
Abstract. This paper discusses similarities between mod-
els of adaptive motor control suggested by recent
experiments with human and animal subjects, and the
structure of a new control law derived mathematically
from nonlinear stability theory. In both models, the
control actions required to track a speci®ed trajectory are
adaptively assembled from a large collection of simple
computational elements. By adaptively recombining
these elements, the controllers develop complex internal
models which are used to compensate for the e�ects of
externally imposed forces or changes in the physical
properties of the system. On a motor learning task
involving planar, multi-joint arm motions, the simulated
performance of the mathematical model is shown to be
qualitatively similar to observed human performance,
suggesting that themodel captures some of the interesting
features of the dynamics of low-level motor adaptation.

1 Introduction

Cybernetics, as envisioned by Norbert Wiener [33], is the
uni®ed study of the information and control mecha-
nisms governing biological and technological systems. In
the spirit of this uni®ed vision, we explore below possible
bridges between recent models of the adaptive control of
multijoint arm motions developed separately in robotics
and neuroscience, comparing both the underlying struc-
ture as well as the observable performance of the
di�erent models.

In neuroscience, new experiments in motor learning
[28] present convincing evidence that humans develop
internal models of the structure of any external forces
which alter the normal dynamic characteristics of their
arm motions. These adaptive models are then used to
generate compensating torques which allow the arm to
follow an invariant reference trajectory to a speci®ed
target. As a possible mechanism for this adaptation, it

has been conjectured that the internal models, and the
compensating torques they generate, are `pieced to-
gether' from a collection of motor computational ele-
ments, representing abstractions of the actions of
individual muscles and their neural control circuitry [18,
28]. Motor learning in this context can thus be viewed as
a method for continuously adjusting the contribution of
each computational element so as to o�set the e�ects of
new environmentally imposed forces.

On the other hand, working from ®rst principles
within the framework of nonlinear stability theory, a
new class of robot control algorithms has been devel-
oped which closely mirrors this biological model [27].
Formalizing and extending previous biologically in-
spired manipulator control algorithms, e.g. [9, 14±16],
these new controllers allow simultaneous learning and
control of arbitrary multijoint motions with guaranteed
stability and convergence properties.

This con¯uence of formal mathematics and observed
neurobiology is quite interesting and merits further ex-
ploration. In this paper, we present an initial evaluation
of the ability of the new robot control algorithm to also
provide a model of the adaptation of human multijoint
arm motions. Speci®cally, we compare the performance
of the new algorithm on a simulation of one of the
learning tasks used in [28] to the actual performance of
human subjects on the same task. As shown below, the
new model not only reproduces many of the measured
end results of this motor learning task, but also captures
a substantial component of the actual time evolution of
the adaptation observed in human subjects. The quali-
tative correlation between the simulated and measured
adaptive performance suggests that the proposed algo-
rithm may provide a model for some of the interesting
features of low-level motor adaptation.

2 Models of arm dynamics and control mechanisms

2.1 Arm dynamics and plausible controller structures

To a good approximation, human arm dynamics can be
modeled as the motion of an open kinematic chain of
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rigid links, attached together through revolute joints,
with control torques applied about each joint [4, 30].
Within the limits of ¯exure of each joint, human arm
motions can thus be modeled by the same equations
used to model revolute robot manipulators, i.e.,

H�q��q� F�q; _q� �G�q� � E�q; _q� � s �1�

where q 2 Rn are the joint angle of the arm. The matrix
H 2 Rn�n is a symmetric, uniformly positive de®nite
inertia matrix, the vector F 2 Rn contains the Coriolis
and centripetal torques, the vector G 2 Rn contains the
gravitational torques (and hence is identically zero for
motions externally constrained to the horizontal plane),
and ®nally the vector E 2 Rn represents any torques
applied to the arm through interactions with its
environment. The forcing input s 2 Rn represents the
control torques applied at each arm joint.

Given the recent progress in the development of
adaptive, trajectory following, robotic control laws [23,
30, 31], it is natural to wonder whether in fact human
arm control algorithms have a similar structure. Each
adaptive robot control algorithm breaks down into two
components. The ®rst of these is a ®xed one which, given
perfect information about the dynamics of the robot and
its environment, counteracts the natural dynamic ten-
dency of the robot and ensures that the closed-loop arm
motions are asymptotically attracted to a task-depen-
dent desired trajectory. The second, adaptive component
recursively develops an estimated model of the govern-
ing dynamics, which is then used in place of the (un-
known) true model in the ®xed component. The desired
trajectory is present as a signal exogenous to the arm
control loop, depending upon the nature of the task at
hand; the controller uses this signal together with mea-
surements of the position and velocity of each joint and
the current estimated model to generate the necessary
torques.

For such an algorithm to be plausible as a model of
human arm motions, there must ®rst be evidence in
humans of a task-dependent desired trajectory which the
arm attempts to follow. Experimental and theoretical
evidence supporting this has been reported in [6, 11],
which show that, in the absence of other constraints, for
planar arm motions humans appear to make rest-to-rest,
point-to-point motions in a manner which minimizes the
derivative of hand acceleration. This is the so-called
`minimum jerk' trajectory through the arm's workspace.
The desired arm trajectory is thus a function only of the
end points of the required motion, and the organization
of motion is decoupled from the execution of motion, as
with an adaptive robot controller.

A second criterion for plausibility is evidence that
humans adaptively form internal representations of
their own and any environmental dynamics, and that
these representations are used to ensure that arm mo-
tions follow the desired, i.e., minimum jerk, trajectory.
Using a series of innovative experiments, the study [28]
presented convincing evidence that both of these
properties of human arm control are present, at least
for two degrees of freedom, planar arm motions. By

measuring how humans learned to compensate for an
externally applied disturbance to their arm motions,
this study concluded that the end-e�ect of human
sensory-motor learning in a new dynamic environment
is an internal representation, in joint coordinates, of
the forces applied by the new environment. This rep-
resentation is then used to generate compensating tor-
ques which allow the arm to follow the minimum jerk
trajectory.

