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Abstract. We propose a new measure of synchroniza-
tion of multichannel ictal and interictal EEG signals.
The measure is based on the residual covariance matrix
of a multichannel autoregressive model. A major
advantage of this measure is its ability to be interpreted
both in the framework of stochastic and deterministic
models. A preliminary analysis of EEG data from three
patients using this measure documents the expected
increased synchronization during ictal periods but also
reveals that increased synchrony persists for prolonged
periods (up to 2 h or more) in the postictal period.

1 Introduction

Epileptic seizures are by nature episodic events. Exper-
imental models of epilepsy, as well as patient observa-
tions, suggest that the transition to ictal events is
characterized by an abnormal increase in synchroniza-
tion of neural activity. Although neuronal synchroniza-
tion is the hallmark of an ictal event, changes in network
synchrony may precede or follow the actual ictal event.

The electrical activity of the brain recorded as EEG
signals has been analyzed either as random stochastic
processes or as realizations of nonlinear dynamic pro-
cesses exhibiting chaotic behavior. During the last de-
cade, numerous researchers have reported evidence of
low-dimensional chaos in the human electroencephalo-
gram based on estimating Lyapunov exponents or geo-
metric invariants of the underlying attractor, such as the
correlation dimension (see review by Pritchard and
Duke 1992). Recently, however, after more careful ex-
amination of data with improved algorithms, some au-
thors have found no evidence of low-dimensional chaos
in the normal human EEG (Pritchard et al. 1995; Palus
1996; Theiler and Rapp 1996). Indeed, the only instance
where nonlinear dynamic approaches have proved to be
beneficial was in analyses of signals recorded from
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electrodes in close proximity to the epileptic focus (Pijn
et al. 1991, 1997; Casdagli et al. 1996; Elger and Le-
hnertz 1998) shortly before and during seizures.

Most of the reports of nonlinear applications have
been based on single channel analyses and results from
different channels were then subsequently compared.
Iasemidis and Sackellares (1996) suggested that the on-
set of a seizure represents a spatiotemporal transition
from a complex to a less complex (more ordered) state.
They also suggested that this transition occurs only if
conditions of a long-term spatiotemporal dynamical
entrainment of a critical mass of interconnected regions
of brain are met. Lehnertz and Elger (1995, 1997)
demonstrated decreased neuronal complexity in the
primary epileptogenic area in preictal, ictal and postictal
states. Interpretation of these results has to be done with
caution, however, since estimates of nonlinear measures
from short nonstationary time series may result in in-
correct estimates and ambiguous interpretations.

Another approach to EEG analysis has been moti-
vated by the assumption that the EEG is generated by a
stochastic system. Nonparametric spectral methods uti-
lizing fast Fourier transform (FFT) and parametric
methods based on autoregressive models (AR) have
been shown to be useful in analyzing normal and ictal
EEG (Franaszczuk et al. 1985; Gath et al. 1992; Fra-
naszczuk et al. 1994; Franaszczuk and Bergey 1998).
Multichannel versions of these methods allow for mea-
surements of synchrony between different spatial loca-
tions in brain using ordinary, partial (Franaszczuk et al.
1985; Ducrow and Spencer 1992; Gotman and Levtova
1996) or directed coherence (Wang and Takigawa 1992)
and the directed transfer function (DTF) (Franaszczuk
et al. 1994; Kaminski et al. 1997; Korzeniewska et al.
1997). Measurements of these functions in preictal and
ictal states show increased synchrony between channels
close to the epileptogenic focus. These results are in
agreement with results of nonlinear analyses cited above.

Most of the previous studies employing both sto-
chastic and deterministic approaches were applied either
to compare the linear and nonlinear prediction methods
(Blinowska and Malinowski 1991; Theiler et al. 1992;
Scott and Schiff 1995) or to discriminate between sto-



chastic and deterministic models (Theiler 1995; Pijn
et al. 1997). The results of such studies are often not
conclusive and prone to misinterpretation. Lehnertz and
Elger (1995) pointed out that “‘considering the huge
number of influencing factors, it remains difficult to
prove an EEG epoch under consideration as the product
of a dynamical system that exhibits chaotic behavior
rather than as colored noise.” In practice, only deter-
ministic systems of low complexity can be identified
from short stationary epochs of EEG data. Recently
Micheloyannis et al. (1998) demonstrated that both co-
herence analysis and nonlinear analyses of EEG give
useful information about spatial synchronization and
coupling between regions.

