
Abstract. We present a functional model of the cere-
bellum comprising cerebellar cortex, inferior olive, deep
cerebellar nuclei, and brain stem nuclei. The discerning
feature of the model being time coding, we consistently
describe the system in terms of postsynaptic potentials,
synchronous action potentials, and propagation delays.
We show by means of detailed single-neuron modeling
that (i) Golgi cells can ful®ll a gating task in that they
form short and well-de®ned time windows within which
granule cells can reach ®ring threshold, thus organizing
neuronal activity in discrete `time slices', and that
(ii) rebound ®ring in cerebellar nuclei cells is a robust
mechanism leading to a delayed reverberation of
Purkinje cell activity through cerebellar-reticular projec-
tions back to the cerebellar cortex. Computer simula-
tions of the whole cerebellar network consisting of
several thousand neurons reveal that reverberation in
conjunction with long-term plasticity at the parallel
®ber-Purkinje cell synapses enables the system to learn,
store, and recall spatio-temporal patterns of neuronal
activity. Climbing ®ber spikes act both as a synchroni-
zation and as a teacher signal, not as an error signal.
They are due to intrinsic oscillatory properties of
inferior olivary neurons and to delayed reverberation
within the network. In addition to clear experimental
predictions the present theory sheds new light on a
number of experimental observation such as the synch-
ronicity of climbing ®ber spikes and provides a novel
explanation of how the cerebellum solves timing tasks
on a time scale of several hundreds of milliseconds.

1 Introduction

Almost all neurons in the cerebellar cortex being
inhibitory, it seems obvious that Nature has taken care
to prevent neurons from ®ring, or, as we will propose
here, to prevent neurons from ®ring outside short and
well-de®ned time windows. In fact, all excitatory
pathways in the cerebellar cortex are paralleled by
strong and sophisticated inhibitory projections. The

granule cells receive excitatory input from the mossy
®bers and inhibitory input from the Golgi cells, which in
turn are excited directly by the mossy ®bers and
indirectly by the parallel ®bers. Excitatory and inhibi-
tory synapses are closely packed together in mossy ®ber
glomeruli, which insures that there is no excitatory
mossy ®ber synapse without a corresponding inhibitory
Golgi cell synapse. A similar connectivity is present in
the Purkinje/basket cell system. Both Purkinje cells
(PCs) and basket cells receive excitatory input from the
parallel ®bers and the basket cells send inhibitory input
to nearby PCs.

In either case there is probably only a short time in-
terval after the arrival of a valley of excitatory mossy
®ber or parallel ®ber spikes in which the target neuron
can reach ®ring threshold before inhibition becomes
e�ective. Both granule cells and PCs can thus only be
®red by a sharp pulse of simultaneously arriving action
potentials. This observation has implications for the
quest of the neuronal code used by the cerebellum: It is
the synchronicity of probably a large number of spikes
which carries information that is meaningful to the
cerebellar cortex.

In the following we present a model of the cerebellum
and its associated nuclei that relies on synchronicity and
precise timing of individual action potentials. The main
building blocks of our model are synaptic plasticity at
the parallel ®ber-Purkinje cell (pf-PC) synapses, the
granule cell-Golgi cell system performing a gating task,
and post-inhibitory rebound in neurons from the deep
cerebellar nuclei (DCN) and inferior olive (IO). Post-
inhibitory rebound is the central mechanism which on
the one hand converts inhibitory input to action po-
tentials and on the other hand provides a robust mech-
anism to produce delays of about 100 ms which is the
natural time scale of our model.

1.1 Time windows for triggering spikes

One of the key elements of our model is the observation
that synchronous repetitive ®ring of the Golgi cells
produces narrow time windows within which the granule
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cells can reach ®ring threshold. If all Golgi cells with
overlapping axonal arborization are ®ring periodically
and synchronously, each granule cell within this region
`sees' a periodically modulated inhibitory potential. The
granule cell is thus able to reach ®ring threshold only
during a short time interval before the Golgi cells are
®ring their next spike, that is, when inhibition is weakest.
If the Golgi cells ®re asynchronously, the IPSPs from
several Golgi cells overlap partially and the granule cells
are exposed to a more or less constant level of inhibition
which prevents or suppresses ®ring of the granule cells.
Because of the restriction of the granule cell ®ring events
to narrow time windows, parallel ®ber spikes reach
nearby PCs coincidently, which is necessary in order to
bring them near ®ring threshold [1, 2].