On the basis of these and prior experiments, [28]
proposed a control law which may describe the struc-
ture of the motor control strategy employed in planar
arm motions. The following section describes their
control law mathematically and contrasts it with the
structure of the control laws used for adaptive robot
manipulators.

2.2 Arm control laws: mathematical descriptions

To explain the observed performance of their human
subjects, the following trajectory tracking control law
was proposed in [28]:

s�q; _q; t� � bH�q��qm�t�� bF�q; _q�� bE�q; _q�
ÿKD

_~q�t�ÿKP~q�t�
�2�

where KD and KP are constant, positive, de®nite
matrices, ~q�t� � qÿ qm�t�, and qm�t� is the model
(minimum jerk) trajectory the joint angles q are
required to follow. The terms bH; bF; and bE represent
learned estimates of the corresponding terms which
appear in the equations of motion (1). This control law
thus consists of constant linear feedback terms together
with learned estimates of the nonlinear components
of (1).

On the other hand, working directly from the math-
ematical structure of (1), an alternative, equally plausi-
ble controller structure can be identi®ed which, as will be
shown below, is directly amenable to stable, continuous,
adaptive operation. To understand the structure of this
algorithm, ®rst de®ne a new measure of the tracking
error

s�t� � d

dt
� K

� �
~q � _~q�t� � K~q�t� �3�

where K is a constant, positive, de®nite matrix. Note
that this algebraic de®nition of the new error metric s
also has a dynamic interpretation: The actual tracking
errors ~q are the output of an exponentially stable linear
®lter driven by s. Thus, a controller capable of
maintaining the condition s � 0 will produce exponen-
tial convergence of ~q�t� to zero, and hence exponential
convergence of the actual joint trajectories to the desired
trajectory qm�t�.

Use of this metric allows the development of control
laws for (1) which directly exploit the natural passivity
(conservation of mechanical energy) property of these
systems [31]. Consider the following control law
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s�q; _q; t� � bH�q��qr�t� � bC�q; _q� _qr�t� � bE�q; _q�
ÿ KD�t� _~q�t� ÿ KD�t�K~q�t� �4�

where _qr�t� � _qm�t� ÿ K~q�t�, and both KD and K are
positive de®nite matrices, with KD possibly time varying.
For ®xed feedback gains, this is very similar to (2), but
substituting �qr�t� for �qm�t�, and utilizing the known (but
nonunique) factorization

F�q; _q� � C�q; _q� _q
Denoting by so�q; _q; t� the control law obtained using the
actual matrices H ;C and the actual external forces E, the
resulting closed loop equations of motion can be written,
after some manipulation, as

H _s � ÿKDsÿ Cs� ~s�q; _q; t� �5�
where ~s � sÿ so. With these dynamics, the uniformly
positive de®nite energy function V �s; t� � sTH�q�t��s=2
has a time derivative

_V �s; t� � ÿsTKD�t�s� sT~s� sT� _Hÿ 2C�s=2
Conservation of energy for the mechanical system (1)
identi®es a speci®c C for which the matrix _Hÿ 2C is
skew symmetric, thus rendering the last term above
identically zero. The energy function thus satis®es the
dissipation inequality [31]

_V �s; t� � ÿkD k s k2 �sT ~s

where kD is a uniform lower bound on the eigenvalues of
KD�t�. The closed-loop dynamics hence describe a
passive input-output relation between s and ~s, a fact
which is instrumental in the development of stable, on-
line adaptation mechanisms, such as those examined
below. Moreover, if ~s � 0, that is if `perfect' knowledge
is incorporated into the controller, then the energy
function is actually a Lyapunov-function for the system,
showing that s�t�, and hence ~q�t�, decay exponentially to
zero from any initial conditions using s � so [30].

3 Adaptive arm control and `neural' networks

How might the control law (4) be implemented biolog-
ically and, more importantly, how do the components of
the controller evolve in response to changing environ-
mental force patterns or changes in the physical
properties of the arm? In the following section, this
question is considered from both a mathematical and a
biological viewpoint, and the two vantages are shown to
suggest quite similar solutions.

3.1 Adaptive robot controllers
and possible biological analogs

Adaptive robot applications exploit a factorization of
the nonlinear components

snl�q; _q; t� � H�q��qr�t� � C�q; _q� _qr�t� � E�q; _q�
� Y�q; _q; t�a �6�

where prior knowledge of the exact structure of the
equations of motion is used to separate the (assumed
known) nonlinear functions comprising the elements of
H;C; and E from the (unknown but constant) physical
parameters in the vector a. Indeed, with this factoriza-
tion, the control law

s�q; _q; t� � ÿKD�t�s�t� � Y�q; _q; t�ba�t� �7�
which uses estimates of the physical parameters in place
of the true values, coupled with the continuous adapta-
tion law

_ba�t� � ÿCYT�q; _q; t�s�t� �8�
where C is a symmetric, positive, de®nite matrix
controlling the rate of adaptation, results in globally
stable operation and asymptotically perfect tracking of
any su�ciently smooth desired trajectory [30].

Although this solution is mathematically elegant, it
seems unlikely that the human nervous system is spe-
ci®cally hardwired with a particular set of nonlinear
functions to be used in motion control laws. Moreover,
since generally the forces, E, imposed by the environ-
ment will be quite complex and variable in structure, it is
not apparent how such a simple parameterization could
adequately capture the entire possible range of envi-
ronments which might be encountered.