We propose here a multichannel autoregressive
method of analysis of spatiotemporal synchronization
that can be interpreted in both a stochastic and a de-
terministic framework, thus avoiding misinterpretation.
The local and global linear autoregressive approxima-
tion has been used previously as a tool for discriminating
randomness from low-dimensional chaos (Cuomo et al.
1994; Casdagli and Weigend 1993). In this study, we use
the multichannel or vector autoregressive model as a
tool for measuring the relative level of synchronization
between channels, not attempting to distinguish between
stochastic or deterministic models.

We present a preliminary application of these method
to long continuous recordings of interictal, preictal, ictal
and postictal recordings from subdural and depth elec-
trodes implanted in three patients with intractable epi-
lepsy undergoing continuous video-EEG monitoring.

2 Data collection

Data were analyzed from seizures from three patients
monitored prior to anterior temporal lobectomy for
intractable complex partial seizures. All patients had
intracranial EEG (ICEEG) recordings from electrode
arrays combining a 28- to 32-contact subdural grid over
the lateral temporal neocortex and one or two multi-
contact depth electrodes placed freehand through the
grid so that the deepest contacts recorded from the
mesial temporal structures (as confirmed by postopera-
tive MRI; Barry et al. 1992). At times, additional
subdural strips were placed over the orbitofrontal,
lateral frontal or basal temporal neocortex. Decisions
to perform intracranial monitoring were based on needs
for functional mapping of eloquent cortex (e.g. language
mapping of the dominant temporal lobe) and seizure
localization. One typical schematic diagram of place-
ment of electrodes is shown in Fig. 1. Typically, the
lateral temporal grid was a 32-contact array. In some
instances (e.g. Fig. 1) up to four contacts were removed
to facilitate grid placement; contact numbering was not
changed.

Data for seizure analysis were collected using a 64-
channel video EEG recording system, the Telefactor
MODAC 64-BBS, with a bandpass filter of 0.5-70 Hz.
The multichannel EEG signals were digitized at a rate of
200 samples/s and stored with the corresponding video
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Fig. 1. Schematic diagram of subdural grids and strips used to record
seizures in patient 1. The two four-contact strips were under the
orbitofrontal and basal temporal regions. The six contact depth
electrode was placed free hand perpendicular to the grids so that the
deepest contacts were in the mesial temporal structures. Four contacts
of the subdural grid (1,9,17,25) were removed to facilitate placement
of the grid; the numbering of the remaining contacts was not altered

patient image on VHS video tape. Data were transferred
to a Telefactor Beekeeper Digital EEG Review Work-
station, then analyzed on a SGI Indigo2 workstation.
All contacts were referenced to a common subdural
contact on a frontal lobe grid or strip or to a contact on
the edge of the temporal grid remote from the source.
Seizures selected for analysis were those occurring at
least 6 h after the previous seizure. Only complex partial
seizures that did not secondarily generalize were selected
for analysis. Epochs were selected where the states (e.g.
awake, asleep) were similar before and after the seizure.
Visual analysis of the EEG was performed so that sei-
zures selected did not have prolonged postictal slowing.

Signals from all channels were normalized to zero
mean and a unitary standard deviation to eliminate
differences in gain from different electrodes.

3 Analysis method

The pth-order vector autoregressive process (Priestley
1981) can be expressed as:

p
Xt:Zijt—j+et ; (1)
=1

where A; are m x m matrices of model coefficients, x; is
the vector of the multichannel signal, and m is the
number of channels. In the stochastic linear interpretat-
ion of this model, e, is the vector of multivariate zero
mean uncorrelated white noise.