The second key element of our model is the observa-
tion that the output of the cerebellum is reverberated to
the cerebellar cortex via the mossy ®bers and with a delay
that corresponds to the delayed opening of the granule
cell time window. This idea is supported by several ex-
perimental observations. First, the neurons in the DCN
show pronounced post-inhibitory rebound ®ring [3, 4].
This rebound ®ring is probably responsible for long-
latency responses in DCN neurons after electrical stim-
ulation of the IO [5, 6] or might be involved indirectly in
long-latency responses in IO neurons after stimulation of
the mesodiencephalic junction (MDJ) [7]. Second, there
are strong excitatory connections between the DCN and
the nucleus reticularis tegmenti pontis (NRTP) [8, 9],
which belongs to the pons and is a source of cerebellar
mossy ®bers [10]. This circuitry seems to be well-designed
to function as an excitatory reverberating loop [11].
Thus, neurons in the DCN respond to a volley of syn-
chronous PC spikes with rebound spikes that occur re-
liably and with a constant delay of about 100 ms after the
arrival of the PC spikes. Because of the excitatory pro-
jections from the DCN to the NRTP, action potentials in
the DCN reappear in the mossy ®bers after another few
milliseconds. If the summed delay of post-inhibitory re-
bound and synaptic transmission matches the delayed

opening of the granule cell window, we obtain a closed
loop and the cerebellum can lock in on information that
is directly related to preceding output signals.

1.2 Learning spatio-temporal patterns

Although it is now known what the cerebellum is
actually doing, there is ample evidence for the involve-
ment of the cerebellum in a broad variety of di�erent
tasks such as motor coordination [10, 12±15], timing
tasks in classical conditioning experiments [16, 17], or
even cognitive tasks [18±20]. With regard to the uniform
architecture of the cerebellar cortex it is tempting to
speculate that the cerebellum is performing a universal
and fundamental task that can be used as a building
block for higher functions. A task that matches this
criterion is learning spatio-temporal patterns.

We have seen in the previous section that synchro-
nous PC activity can reverberate to the cerebellar cortex
within about 100 ms. Given the correct timing of gran-
ule cell window and delayed reverberation, the rever-
berated signal can in turn trigger PCs and thus start a
sustained oscillation. The subset of PCs that is triggered
in a certain cycle depends on the set of active PCs in the
previous cycle and is determined by the wiring of the
reverberating loop and by the weight matrix of the pf-
PC synapses. Given a means to adjust these synaptic
weights, the cerebellar network can store and recall
spatio-temporal patterns of spike activity.

There is recent evidence for the dependence of long-
lasting changes in the strength of pf-PC synapses upon
the precise timing of parallel ®ber and climbing ®ber
spikes. It has been reported [21, 22] but see [23] that
long-lasting depression of the synaptic strength (LTD) is
observed only if the climbing ®ber spike precedes the
parallel ®ber spikes and that in contrast the synapse is
strengthened if the timing is the other way round, or if
parallel ®ber spikes arrive at the PC without a subse-
quent climbing ®ber pulse [24±26]. These ®ndings are
incompatible with the interpretation of climbing ®ber
spikes as an `error signal' that tells the PC when not to
®re [27], because an error signal can only be generated
after the error has occurred, and the climbing ®ber signal
cannot depress those synapses that had ®red the PC in
order to prevent this error the next time. Instead,
climbing ®ber spikes operate as teaching signals [28] in
the sense that they tell PCs when precisely they are to ®re
an action potential. This is consistent with the very
primary e�ect of a climbing ®ber spike, viz., the trig-
gering of a complex spike.