From a biological perspective, the study [28] suggests,
similar to [3, 18], that internal models of the nonlinear
terms, and the compensating torques they generate, are
`pieced together' from elementary structures collectively
called motor computational elements. These structures
represent abstractions of the low-level biological com-
ponents of motor control, whose contributions at any
time depend upon the instantaneous con®guration q�t�
and instantaneous velocity _q�t� of the arm. Moreover,
experimental evidence suggests that these computational
elements are additive, so that simultaneous stimulation
of two motor control circuits results in a (time-varying)
output torque which is the sum of the torques which
would result from separate stimulation of each circuit [8,
20].

These observations suggest that the structure of the
adaptive nonlinear component of human control of arm
motions can be represented using a superposition of the
form

bs nl
i �q; _q; t� �

XN

k�1
bai;k�t�uk�q; _q; t� �9�

where bs nl
i �q; _q; t� is an (adaptive) estimate of the

nonlinear torque required about the ith joint given the
current state of the limb and the desired motion. Each
uk represents a (con®guration- and velocity-dependent)
torque produced by a motor computational element,
and bai;k�t� are weights which represent the relative
strength of each elementary torque at time t. Motor
learning in this context can thus be viewed as a method
for re-weighting the elementary torques so as to o�set
the e�ects of new environmentally imposed forces or
changes in arm physical properties.
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A possible mechanism for learning these relative
weightings is suggested by the Hebbian model of ne-
uroplasticity [10], in which a synaptic strength is modi-
®ed according to the temporal correlation of the ®ring
rates of the neurons it joins. Since the end product of the
motor learning tasks considered herein is achieved when
the arm follows the desired trajectory, a natural ®rst
approximation to the dynamics of the learning process
which incorporates the above ideas is:

_bai;k�t� � ÿcuk�q�t�; _q�t�; t�si�t�

where c is a constant which controls the rate of learning.
In this scheme, each weight bai;k evolves in time according
to the correlation of the elementary torque output, uk,
and the tracking error measure si.

Signi®cantly, the two previous equations precisely
express the structure of the adaptive component of a
class of recently developed robot control algorithms [27],
which join the stable `neural' control algorithms in [26]
with the adaptive robot algorithm in [30]. The following
two sections make this connection formally, exploring in
detail the structure of this algorithm and its relation to
the motor computational element conjecture.

3.2 Modeling the motor computational elements

To develop a ®rm mathematical basis for the ideas
developed in the preceding section, consider the follow-
ing alternative representation of the nonlinear compo-
nent of the required control input:

snl�q; _q; t� � H�q��qr�t� � C�q; _q� _qr�t� � E�q; _q�
�M�q; _q�v�q; _q; t�

or, in component form,

snli �q; _q; t� �
X2n�1

j�1
Mi;j�q; _q�vj�q; _q; t�

where vl � �qr
l, vl�n � �qr

l, for l � 1 . . . n, and v2n�1 � 1.
Unlike expansion (6), which decomposes snl into a
matrix of known functions, Y, multiplying a vector of
unknown constants a, this expansion decomposes snl

into a matrix of (potentially) unknown functions M,
multiplying a vector of known signals v. Without the
prior information assumed above, an adaptive controller
capable of producing the required control input must
learn each of the unknown component functions,
Mi;j�q; _q�, as opposed to the conventional model which
must learn only the unknown constants, a.

The motor computational element conjecture sug-
gests that approximations to the necessary functions are
`pieced together' from the simpler functions uk. Signi®-
cantly, abstract models of biological computation
strategies have been shown to have precisely this func-
tion approximation property [5, 7, 12, 21], provided each
Mi;j�q; _q� is continuous in q and _q. Indeed, if this is the
case, for many di�erent computational models there

exists an expansion which satis®es, for any �q; _q� con-
tained in a prespeci®ed compact set A � R2n,

Mi;j�q; _q� ÿ
XN

k�1
ci;j;kgk�q; _q; nk�

�����
����� � �i;j

for any chosen accuracy �i;j. This expansion approx-
imates each component of the matrix M using a single
hidden layer `neural' network design with �q; _q� as the
network inputs; here gk is the model of the signal
processing performed by a single `neural' element or
node, nk are the `input weights' associated with node
k, and ci;j;k is the output weight associated with that
node.

This theoretical result has been further strengthened
with the development of constructive algorithms allow-
ing a precise speci®cation of N and nk based upon esti-
mates of the smoothness of the functions being
approximated [26]. For example, in radial basis function
models, i.e., models for which gk�x; nk� � g�khxÿ nkk�
for some positive scaling parameter h, the parameters nk
can be chosen to encode a uniform mesh over the set A
whose spacing is determined by bounds on the signi®-
cant frequency content of the Fourier transform of the
functions being approximated. This analysis thus leaves
only the speci®c output weights, ci;j;k, to be learned in
order to accurately approximate the unknown functions
Mi;j.

Since the size of the required networks rises rapidly
with the number of independent variables in the func-
tions to be learned, a practical implementation will
maximally exploit prior information to reduce the net-
work size. To this end, in [27] it is noted that the term
C�q; _q� _qr may be further decomposed as

C�q; _q� _qr � C1�q�� _q _qr�
where C1�q� 2 Rn�n2 , and � _q _qr� 2 Rn2 contains all pos-
sible combinations _qi _qr

j; for i; j � 1; . . . ; n. If a similar
decomposition of E is assumed, for example E�q; _q� �
E1�q�p� _q� where now E1�q� 2 Rn�n and p� _q� 2 Rn

represents an assumed known _q dependence, the number
of independent variables in each unknown function is
reduced by a factor of 2. Indeed, the nonlinear terms can
under these conditions be decomposed as

snl�q; _q; t� � N�q�w�q; _q; t�
where w 2 Rn�n�2� now contains the elements of �qr; � _q _qr�,
and p� _q�.