Equation (1) can be converted to a state space repre-
sentation by introducing an mp-dimensional state vector:

. ,X,,p)T . (2)

The evolution of this state vector is governed by the state
transition equation:

Yer1 = Fy, +z , (3)

where z, = (e,,0,... ,O)T and the state transition matrix
F is in a block-canonical form with m x m identity
matrices I along the underdiagonal and the parameter
matrices A; on the top:

Y = (thlvxtfb .-

Al ... A, A,
I ... 0 0

F=1. . : ; : (4)
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Equation (3) is a first-order difference equation describ-
ing a Markov process in mp-dimensional space. This
type of conversion to a state space is referred to as
embedding in the dynamical-system literature.

The evolution of a dynamic system is governed by the
deterministic state transition equation:

ax(t)
X0~ 6] (5

where the function G can be highly non-linear. It can be
shown (e.g. Serio 1992) that periodic systems (limit
cycles) and quasi-periodic systems (tori) can be thought
of as autoregressive processes in the limiting case of
driving white noise variance equal to zero. The number
of degrees of freedom in this case is equal to twoxnum-
ber of frequencies. Thus, the state vector of system
evolves on the attractor according to Eq. (3) with
random part z, equal to zero.

In case the attractor is not regular (e.g. chaotic) and
function G in Eq. (5) is nonlinear, one can locally line-
arize the system by developing G in a Taylor series and
retaining only the first-order terms (Cuomo et al. 1994).
Again, in discrete time, the system will evolve approxi-
mately according to the state transition Eq. (3) with the
random part z, equal to zero.

In practice, even in the case of regular attractors or
linear dynamical systems, one can expect measurement
errors; these can be interpreted as additive stochastic
noise. According to Cheng and Tong (1992), the system
(5) is called a skeleton and the observed time series is a
realization of a stochastic process that results from per-
turbing the skeleton with additive stochastic noise. This
notion allows one to use standard methods of fitting
autoregressive models to time series regardless of the
underlying deterministic or stochastic model. For these
studies, we used a multichannel Levinson algorithm
(Marple 1987) to solve Yule-Walker equations. In this
sense, the residual covariance m x m matrix V, of noise
vector e, reflects the goodness of fit of a linear model to
data.

One can expect that if the embedding dimension
(equal to mp) is larger than the number of degrees of

freedom of the system, the fit should be good (i.e. the
residuals will tend to zero). If the complexity of the
system is large or the system is stochastic, the residuals
will be larger. As a goodness of fit measure we are using
s = log[det(V,)]. For a purely uncorrelated multivari-
able Gaussian normalized white noise, V, is a diagonal
identity matrix and s = 0, setting the upper bound value
for 5. For a purely deterministic linear system or a dy-
namical system on a periodic or quasi-periodic trajec-
tory, the matrix V, represents a covariance matrix of
measurement errors (see above), setting the lower bound
value for s. For chaotic or stochastic colored-noise sys-
tems the value of s will be between these bounds.

To compare values of s in different time intervals, one
has to choose the same model order p for all data ep-
ochs. This may not result in an optimal fit for some
epochs. For these studies, the optimal order (according
to the multichannel Akaike AIC criterion) was com-
puted for all epochs. For EEG data with a sufficiently
large (>6) number of channels, the optimal model order
varies only between two or three values (e.g. 3, 4 or 5)
for much of both ictal and interictal epochs with only
occasional other values (Fig. 2). A uniform preset model
order was chosen for all epochs so that this value was
within 1 of the optimal order. If the minimum AIC was
not within +1 of the preset value, the model was not
fitted and s was assigned a value of zero. S =0 was
used to represent missing data in the resulting plot
because this is a value that cannot be generated from
actual data (unless the data were pure white noise).
Kitagawa and Gersh (1996) pointed out that even if
fitting the autoregressive model to data is only an ap-
proximation to the unknown infinite-dimensional mod-
el, the AIC provides the asymptotically efficient solution
to select the best fit to the data. The other parameter of
the procedure is the length N of the epoch to use for
fitting the AR model. The epochs should appear to be
quasi-stationary but be long enough to allow for fitting
multiparameter models. Our experience with both ictal
and spontaneous EEG data (Franaszczuk et al. 1985,
1994; Franaszczuk and Bergey 1998) suggests 1000
points per channel (5 s) epochs as optimal for much of
the data.