The mechanism of learning a spatio-temporal pattern
is as follows. Suppose a mossy ®ber event, i.e., a number
of coincident mossy ®ber spikes, arrives at the cerebellar
cortex within the granule cell time window. Suppose
further that a set of climbing ®ber spikes reaches the
cerebellar cortex within a short time interval of about
10 ms after the mossy ®ber event. In agreement with ex-
perimental ®ndings, we assume that this constellation
potentiates those pf-PC synapses that have been activated
a short time, say 10 ms, before the arrival of the climbing

Fig. 1 Cerebellar network. Inhibitory neurons are black, excitatory
neurons are open circles. The following abbreviations are used: PC
(Purkinje cell), GoC (Golgi cell), GrC (granule cell), BaC (basket cell),
StC (stellate cell), pf (parallel ®ber), mf (mossy ®ber), cf (climbing
®ber), CBCX (cerebellar cortex), IO (inferior olive), MDJ (mesodien-
cephalic junction), DCN (deep cerebellar nuclei)
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®ber spikes, i.e., those synapses that have been activated
by the mossy ®ber event. In addition, there is depression
in all synapses that become active during an interval of
about 100 ms after the occurrence of the climbing ®ber
spikes. Consequently, the ®ring of those PCs that have
been activated by a climbing ®ber signal is bound to the
occurrence of the mossy ®ber event. After a few repeti-
tions the mossy ®ber event alone will su�ce to trigger the
PCs. Because of the reverberating circuit, synchronous
®ring of a set of PCs produces a new mossy ®ber event
100 ms later on. Another volley of climbing ®ber spikes
can be used to train a second set of PCs to respond to the
second mossy ®ber event. This can be repeated and long
sequences of PC ®ring patterns can thus be learned and
recalled by the very ®rst mossy ®ber event.

1.3 Inferior olivary neurons as a neuronal clock

Inferior olivary neurons show intrinsic oscillatory be-
havior which is due to their electrophysiological proper-
ties and to an extensive coupling with gap junctions [29,
30]. In addition, there are two reverberating loops that
further support 10-Hz oscillations in the IO; cf. Fig. 1.
As for the ®rst loop, IO neurons send collaterals to
inhibitory neurons from the DCN which in turn project
back to the IO in a topographic fashion [31, 32]. These
DCN neurons can ®re only a short volley of action
potentials because they are inhibited themselves shortly
after they have received input from the IO by complex
spikes from the PCs triggered by the very same volley of
climbing ®ber spikes. IO neurons show pronounced post-
inhibitory rebound [29] and a volley of inhibitory DCN
spikes will thus produce action potentials in their target
neurons in the IO with a delay of about 100 ms and, once
more, we are left with a delayed reverberating loop. The
second loop comprises complex spikes in PCs which elicit
rebound spikes in excitatory DCN neurons as explained
above. Rebound activity in DCN neurons is conveyed to
the IO by a di-synaptic pathway via neurons from the
MDJ and can trigger action potentials in IO neurons
again after an overall delay of 100 ms [7].

We propose that electrophysiological properties of IO
neurons and the architecture of the network are partic-
ularly well suited to produce sequences of ever-di�ering
patterns of climbing ®ber spikes that can be used as a
neuronal clock [33] that is probably involved in all kinds
of timing-tasks attributed to the cerebellum. An external
event, e.g. a conditioned stimulus in a classical condi-
tioning experiment, produces a certain pattern of IO
activity, which in turn gives rise to another pattern in the
next yele due to delayed reverberation, and so forth.
Each pattern of climbing ®ber activity is accompanied
by a certain parallel ®ber pattern as explained in the
previous section. Some hundreds of milliseconds later,
another external event, e.g., the unconditioned stimulus
in the afore mentioned experiment, triggers complex
spikes in a di�erent group of PCs. Due to synaptic
plasticity, these PCs will learn to recognize the parallel
®ber pattern that is the reminiscence of the ®rst event
and will ®re action potentials with the proper delay

measured from the onset of the ®rst event even if the
second, viz., the unconditioned stimulus is omitted. The
existence of spatial-temporal patterns of climbing ®bers,
which is predicted by the present model, has been
demonstrated in a recent study of a simple motor task in
rat [34]. This provides a ± to our knowledge ± novel
explanation of how the cerebellum solves timing tasks
on a time scale of hundreds of milliseconds, that is
signi®cantly longer than the millisecond time scale
usually attributed to neuronal dynamics.