Thus, assuming the functions required for each
component of snl are su�ciently smooth, a network
approximation of the form

sNi �q; _q; t� �
Xn�n�2�
j�1

XN

k�1
ci;j;kgk�q; nk�wj�q; _q; t� �10�

can accurately approximate the required nonlinear
control input for appropriate values of the network
parameters N ; nk, and ci;j;k. Indeed, de®ning d �
snl ÿ sN one has

372



jdi�q; _q; t�j �
Xn�n�2�
j�1

�i;jjwj�q; _q; t�j

for any inputs �q; _q� 2 A, where each �i;j is now the
worst case network approximation error to the com-
ponents of N . Since A is compact, and since the smooth,
minimum jerk cartesian paths produce correspondingly
smooth desired joint trajectories, kdk is uniformly
bounded provided �q; _q� can be guaranteed to remain
in A. Furthermore, this bound can be made arbitrarily
small by increasing the size of the approximating
network [27].

There remains to specify the set A, de®ning the region
of the arm's state space on which the networks must
have good approximating abilities. For planar arm
motions, note that the joint variables can be mathe-
matically constrained to lie in the compact set �ÿp; p�n,
and most are physically constrained to lie in a strict
subset of this. Moreover, since there are physical limits
on the torques which can be exerted by the muscles, and
physical limits on the possible range of joint angles,
there are corresponding limits on the range of joint ve-
locities which can be produced. The mechanical prop-
erties of the arm thus naturally determine the `nominal
operating range', A, in which the motor controller would
need to develop an accurate model of the arm's dy-
namics.

The expansion (10) utilizes ``neural'' network theory,
the motor computational element conjecture of [28], and
established theories of adaptive robot control to develop
a representation of each weighted computational ele-
ment as

ai;kuk�q; _q; t� � gk�q; nk�
Xn�n�2�
j�1

ci;j;kwj�q; _q; t�

However, representation (10) allows a more ®nely
grained approach to the control problem than expansion
(9), and one more closely tied to the natural dynamics of
the system, by allowing independent adjustment of each
of the ci;j;k to determine the required input. Moreover,
the above construction is by no means unique: instead of
(10), which uses a single network to approximate the
components of sN, one could easily imagine di�erent
networks approximating each of these terms. This
strategy would produce a family of di�erent gk de®ning
each motor control element, corresponding to the
di�erent nodes used in each approximating network.

Note that, while the Nw decomposition used above
allows a signi®cant reduction in the number of network
nodes and weights required to achieve a speci®ed
tracking accuracy [27], there is no biological signi®cance
claimed for this simpli®cation. It is done purely to
minimize the calculations required in the simulations
below, and a more general implementation could of
course use the original Mv parameterization and basis
functions gk with both joint angles and joint velocities as
inputs.

Additionally, the analysis in this section shows merely
that it is possible to construct the necessary control in-

puts from a collection of very simple elements; it says
nothing about the actual structure of the elements used
in human motor control. Further experimentation is
needed to determine a precise description of these ele-
ments in humans, and to thus permit development of a
truly accurate model of human motion control. Signi®-
cantly, however, the algorithm in [27] requires only that
the collection fukg be mathematically `dense' in the class
of possible functions needed in the control law. Provided
the elements employed can satisfy the above approxi-
mation conditions, the resulting controller, coupled with
the adaptation mechanism developed in the following
section, will asymptotically track any smooth desired
trajectory. This relative insensitivity to the speci®c
structure of the approximating elements suggests that
high quality simulation models can be developed with-
out precise knowledge of human physiology, an idea
which will be explored more fully in Sec. 4.

3.3 Adapting the motor computational elements

To understand how the representations developed above
might be adaptively used, a comparison of the `neural'
expansion (10) with the adaptive robot algorithm (7)±(8)
suggests the control law

s�q; _q; t� � ÿKD�t�s�t� � ŝN�q; _q; t� �11�

where

ŝNi �q; _q; t� �
Xn�n�2�
j�1

XN

k�1
ĉi;j;k�t�gk�q; nk�wj�q; _q; t� �12�

which again uses estimates of the required parameters in
place of the (assumed unknown) actual values. Use of
(11) with dynamics (1) produces the closed-loop dynam-
ics

H _s � ÿKDsÿ Cs� YN~c� d

where the elements of the vector ~c�t� are of the form
ĉi;j;k�t� ÿ ci;j;k, and the elements of YN 2 Rn�N�n2�2n� are
the corresponding combinations gk�q; nk�wj�q; _q; t�.

These are precisely the closed-loop dynamics of the
adaptive system obtained using (7), but for the presence
of the disturbance term, d, describing the discrepancy
between the required nonlinear torques and the best
possible network approximation to them. As shown in
[26, 27], proper treatment of this disturbance is funda-
mental to the development of a successful adaptation
algorithm. The control and adaptation laws (7)±(8) de-
pend upon the globally exact linear parameterization
snl � Ya. The representation (10), however, provides
only the locally approximate parameterization
snl � YNc� d, requiring special care in the design of an
adaptation mechanism.

