=vR
ih � vR

ih=vL
ih

ÿ �
: �7�

Taking the limit f3 !1 Eq. (7) demonstrates that the inhibitory
component vanishes such that the upper limit of contour cell re-
sponse is determined by the sum of inputs from both sub®eld
branches. We de®ne the average input �vih � �vL

ih � vR
ih�=2. Any

imbalanced input (assuming vL
ih < vR

ih) is de®ned relative to the
constant average, such that vL

ih � �1ÿ k��vih and vR
ih � �1� k��vih

(0 � k < 1). The contour cell response can now be rewritten as (see
Eq. 4)

h�1�ih �k� � 2 �vih ÿ 1� k2

f3�1ÿ k2�
� �

:

We get equal input magnitudes from both branches for k � 0. For
increasing values of k we see a monotonically increasing reduction
of contour responses. This shows that contour cell responses are
selective to the imbalance of input amplitudes from both branches.
Such an imbalance can be used as a measure of structural (in)co-
herence in the input con®guration. Equation (7) further demon-
strates how contour cell responses vary for scaled contrast cell
inputs. We de®ne vL

ih
� � m � vL

ih and vR
ih
� � m � vR

ih and further assume
f3
� � mÿ1f3 (m is a scaling constant). The resulting contour cell

response is scaled by the same factor m. This demonstrates that if
we want to retain the functionality of the bipole integration scheme

for scaled average input we have to inversely scale the gain pa-
rameter for controlling the shunting cross-inhibition.

Appendix 4

Model parameters

Tables 1, 2, and 3 display the parameter settings for the initial stage
of contrast detection and the network equations of the model. The
presented parameter settings have been used in all computational
experiments. We split the summary into three separate parts,
showing equations and settings for the initial contrast detection,
model V1 and V2 cells, respectively.
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