2 Methods

In the following we give a brief overview of the methods
that we have applied. Further details can be found in [35].

2.1 Granule cell model

In order to demonstrate that the Golgi cell-granule cell
system forms a potent gating device that admits only
spikes arriving within narrow time windows, we have
investigated the spike triggering mechanism for various
timingsofmossy®berandGolgi cell spikesusinga realistic
multi-compartment model of turtle granule cells [36].

The model consists of several passive dendritic com-
partments and one active somatic compartment and
contains various Na�, K�, and Ca2� currents. Our
granule cell model is identical to that of Gabbiani et al.
[36] except that (i) we have simpli®ed the Ca2� dynamics
as proposed by Traub et al. [37] and that (ii) we have
included GABAA-controlled ion channels with a maxi-
mum conductance of 1.5 pS per synapse, a reversal po-
tential of ÿ75 mV, and a bi-exponential decay with time
constants 5 ms (peak amplitude �gfast � 1:0 pS) and
50 ms (peak amplitude �gslow � 0:5 pS), as reported for
rat granule cells [38]. Excitatory synaptic currents are
made up of a combination of NMDA and AMPA
components as described in [36].

2.2 Deep cerebellar nuclei neurons

To our knowledge there are no detailed voltage-clamp
studies of DCN neurons, but DCN neurons do have
electro-physiological properties similar to those of
thalamic cells [4, 39]. Starting from a model of thalamic
relay neurons [40] we have developed a single compart-
ment model of DCN neurons containing various Na�,
K�, and Ca2� currents. We were able to reproduce plots
of the ®ring frequency versus the injected current as well
as the response to small de- and hyper-polarizing current
pulses measured in guinea-pig DCN neurons [3]. Fur-
thermore, the model exhibits low-threshold Ca2� spikes
and non-inactivating Na� plateaus, which are charac-
teristic features of DCN neurons [4, 41].

We arrived at the ®nal parameter setting by scaling
the original model [40] by a factor 0.5 in order to ac-
count for the small size of DCN neurons [3] and to get
the passive membrane response to small current pulses
right. We have substituted the correct reversal potential
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of K� [41] for DCN neurons and adjusted the leak
current conductivity so as to get a resting potential of
ÿ57 mV. The mixed cation current Ih has been replaced
by a modi®ed version of the anomalous rectifying cur-
rent [42] because this produced a better ®t of the `sag' in
the membrane potential during hyper-polarizing pulses.
Finally, the activation and inactivation curves of the
transient calcium current IT have been shifted slightly
and the inactivation dynamics has been slowed down in
order to reproduce the response to hyper-polarizing
current pulses [3]. Inhibitory synapses are implemented
as CIÿ conductances (reversal potential ÿ73:4 mV, max.
conductance 50 nS) and an exponential decay (time
constant 5 ms) so as to reproduce the time course of
spontaneous IPSPs [41].

2.3 Network model

We have performed extensive computer simulations of a
model of the cerebellar cortex and the associated nuclei.
The neurons are described by the spike response model
[43±45] and each neuron is characterized by the shape of
its postsynaptic potentials, ®ring threshold, and after-
hyperpolarization. This setup allows for a qualitative
description of di�erent types of neuronal behavior such
as adaptation and post-inhibitory rebound. The con-
nectivity of the network is, within morphological
constraints, taken to be random. That is, neurons are
assigned arborization functions that give the probability
of two neurons being synaptically connected as a
function of their distance. The set of arborization
functions is chosen so as to re¯ect the numbers of
converging and diverging projections between cerebellar
neurons described in the literature. The neurons includ-
ed in the simulation are located along a narrow
parasagittal strip. Axonal and synaptic delays are
explicitely taken into account. Noise is included in the
dynamic by adopting a stochastic spike triggering
criterion that allows for an action potential even if the
membrane potential is roughly 0.5 percent below
threshold. The threshold itself corresponds typically to
the amplitude of 10 EPSPs. The restriction of ®ring
times to certain phases of the subthreshold oscillations
observed in IO neurons [46] has been mimicked by
periodically modulating the ®ring threshold of the
simulated IO neurons.