As long as the joint angles and velocities remain
within their nominal operating range A, the impact of
the disturbance term can be accommodated by using
robust adaptation methods, for example, by adding a
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weight decay term to the adaptive algorithm. The
adaptive law (8) becomes in this case

_̂ci;j;k�t� � ÿc�x�t�ĉi;j;k�t� � si�t�wj�q; _q; t�gk�q�t�; nk��
�13�

where x�t� � 0 if kĉ�t�k < c0, and x�t� � x0 > 0 other-
wise, and here c0 is an upper bound on the total
magnitude of the parameters required to accurately
approximate snl. The parameter c is a positive constant
which controls the rate of learning, and can be di�erent
for each weight. An equally e�ective robust modi®cation
to the adaptive law, and one which may be more
biological, is to allow each parameter value to saturate
using a projection algorithm of the form

_̂ci;j;k�t� � P�ÿcsi�t�wj�q; _q; t�gk�q�t�; nk�; ĉi;j;k�t�; cmax�
�14�

where P�x; y; z� � x if ÿz < y < z, or if y � ÿz and
x > 0, or if y � z and x < 0; P�x; y; z� � 0 otherwise.

Above it has been argued that the architecture of the
arm ensures that the joint state variables remain within
an easily computable nominal range, A. In the more
general nonlinear control case considered in [26, 27],
where such physical arguments may not be immediately
obvious, a modi®cation to the control law (11) is re-
quired if the state variables ever leave their prede®ned
nominal range. This is accomplished by adding a `su-
pervisory' or robust component to (11) itself, whose
action is mathematically determined to force the state
back into the nominal range. Indeed, the mechanical
constraints in a human arm, through the forces they
exert as the arm approaches the feasible con®guration
boundaries, can be viewed as a realization of this `su-
pervisory' control action. Similarly, it can be argued that
painful stimulus from hyperextension of a joint would
provoke an analogous `over-ride' of the nominal motor
control strategy, forcing the limb to return to a more
relaxed con®guration. The formal details of the required
modi®cations are provided in [27].

This combination of `neural' approximation, robust
online adaptation, and robust `supervisory' action (if
required) can be proven to result in a globally stable
closed-loop system. In addition, the actual joint trajec-
tories can be shown to asymptotically converge, in
the mean, to a small neighborhood of the desired tra-
jectories [26, 27]. Explicitly, the convergence can be ex-
pressed as

lim
T!1

1

T

Z T

0

k~q�t�k2dt � �

k2Dk2
�15�

where

� �D sup
t

sup
x2A

Xn

i�1
jdi�q; _q; t�j2

and k is the smallest eigenvalue of K. Larger linear
feedback gains and/or networks with better
approximation capabilities will thus reduce the asymp-
totic tracking errors.

4 Simulating human motor learning

While the gross features of the controller (11)±(14) seem
to agree with experimental observations about the
structure of human motor control mechanisms, it is
not known to what extent this algorithm accurately
models the actual biological mechanisms of adaptation.
Instead, the algorithm constitutes a testable hypothesis
about adaptive motor control, where mathematics and
nonlinear control theory have been used to bridge the
gaps in available neurobiological data. This section thus
presents a preliminary evaluation of the properties of
this model, qualitatively comparing its performance
during a speci®c motor learning task with that of human
subjects.

The selected task is a simulation of the experiment
used to train the human subjects in [28]. This experiment
consists of making short reaching motions constrained
to the horizontal plane, while the arm is perturbed by an
unknown, but deterministic, pattern of externally ap-
plied forces. When no perturbing forces are applied, the
observed human arm motions are virtually straight lines
from the starting point to the desired target, with a bell-
shaped velocity pro®le in agreement with a minimum
jerk trajectory. Under the in¯uence of the perturbations,
the motions are initially sharply de¯ected from the
nominal straight line motion. With practice, however,
these de¯ections are almost entirely eliminated, re¯ect-
ing the adaptation of the motor control strategies uti-
lized by the subjects.

As will be shown below, not only is this behavior
re¯ected in the simulation using the proposed adaptive
control law, but the actual time evolution of the con-
troller performance closely resembles that recorded from
the human subjects.

4.1 Simulation construction

A simulation model of two degree of freedom arm
motions (see Fig. 1) was created using the dynamics (1),
with n � 2, and the representative human arm mass and
length parameters reported in [28]. The two degrees of
freedom here correspond to elbow and shoulder rota-
tions in the horizontal plane; for the purposes of these
experiments, the hand can be considered rigidly attached
to the end of the arm, contributing no additional degrees
of freedom.

Fig. 1. Model of two degrees of freedom, planar arm motions
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The desired trajectories driving the arm motions were
computed from the experimental tasks used to train the
human subjects in [28]. Each of these tasks consisted of a
10 cm reaching motion, possibly in the presence of an
(initially) unknown pattern of environmental forces. The
desired endpoint for each reaching motion moved in a
pseudorandom fashion throughout a 15 by 15 cm
workspace centered at (0.26 m, 0.42 m) relative to the
subject's shoulder (the location of the q1 joint in the
model pictured in Fig. 1).

To generate the sequence of desired motions, the
hand was initially placed in the center of the workspace.
A direction was chosen randomly from the set
f0�; 45�; . . . ; 315�g measured clockwise with 0� corre-
sponding to motion in the �y direction. The desired
endpoint for the reaching motion was then 10 cm along
this direction. After the hand reached this target, a new
target was chosen at a distance of 10 cm from the old
target and along a new randomly selected direction. The
selection process was modi®ed to keep the targets within
the 15 by 15 cm workspace.

To generate a desired trajectory corresponding to
each reaching motion, a minimum jerk hand path of
duration 0.65 s was assumed, as in [28]. In the simula-
tion, the hand was allowed a total of 1.3 s to reach the
desired target before a new target was selected. Thus, the
desired trajectory for each reaching motion consisted of
a 0.65 s minimum jerk path to the target, followed by a
0.65 s hold at the target.