Computations were performed on continuous (1.5—
6 h) recordings from groups of 7-45 channels, including
seizures and periods preceding and following the sei-
zures. The criteria for selection of seizure for analyses
are described in Sect. 2.

4 Application to EEG data

Analysis of data recorded for seizures from three
patients revealed the most prominent changes in the
s = log[det(V,)] for the quasi-stationary epochs during
the ictal period. These changes to lower values of s
reflect a better fit to a linear model, i.e. higher
spatiotemporal synchronization. This results from in-
creased correlation between channels and a more regular
pattern of the signal. The lower values of s were
observed not only during the seizure but also persisted
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Fig. 2. The plot of values of optimal model
order according to the Akaike AIC for 35
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channels including depth contacts and tem-
poral lobe subdural contacts in patient 1.
Zero on the horizontal scale is at clinical
seizure onset. Each point represents the
value of the model order for which the
AIC has a minimum for a 5-s epoch of data.
For 83% of all epochs, the optimal model
order was p =3 and for 14% the optimal
order was p =4. The values of s for this
| patient were computed for p =3 and are
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4 Fig. 3. The plot of s = log[det(V,)] as
a function of time for 35 channels
including depth contacts and temporal
lobe subdural contacts in patient 1.
Zero on the horizontal scale is at
clinical seizure onset. Each point
represents the value of s computed
for a 5-s epoch of recorded ICEEG.
The AR model order p = 3. Points on
the upper horizontal axis (s = 0) rep-
resent epochs for which an autore-
gressive model was not computed. The
value of s remains low for over 2 h
after the seizure
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for periods of more than 2 h for two patients (Figs. 3-5)
and for 30 min (entire available postictal data) in a third
patient (Fig. 6).

There were also variations in the values of s before the
seizure with several local minima (Fig. 5). These minima
correlated with interictal activity, but no subclinical or
prolonged electrical seizures were reported or identified
by visual video review. In each of the three instances, the
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actual complex partial seizure lasted less than 116 s; no
secondarily generalized seizures were analyzed. In the
one seizure with only 30 min of postictal analysis
(Fig. 6), postictal slowing lasted less than 10 min. In the
other two seizures from the two other patients (Figs. 3—
5), postictal slowing lasted less than 20 min.

To test the dependence of the analyses on the number
of channels, for one patient we analyzed a smaller groups



10 |

-20

log(det(V))

s=

-60 :

Fig. 4. The plot of s = log[det(V.)] as
a function of time for seven channels
including depth contacts and temporal
4 lobe subdural contacts in patient 1.
Zero on the horizontal scale is at
clinical seizure onset. Each point rep-
resents the value of s computed for a
5-s epoch of recorded ICEEG. The
AR model order p = 7. Points on the
upper horizontal axis (s = 0) represent
epochs for which an autoregressive
model was not computed. This plot is
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very similar to that of Fig. 3
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7 Fig. 5. The plot of s = log[det(V,)] as
a function of time for 31 channels
including depth contacts and temporal
lobe subdural contacts in patient 2.
Zero on the horizontal scale is at
clinical seizure onset. Each point
represents the value of s computed
for a 5-s epoch of recorded ICEEG.
i The AR model order p = 4. Points on
the upper horizontal axis (s = 0) rep-
resent epochs for which an autore-
4 gressive model was not computed.
Again the value of s remains low for
some time after the seizure, indicating
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of seven channels from the subdural grid, including
channels close to the epileptogenic focus (Fig. 4). Pat-
terns of changes in s were similar for all analyses and
were not particularly sensitive to selection of the refer-
ence. There were noticeably more epochs not suitable for
analysis (i.e. s = 0) when smaller numbers of channels
were included in the analyses. This reflects the fact that
more epochs did not have optimal model orders within
+1 of the preset model. This may indicate a need for a

ersistent regional synchron
100 150 200 P & Y Y

different criterion for choosing a range of acceptable
model orders, dependent on the number of channels.