In order to obtain long sequences of spike patterns in
the climbing ®ber system, a certain (sparse) amount of
connectivity between IO, DCN, and MDJ is required. In
our simulations this connectivity is the result of anti-
Hebbian elimination of synapses, i.e., we start with a
connectivity slightly higher than required and eliminate
those synapses with a certain small probability that are
contributing repetitively to the ®ring of a postsynaptic
neuron.

Plasticity at pf-PC synapses is implemented as ex-
plained above, i.e., a synapse is depressed, if a parallel
®ber spike arrives within 100 ms after a climbing ®ber
spike. The synapse is potentiated, if a parallel ®ber spike
is followed by an climbing ®ber spike within 10 ms.

3 Results

3.1 Granule-cell time window

Figure 2 shows the results of a simulation of a realistic
multi-compartment model of cerebellar granule cells.
The granule cell is fed with input from four Golgi cells
and with a volley of four synchronous mossy ®ber spikes
with a variable timing relative to the Golgi cell spikes.
We have investigated the excitability of the granule cell
and the timing of the granule cell spike for synchronous
and asynchronous Golgi cell activity.

The simulations con®rm the postulated time-window
behavior. A granule cell that receives inhibitory input
from Golgi cells can ®re only if (i) the presynaptic Golgi
cells ®re synchronously and (ii) if the mossy ®ber spikes
arrive with the correct timing relative to the Golgi cell
spikes, i.e., within a narrow and well-de®ned time win-
dow. Though a weak synchronization of Golgi cells has
so far been observed only in a transversal direction [47],
we would expect that common input to Golgi cells
located within a parasagittal micro zone results in syn-
chronous Golgi cell activity as well. In any case, a selec-
tive synchronization of Golgi cells which is crucial for the
time window mechanism seems to be a natural assump-
tion. Later on it Sect. 3.3 we will see that there is indeed a

Fig. 2 Granule cell time window. A, membrane potential as a
function of time in a simulation of a realistic model of turtle granule
cells. The vertical arrows in the ®ve uppermost traces indicate the
arrival times of volleys of synchronous Golgi cell (GoC; arrows
pointing up) and mossy ®ber spikes (mf; arrows pointing down)
containing 4 spikes each. The fat horizontal bar marks the interval
during which mossy ®ber spikes can trigger an action potential. If the
same number of Golgi cell spikes arrives asynchronously, here one
spike every 25 ms (lowest trace), then 4 synchronous mossy ®ber
spikes are unable to trigger an action potential, whatever their arrival
time. The graphs in B and C give the ®ring time of the granule cell tpost
as a function of the arrival time tpre of a volley of n synchronous
mossy ®ber spikes. B, n � 3, �gslow � 0:5. In both plots the granule cell
receives four synchronous Golgi cell spikes every 100 ms and
�gfast � 1 pS. Variability in the timing (arrows) of the postsynaptic
spikes is signi®cantly smaller than of the presynaptic spikes (`spike
focusing'). The insets show the synaptic conductivity (pS) as a
function of time (ms) ± slow and fast component are indicated by
dashed lines
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mode of the underlying network dynamics where Golgi
cells are ®ring periodically and synchronously.

Examination of the timing of the granule cell spikes
reveals that granule cell spikes occur always within a few
milliseconds before the Golgi cell spikes arrive. The
timing of the granule cell spike is thus virtually inde-
pendent of the timing of the mossy ®ber volley within the
time window; cf. 2. This `focusing' of granule cell spikes
is clearly in favor of a mechanistic interpretation of the
cerebellum in terms of synchronicity and precise spike
timing.

Figure 2 also reveals that the width and the position
of the granule cell time window depends on the strength
of the inhibitory synapses, in particular, on the peak
amplitude of the slow component of the IPSCs. Con-
trolling the time course of the IPSC by regulating the
peak amplitude of its slow component is thus a means of
tuning the time window's properties. A systematic
modi®cation of this parameter has been observed during
development in rat [38] and, as a natural explanation, we
propose that this is related to the tuning of the time
window.