The controller was initialized with perfect `self-
knowledge', i.e., at t � 0, Ĥ � H and Ĉ � C, but no
knowledge of any external forces, i.e., Ê � 0 at t � 0.
This was accomplished by modifying the control law
(11) slightly, so that

s�q; _q; t� � ÿKDs�H�q��qr�t� � C1�q�� _q _qr�t�� � bsN�q; _q; t�
�16�

with bsN still given by (12) and all bci;j;k�0� � 0:. The
adaptive network contributions in this case thus learn
only the departures from the nominal model the
controller has developed from an assumed prior `life-
time' of practice. This initialization is by no means
necessary, and is done only to facilitate comparison with
the experimental and simulation results reported in [28].
The robotic examples considered in [27] demonstrate the
ability of the algorithm to track any desired trajectory
quickly with no such prior information.

The torques applied about each joint were determined
using the control laws (14), (12), and (16), together with
the gain matrices

KD � 2:3 0:9
0:9 2:4

� �
K � 6:5 0:064

0:064 6:67

� �
which were computed using the representative joint
sti�ness and viscosity coe�cients reported in [19, 28].
Note that measurements of human arm motion suggest
that the e�ective sti�ness component becomes smaller as
~q increases [29]. While the proposed control law (11) has
the ¯exibility to accomodate these time-varying feed-

back gains, in the absence of an analytic model for these
variations in humans and to facilitate comparisons with
[28], this feature has not been exploited here. Similarly,
since the arm motions required to perform the experi-
ment are well within the workspace of the simulated
arm, a simulation of the constraint forces imposed by
the joint limits was not included.

4.2 Network design

A radial basis function network was employed, with
nodes gk�q� � g�hqÿ k� for a ®xed scale parameter
h > 0 and a ®xed range of translations k 2K �Z2.
Such a network is known to be capable of approximat-
ing continuous functions with an accuracy proportional
to hÿr, uniformly on the interior of a domain spanned by
the translates k=h, k 2K [22, 26]. The constant r > 0,
quantifying the rate of convergence of the approxima-
tion, depends upon the speci®c basis function g as well
as the smoothness of the functions being approximated
by the network.

For this study, a Gaussian basis function was chosen,
with g�q� exp�ÿkqk=2�, and the domain on which good
approximation is required is the subset of �ÿp; p�2 con-
taining the range of joint angles required during the
experiment, which here is A � �ÿ:5; 2� � �:5; 2:5�. The
scale factor, h, in the network was chosen as h � 2,
ensuring that the `width' of the Gaussians was broad
enough to allow the possibility of generalization of
network learning across the set A, and the transla-
tion range was correspondingly chosen as K �
�ÿ5; . . . ; 8� � �ÿ3; . . . ; 9�, producing a total of 182 nodes.
Larger values of h would allow a theoretically better
approximation (since � in (15) is proportional to hÿr), at
the expense of a larger network size (since the range of
translates k/h; k�K must still cover the same set A) and
decreased generalization capability (since each Gaussian
will be more `narrow', and thus contribute little to the
approximation at points in A remote from its center k/h).
The analyses in [25, 26] provide a more precise mathe-
matical discussion of these tradeo�s. The speci®c values
chosen above attempt to balance the con¯icting goals of
high accuracy, small network size, and good general-
ization potential, but for this preliminary study no at-
tempt was made to optimize this tradeo�.

The resulting network can be expressed as

ŝNi �q; _q; t� �
X8
j�1

X
k2K

ĉi;j;k�t�g�hqÿ k�wj�q; _q; t�

where

wT � ��qr
1; �q

r
2; _q1 _qr

1; _q1 _qr
2; _q2 _qr

1; _q2 _qr
2; _q1; _q2�

and there are thus a total of 2912 adjustable output
weights which must be learned. Each output weight was
updated during the experiment using (14) with the
conservative upper bound cmax � 75. The learning rates
were chosen to vary with j; the speci®c values cj � 0:01
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for j � 1; . . . ; 6 and cj � 0:04 for j � 7; 8 were used in
the simulation.

4.3 Adaptive controller performance

To display the evolving performance of the controller, a
set of 8 reaching motions originating at the center of the
workspace and extending 10 cm along each of the
directions in the above set was used. The resulting `star
pattern', corresponding to the minimum jerk trajectories
to these targets, is shown in Fig. 2. With no external
forces acting on the system and no additional loads
placed upon the arm, the control law as initialized
should be able to perfectly track these trajectories, and
indeed, Fig. 2 is exactly reproduced using the baseline
controller.

In the presence of new environmental forces, how-
ever, substantial deviations from these trajectories are
expected until the controller builds up a su�cient in-
ternal model of the new forces. Figure 3 shows the initial
performance of the controller on the star pattern when
the arm is subject to the ®eld

E�q; _q� � JT �q�BJ�q� _q �17�
where

B � ÿ10:1 ÿ11:2
ÿ11:2 11:1

� �
and J is the Jacobian of the mapping from joint to
Cartesian coordinates. This is the ®eld used with one
group of experimental subjects in [28]; Fig. 3 is in fact
quite similar to the measured human behavior on initial
exposure to this force ®eld, as well as to the output of
Shadmehr and Mussa-Ivaldi's own simulation model.
(Recall from Sect. 2 that, even without adaptation, the

proposed control law di�ers in several ways from (2)
proposed in [28].)

Having established the baseline controller perfor-
mance, both without external forces and in the ®eld
described by (17), a series of 250 reaching motions were
simulated in the presence of the ®eld (17), using the
psuedorandom procedure described above. The con-
troller's performance on the star pattern was then
evaluated, followed by another set of 250 reaching
motions, and so on. In this fashion, a total of 1000
reaching motions were simulated, giving the controller
an opportunity to build up a model of the forces, E, and
four equally spaced `snapshots' were generated of the
evolving controller performance on the canonical star
pattern.