5 Discussion
The quantity s can be interpreted as a measure of order

in the system. There is a close relationship between
Shannon entropy and residual variance of an auto-
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7 Fig. 6. The plot of s = log[det(V,)] as
a function of time for 45 channels
J including depth contacts and temporal
lobe subdural contacts in patient 3.
Zero on the horizontal scale is at
clinical seizure onset. Each point rep-
resents the value of s computed for a
5-s epoch of recorded ICEEG. The
AR model order p = 2. Points on the
upper horizontal axis (s = 0) represent
: epochs for which an autoregressive
model was not computed. Regional
synchrony as reflected in the value of s
persists after the seizure. This record
had only 25 min postictal EEG for
analysis
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regressive process (Serio 1992; Cuomo et al. 1994). The
smaller the residual variance, the less information is
produced. For example, a periodic system does not
produce any new information and is completely predict-
able. In instances of multichannel processes, high
correlation between channels also increases predictabil-
ity. If channels are highly correlated, one channel can be
predicted using other channels, the number of variables
necessary to describe dynamics of the system is lower,
and the AR model is better fit, resulting in smaller values
of s.

Using this approach, we can interpret EEG data in
terms of spatial synchrony and the complexity of dy-
namics of neural networks in the brain. For much of the
time, the average level of s is relatively close to zero,
reflecting less synchronized and less ordered activity.
The minimum of s always occurs shortly after the onset
of a seizure. This reflects the high regional synchrony
between channels and the very regular, almost periodic,
rhythmic activity near the onset of a seizure. This result
is in agreement with reports of reduced complexity of
brain electrical activity at the beginning of a seizure
(Lehnertz and Elger 1995; Pijn et al. 1997), and organ-
ized rhythmic activity visible in time-frequency analysis
(Franaszczuk et al. 1998). Later, during the seizure,
there is an increased number of nonstationary epochs,
where s cannot be computed. This, indirectly, may
suggest desynchronization and a transitional period to
higher complexity. In these patients, 3-20% of the ep-
ochs were nonstationary yet even in instances where
there are increased nonstationary epochs (e.g. during the
seizure), there are sufficient evaluable epochs to yield
readily analyzable plots.

The level of synchronization remains higher (s lower)
after a seizure for prolonged periods (up to 2 h or more).
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This may explain in part the phenomena of seizure
clustering often seen in patients, if one assumes that
increased levels of regional synchronization may in-
crease the likelihood of subsequent seizures. The limited
preliminary data do not yet allow for interpretation of
the local minima in s observed in periods tens of minutes
before seizure onset. Visual inspection of the video-EEG
did not identify subclinical or prolonged electrical sei-
zures. Further analysis is needed to correlate this in-
crease in synchrony with occurrences following seizures.

The relatively high and stationary level of s in the
interictal EEG remote from seizures reflects much less
synchronization. This may reflect either the high com-
plexity of the signal or stochastic system dynamics.
These results are also in agreement with reports refuting
the presence of low-dimensional chaos in normal EEG
(Palus 1996; Theiler and Rapp 1996; Pijn et al. 1997).

The embedding dimension mp is much higher then in
typical single channel temporal embedding, usually em-
ployed in computations of correlation dimension and
Lyapunov exponents. In our analyses the optimal model
order p was from 2 for analysis of all 45 channels to 7 for
7 channels close to the epileptic focus. This results in
embedding dimensions of 90 and 49, respectively, in the
former and latter cases.

There is some controversy about using spatial instead
of temporal embedding in analysis of multichannel data.
Lachaux (1997), based on simulation of EEG-like sig-
nals from well-known dynamical systems placed in a
spherical model of the head, suggested that spatial em-
bedding performs better. Prichard and Theiler (1994)
found that the evidence for nonlinear structure can be
stronger for the multivariate data set than for any of the
individual variables. They suggested that the “optimal”
embedding will be a combination of some channels and



some time delays. Our method of analysis includes
multiple channels and time delays and an embedding
dimension that is high enough to account for potentially
large number of degrees of freedom in the system.

The measure of synchronization presented here has
significant advantages over nonlinear methods of anal-
ysis. It is much less computationally complex and can be
calculated in real time even for 64 channels simulta-
neously. Preliminary data suggest that function s can be
used for detection of seizure onset. More data is needed
to define the suitable threshold level defining seizure
onset. A major advantage of this measure is its ability to
be interpreted both in the framework of stochastic and
deterministic models.
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