3.2 Post-inhibitory rebound

Any system that is able to handle spatio-temporal
patterns inevitably requires timing mechanisms operat-
ing on the desired time scale. The present model relies on
10 Hz oscillations in the IO and on post-inhibitory
rebound of DCN neurons in order to produce well-
de®ned delays of about 100 ms.

In order to demonstrate that DCN neurons are able to
generate delays of the required length in a reliable and
robust manner, we have investigated the timing of re-
bound spikes for di�erent numbers and di�erent timings
of the incoming PC spikes using a realistic model of DCN
neurons. It has turned out that a certain minimum
amount of inhibition is required to trigger a rebound
spike. If, however, a rebound spike is triggered, then it
occurs with a delay of about 100 ms after the onset of the
inhibition, irrespectively of the number of elementary
IPSPs involved or of the distribution of their arrival times;
cf. Fig. 3. This result seems to be con®rmed by recording
from rat DCN neurons [48, Fig. 3] where a single IPSP
elicits a rebound spike after 130 ms and a burst of ten
IPSPs results in a slightly shorter delay of 115 ms (cf. our
Fig. 3B). The delay produced by a burst of IPSPs is ap-
parently insensitive to an additional hyper-polarization
(125 ms at ÿ70 mV instead of 115 ms at ÿ60 mV).

In a way similar to the focusing e�ect in granule cells,
the postsynaptic rebound spike can be timed more pre-
cisely than an individual PC spike, if the rebound is
triggered by a couple of IPSPs and the residual noise is
thus reduced by an intrinsic averaging of the PC-spike
arrival times.

3.3 Network simulations

Simulations of the cerebellar network have revealed the
existence of two di�erent ®ring modes in the PCs;

cf. Fig. 4. In the ®rst mode, PCs are ®ring more or less
incoherently at a high rate, thus producing high levels of
inhibition at Golgi cells and dis-inhibition at granule
cells, which results in a high parallel ®ber activity that
sustains the PC ®ring rate. A synchronous volley of
mossy ®ber spikes, however, can induce a transition to
the second mode that is characterized by PCs ®ring
coherently at about 10 Hz. After Golgi cells have been
inhibited through PC collaterals, granule cells recover
from inhibition within the next 100 ms. Rebound
activity in the DCN produced by the PC spike volley
thus arrives within the granule cell time window and the
resulting parallel ®ber volley triggers both Purkinje and
Golgi cells and the oscillation starts over again. The role
of the granule cell/Golgi cell system is clearly visible in
Fig. 4. After synchronization of the Golgi cells at
t � 400 ms, mossy ®ber activity is admitted to the
parallel ®bers (GrC-panel) only during narrow time
windows shortly before the Golgi cells ®re their action
potentials. This results in a concentration of the activity
of the various types of neurons in discrete `time slices'.
Asynchronous climbing ®ber spikes de-synchronize the
network and induce a transition back to the ®rst mode.

In the simulation shown in Fig. 4 the weight matrix of
pf-PC synapses contained no structure. We now show
that a systematic modi®cation of these synapses, as it is a
consequence of the described mechanism of synaptic
plasticity, allows the cerebellum to store spatio-temporal
patterns of PC activity. The pattern the PCs are about to
learn is presented to them by climbing ®ber spikes. The
®rst set of climbing ®ber spikes at t � 400 ms in Fig. 5.
A forces the corresponding PCs to ®re complex spikes

Fig. 3 Post-inhibitory rebound in DCN neurons. A, membrane
potential of a detailed model for DCN neurons in response to
varying amounts of PC inhibition (arrows). The resulting rebound
spike occurs after a delay of approximately 100 ms, irrespectively of
the number of PC spikes or their degree of synchrony. B, delay Dt of
the rebound spike after a volley of PC spikes as a function of the total
synaptic conductivity, i.e., the conductivity per synapse times the
number of activated synapses. C, delay of the rebound spike after a
volley of three PC spikes versus the degree of their synchrony dt
(width of the interval containing all three spikes) measured from the
center of the PC spike volley. Note the plateaus in B and C which
re¯ect the robustness of the timing of the rebound spike with respect
to its elicitation
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that inhibit DCN neurons and cause a rebound volley to
arrive on the mossy ®ber system at t � 518 ms. This
rebound volley is paired with the second set of climbing
®ber spikes that arrive at t � 520 and again will trigger
complex spikes at certain PCs which in turn produce
rebound spikes in DCN neurons±and so on.