The results of this simulation are summarized in
Fig. 4, which bears a noticeable resemblance to the
comparable plots of human performance reported in [28]
and shown for comparison in Fig. 5. In particular, the
orientation, length, and rate of diminution of the `hooks'
in the deviations from the desired trajectory agree well
with the human data. It is evident from this ®gure that
the controller is gradually learning to counteract the
in¯uence of the applied force ®eld so as to regain the
baseline tracking of the desired trajectories shown in
Fig. 2.

4.4 `Aftere�ects' of adaptation

As pointed out in, [28] it is possible that the baseline
performance is being recovered, not by developing an
internal model of the new forces, but rather by making
the linear parts of the controller more robust, for
example `sti�ening' the joints by increasing KD and K.
Indeed, the bound (15) above displays this possibility
explicitly. The network contribution to the control law

Fig. 2. Desired trajectories used to evaluate the performance of the
proposed control law

Fig. 3. Tracking of the desired trajectory upon initial exposure to the
environmental force pattern given by (17)
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might thus simply augment the linear feedback terms.
To resolve this issue, at the same time each of the above
`snapshots' was taken, a second snapshot was generated,
again evaluating the performance of the controller on
the star pattern, but here with no environmental forces
applied, i.e., with E = 0.

If the controller is simply learning to increase the
linear feedback, its performance with the ®eld `o� '
should exactly resemble the baseline performance of
Fig. 2, since the magnitudes of the feedback gains will
not a�ect the perfect tracking observed in this situation.
If, on the other hand, the controller is developing an
internal model of E, and using this model to modify the
torques it commands, then when the environmental
forces suddenly vanish, there should be substantial
deviations from the baseline performance, since the
controller will be generating torques to counteract a ®eld
which is no longer present. Indeed, these deviations

should increase as a function of learning time, eventually
resembling `mirror images' of the deviations seen in
Fig. 4. These deviations away from the baseline perfor-
mance under the nominal (no ®eld) operating conditions
have been termed the `aftere�ects' of adaptation by [28].

Figure 6 shows that, indeed, the controller exhibits
signi®cant aftere�ects, and that the magnitude of these
deviations increases steadily, eventually resembling a
`mirror image' of the trajectory deviations seen in Fig. 4.
The adaptive networks are thus indeed being used to
model and o�set the force ®eld. There is generally good
qualitative agreement with the comparable plots of the
aftere�ects recorded in human subjects, although on
some of the legs, notably those at 90�, 135� and 315�, the
deviations are less severe than observed in the human
data. Otherwise, the orientation, magnitude, and rate of
growth of the trajectory deviations agree with those
observed in humans.

Fig. 4. Evolution of the performance of the adaptive control algorithm as a function of training time. After attempting to track 1000
pseudorandom motions throughout the workspace, perfect tracking of the desired trajectories of Fig. 2 is nearly completely recovered. Compare
with the measured human performance on the same task in shown Fig. 5
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4.5 Generalization and persistency of excitation

It is important also to evaluate the extent to which the
model learned by the network can generalize to novel
regions of the state space. In the human experiments
reported in [28], the test subjects clearly showed that
learning in the original 15 by 15 cm workspace in¯u-
enced the performance of identical reaching tasks
conducted in a di�erent workspace. This observation
led Shadmehr and Mussa-Ivaldi to conclude that the
motor computational elements were `broadly tuned'
across the state space: That is, the observed adaptation
was not an extremely localized, `look-up table' phenom-
enon, but rather utilized elements uk which contribute
signi®cantly over a large range of joint angles and
velocities. This observation was incorporated into the
construction of the simulation, by appropriately select-
ing the variance of the Gaussians used in the adaptive
networks. The relatively small Gaussian scaling param-
eter used in the network ensures that changes to the
weights ĉi;j;k will produce e�ects in the control law far
outside the original workspace. Figure 7 illustrates this
generalization by showing that aftere�ects are observed
on motions performed far outside the workspace used
for training.

An interesting and well-known feature of direct
adaptive control systems is that such devices will build
only as complete an internal model as is su�cient to
accurately track the commanded desired trajectories. In
the experiments simulated above, there is thus no
guarantee that the internal model which permits recov-
ery of the baseline performance in a given workspace

will coincide with the actual structure of the environ-
mental forces. In fact, note that the actual ®eld (17) does
not deviate substantially during the experiment (and
simulation) from the linearization

EL�q; _q� � JT �q0�BJ�q0� _q �18�

where q0 are the joint angles which place the hand in the
center of the original workspace. This would suggest
that even though the computational elements are
broadly tuned, the controller will not correctly general-
ize its learning to a new workspace, but rather will use
an internal model more similar to the linearized ®eld
seen in the original workspace.

Indeed, after performing the 1000 reaching motions
described above, Fig. 8 shows the performance of the
controller, operating in the same force ®eld (17), but
tracking a star pattern centered instead at (ÿ0:114 m,
0.48 m) relative to the shoulder. Compare this with
Fig. 9, which shows the performance of the same con-
troller, again tracking the relocated star pattern, but
operating instead in the linearized ®eld (18). These plots
reveal that, while the controller has clearly generalized
its learning, it has not developed a complete model of the
force ®eld (17). While neither plot displays excellent
tracking of the star pattern in the new workspace, the
tracking in the linearized ®eld, shown in Fig. 9, is
qualitatively closer to the tracking ultimately achieved in
the original workspace (the last `snapshot' in Fig. 5).
This suggests that during its training, the controller de-
veloped only a locally accurate model of the actual ®eld,
more similar to EL than to E. When the controller

Fig. 5. Human performance on the same simulated task,
reprinted from [28]
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attempts to use this model in the new workspace, where
the true ®eld is quite di�erent from EL, the poor tracking
performance observed in Fig. 8 results. Figures 7
through 9 are again similar to the corresponding plots of
human performance reported in [28], although legs,
notably those at 0�, 45�, and 224�, the deviations ob-
served in the human data are signi®cantly worse than
those in the simulation data.

Continued practice in the new workspace would cause
convergence to the new desired trajectories, recovering
again the baseline behavior. In general, however, if all
the required motions can be accurately followed without
a completely accurate model, there is no pressure for the
system to improve its controller. By instead choosing
appropriately `exciting' desired motions, so that perfect
tracking would require a perfect model, the internal
model of the environmental forces can be made to as-
ymptotically converge to the actual force structure. The
persistency of excitation conditions, which mathemati-

cally de®ne the required trajectories, are reviewed in [30]
in a robotic content, while in [32] the structure of these
conditions for applications employing Gaussian net-
works is discussed.

4.6 Additional observations

The results above were obtained with no special
consideration given to the speci®c network elements
used, save to ensure that they were broadly tuned, and
that the collection had a good approximating power for
a large class of functions. Since it is very unlikely that
actual motor computational elements have a precisely
Gaussian structure, the qualitative agreement of the
simulation results with the observed human perfor-
mance illustrates the relative insensitivity of the
proposed model to the exact structure of the elemen-
tary functions employed. The speci®c values for the

Fig. 6. Evolution of the ``aftere�ects'' of adaptation as a function of training time. After attempting to track 1000 pseudorandom motions
throughout the workspace, the trajectory perturbations produced by the aftere�ects resemble a mirror image of the perturbations seen in Fig. 4.
Compare with the measured human performance on the same task reported in [28]
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adaptation gains, however, were chosen by trial and
error to yield incremental performance improvement
qualitatively similar to the reported human perfor-
mance. Recall that the learning rates are free parameters
in the stable adaptation mechanisms (13), (14); any
positive values will result in a stable, convergent
algorithm. The speci®c choices which would match the
simulated learning rate to that observed in humans,
however, could not be predicted a priori.

Similarly, while the asymptotic recovery of the de-
sired trajectory depends mathematically only on the
approximation power of the aggregate collection fgkg,
the manner in which the network generalizes its learning
to a new workspace is much more sensitive to the speci®c
choice of basis function. A very large choice of h in the
Gaussian network above, for example, might produce
comparable results on the learning task, but exhibit
virtually no generalization in the new workspace, since
such a network exhibits quite local learning. Di�erent
choices of the `shape' of g (for example, sigmoidal as
opposed to Gaussian) would similarly produce di�erent
generalization properties. No attempt was made in this
study to tune the choice of basis functions to better
match the generalization observed in humans; this will
be a topic of future investigation.

Finally, note that while the simulated experiments
described above required only learning the unknown E,
the control and adaptation laws used are capable of
accommodating much more complex changes in the
dynamics. For example, if the arm were to suddenly grab
a massive, oddly shaped object, such as a tennis racket
or bowling ball, the matrices H and C would suddenly
change, requiring comparable modi®cations to the
nonlinear components of the control law to ensure
continued tracking accuracy. Similar changes occur to
these components of the dynamics over longer time pe-
riods, as skeletal structure and musculature change. The
proposed algorithm naturally has the ¯exibility to adapt
to these more general changes in the dynamics.

5 Concluding remarks

In this paper, we have attempted to illustrate the strong
similarity between models of adaptive motor control

Fig. 7. Tracking of a star pattern using a null ®eld in a workspace
centered at �ÿ0:114 m, 0:48 m) relative to the shoulder, after training
in the ®eld (17) in the original workspace. The presence of aftere�ects
in the new workspace indicates that the algorithm has generalized its
learning

Fig. 8. Tracking of a star pattern centered in the new workspace after
training in the original workspace. The motion is still perturbed by the
environmental force ®eld (17)

Fig. 9. Tracking of a star pattern centered in a di�erent workspace
than that used for training. The perturbing ®eld is now given by (18),
even though (17) was used in the training
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suggested by recent experiments with human and animal
subjects, and the structure of new robotic control laws
derived mathematically. In both models, the nonlinear
component of the torques required to track a speci®ed
reference trajectory is assembled from a collection of
very simple, elementary functions. By adaptively recom-
bining these functions, the controllers can develop
internal models of their own dynamics and of any
externally applied forces, and use these adaptive models
to compute the required torques. Biologically, the
elementary functions represent abstractions of the
actions of individual muscles and their neural control
circuitry. Mathematically, however, the elementary
functions can be any collection of basis elements which
permit accurate reconstruction of continuous functions,
such as those comprising current `neural' network
models.

Instead of iterative training methods, we have pro-
posed a continuously adaptive model which has a strong
Hebbian ¯avor. By using the adaptive elements in a
method which fully exploits the underlying passive me-
chanical properties of arm motions, the resulting strat-
egy of simultaneous learning and control can be
guaranteed to produce stable, convergent operation.
This continuous model has enabled not only repro-
duction of many of the end-results of the particular
motor learning task examined, but also captures a sig-
ni®cant component of the actual time evolution of the
adaptation observed in human subjects.

The insensitivity of the proposed algorithm to the
speci®c choice of basis functions is quite encouraging.
The actual structure of the computational elements un-
derlying human motor control may not resemble any of
the biological computation models currently under in-
vestigation, including those employed herein. Since the
performance of the model does not depend upon a
speci®c choice of computational element, only upon the
properties of the aggregate, the adaptive control model
described above may capture some of the interesting
features of actual low-level motor adaptation. Indeed,
the underlying idea ± continuously patching together
complex control strategies from a collection of simple
elements ± is not only biologically plausible, it represents
a sound engineering solution to the problem of learning
in unstructured environments.
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