After a few repetitions, pf-PC synapses are modi®ed
in such a way that a characteristic parallel ®ber pattern
su�ces to trigger the PC, even without a climbing ®ber
spike. Figure 5B shows that after 10 repetitions the
pattern has been learned successfully and can be re-
called, for instance, by the ®rst climbing ®ber event. We
note that the recall process is stable despite the high level
of background noise in the mossy ®ber input and the
presence of inherent noise due to the stochastic spike
triggering process. The simulations also demonstrate the
importance of climbing ®ber synchrony. If the climbing
®ber spikes arrive asynchronously in the cerebellar cortex
with a jitter of only 5 ms, then the pattern fails to be
recalled (data not shown).

Up to now, climbing ®ber spikes have been imposed
externally on the network. We ®nally show that se-
quences of climbing ®ber spike patterns as they are
generated by intrinsic oscillatory properties of IO neu-
rons and by reverberating loops between IO, DCN, and
MDJ can be used as a neuronal clock forming tasks in
classical conditioning experiments. In Fig. 6A two ex-
ternal events trigger IO neurons at t � 400 and t � 760,
respectively, and give rise to slowly decaying transients
of climbing ®ber activity. Each set of climbing ®ber
spikes produces complex spikes in the corresponding
PCs and, thus, produces a certain pattern of parallel
®ber activity in the next cycle, as seen before. The
pairing of the second event with the parallel ®ber pattern
at t � 760 induces a modi®cation of the strength of pf-
PC synapses so that PCs will ®re action potentials in
response to this parallel ®ber pattern even if the external

event is omitted; cf. Fig. 6B. The network is thus able to
learned the time di�erence between a conditioned stim-
ulus (®rst event) and an unconditional stimulus (second
event) and to respond to the ®rst stimulus with the
correct delay, which can be as long as several hundreds
of milliseconds, even though the second stimulus is
omitted.

Fig. 4 Two modes of operation in a simulation of the cerebellar
network. The diagrams show the spike trains of 200 DCN neurons
(DCN), 1000 granule cells (GrC), 80 Golgi cells (GoC), 200 PCs (PC),
400 basket cells (BaC), and the spike trains delivered by 200 mossy
®bers (mf) and 200 climbing ®bers (cf) as a raster diagram over time.
Each short vertical line corresponds to an action potential, but
because of limited printing resolution, synchronous spikes of
neighbouring neurons may merge into one line. The volley of
synchronous mossy ®ber spikes at t � 400 ms and the climbing ®ber
spikes around t � 1000 ms are generated externally

Fig. 5 Cerebellum learning spatio-temporal patterns. A The PCs are
trained by climbing ®ber spikes which are delivered subsequently
every 120 ms by four groups of climbing ®bers (uppermost panel). B
Similar diagram as in A but after the pattern has been learned
successfully. A single climbing ®ber volley at t � 400 ms su�ces to
recall the learned pattern

Fig. 6 Cerebellar network performing a timing task. A Two external
events trigger certain subpopulations of IO neurons giving rise to two
climbing ®bre events at t � 400 and t � 760, respectively, (circles) and
a transient activity in the aftermath. B After a few repetitions of the
external stimuli, the ®rst event alone (circle at t � 400) su�ces to
evoke the correctly timed response in the PCs (circle at t � 760)
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4 Discussion

We have presented a model of the cerebellum that
provides a functional description of the cerebellar cortex
and the associated nuclei in terms of volleys of
synchronous spikes and the precise timing of individual
action potentials. Cerebellar interneurons are entrusted
with a function that goes beyond a mere regulation of
the activity of the principal neurons in that they form
short and well-de®ned time windows within which PCs
and granule cells can reach ®ring threshold. Whereas the
®ring of individual neurons is restricted to short time
windows, the synchronization of certain sub-popula-
tions of neurons results in a con®nement of neuronal
activity to discrete time slices. This might be a general
and very powerful paradigm for neuronal information
processing and similar mechanisms have been found to
be involved in intricate coding schemes in the hippo-
campus [49] and the olfactory system [50].

Almost one hundred years after the internal structure
has been elucidated by RamoÂ n y Cajal [51] the function
of the cerebellum is still unknown. We have therefore
contented ourselves with the demonstration that the
present model is able to learn, store, and recall spatio-
temporal patterns of neuronal activity or, more pre-
cisely, sequences of discrete activity patterns every
100 ms. This ability comprises the generation of speci®c
activity patterns on a behaviorally relevant time scale as
they are required for motor control [33, 52]. Extraordi-
nary electrophysiology properties of IO and DCN neu-
rons in conjunction with the topology of the network are
thus at the base of how the cerebellum can solve timing
tasks on a time scale much longer than the millisecond
time scale usually attributed to neuronal dynamics.

4.1 Stability properties

The stability of the present model to noise has been
demonstrated by simulations that include both internal
(stochastic spike triggering) and external (noisy mossy
®ber input) noise. External noise is e�ectively blocked by
the system's admitting only those mossy ®ber spikes that
arrive with the correct timing and rejecting all spikes that
arrive outside the granule cell window. The proviso is
that there is a ®xed temporal relation between the input
signal and the internal state of the cerebellum. At least
for the reverberated signals this condition can be
ful®lled.

The robustness with respect to intrinsic noise results
from the quasi-digital mode of information processing
and the auto-associative way in which spatio-temporal
patterns are stored. PCs have learned to recognize cer-
tain parallel ®ber events in an associative and error-
tolerant manner. Since the PC activity in one cycle is
reverberated to the parallel ®bers in the next cycle, the
whole succession of spike patterns is stable [53].

Two e�ects that have been revealed by our simula-
tions of detailed neuron models of granule cells and of
DCN neurons further enhance the overall stability to
noise. First, the ®ring time of granule cells is insensitive

to the arrival time of a mossy ®ber volley provided it
arrives within their time window. Granule cell spikes are
thus `focused' into an interval that is even shorter than
the granule cell time window. Second, the rebound
spikes ®red by DCN neurons occur with a ®xed delay of
about 100 ms after the PC spike volley independent of
the number of spikes in the volley and their temporal
spreading. Both e�ects are crucial to a safe operation of
the present model. Otherwise small deviations in spike
timing would grow until synchronization is so poor that
all neuronal activity in the reverberating loop would
cease to exist.

4.2 Conclusion

To our understanding, the most appealing aspect of the
present model is the fact that it sheds new light on a
number of previously unrelated experimental observa-
tions. We have shown, for instance, that climbing ®ber
spikes must arrive coincidently at the cerebellar cortex
with millisecond precision in order to properly synchro-
nize cerebellar neurons ± a result that is in perfect accord
with experimental ®ndings [54±56] and that explains the
tuning of propagation velocities in climbing ®bers [57]
and electrophysiological peculiarities in the IO such as
gap junctions and sub-threshold oscillations [29, 30, 33,
46]. Furthermore, we were able to show that experimen-
tal results concerning the timing of parallel ®ber and
climbing ®ber spikes required for LTD and LTP are in
accord with a supervised learning paradigm which is,
however, di�erent from the classical error-signal para-
digm [27].

In addition to the explanation of previous observa-
tions the model allows for clear experimental predic-
tions, e.g., regarding the ®ring time of granule cells
relative to the Golgi cell ®ring, namely, the restriction of
granule cell spikes to narrow time windows. Other pre-
dictions concern correlations between synchronous PC
activity and mossy- and climbing- ®ber activity 100 ms
later on due to delayed reverberating loops, or the ex-
istence of patterns in the simple spike activity of a
population of PCs on a time scale of several hundreds of
milliseconds.
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