
Abstract. In order to understand the dynamic property
of covert selective visual attention, which is di�erent
from the proposed mechanism of the spotlight meta-
phor, a two-layered network of phase oscillators was
developed. The ®rst layer is related to the hippocampus
and controls attention focus formation. The second
layer is related to the visual cortex, and each cortical
oscillator in it simulates an assembly of cells coding for a
particular stimulus in the sense of feature binding.
Selective visual attention is interpreted as the result of
the emergent synchronization of hippocampus oscilla-
tors and a part of cortical oscillators. Numerical
experiments are presented to illustrate attention focus
formation and attention shifting from one set of stimuli
to another. From a neurocomputational point of view,
our results demonstrate that attention is an emergent
property of the dynamical cell assemblies responding to
the whole visual ®eld.

1 Introduction

Selective visual attention is closely related to the
problem of how the objects and external knowledge
are represented in the brain, and it is highly important
for us to understand the mechanism underlying higher
cognition and even consciousness.. Therefore, selective
visual attention has been the focus of a growing amount
of research.

Although our knowledge of the speci®c anatomical
areas and the neural mechanism of attention is still in-
complete, many previous studies in psychophysics,
neurophysiology, and computational modeling have
given us an elemental framework for the attention sys-
tem. For example, in the psychophysics community, the
most widely used metaphor for selective visual attention
is a spotlight which enhances information within a se-
lected region in the scene and ®lters out information

outside of it (Crick 1984). According to this metaphor,
scenes are searched item by item by a spotlight of at-
tention. Correspondingly, from the neurocomputational
point of view, selective visual attention is usually re-
garded as a means for reducing the amount of incoming
visual information to a manageable size so that it can be
dealt with by the limited computational resources of the
brain (Leow and Miikkulainen 1991; Olshausen et al.
1993; Olshausen and Koch 1995; Niebur and Koch
1996; Larr et al. 1997). On the one hand, the popularity
of the spotlight metaphor re¯ects the idea that selective
attention is necessary for the limited computational ca-
pacity of visual systems. On the other, some di�culties
arise when the existing models are employed to explain
the neurophysiological or neurocomputational mecha-
nisms underlying the spotlight metaphor. For instance,
how the attention spotlight moves from one location to
another within a scene is an unresolved issue (Olshausen
and Koch 1995). Another question given in Desimone
and Duncan (1995) concerns the role of attention in
binding. A common view is that attention helps solve the
binding problem by linking together di�erent features at
the location of interest (Treisman and Gelade 1980).
However, experiment data support the opposite argu-
ment: targets may pop up in a visual search display
before they are the focus of attention, even when they
are de®ned by the conjunction of elementary attributes
(McLeod et al. 1988; Duncan and Humphreys 1989;
Wolfe et al. 1989). Desimone and Duncan (1995) re-
viewed a large number of psychophysical and neuro-
physiological experiments which have argued this
spotlight metaphor, and the data cited cast doubt over
many of its postulates.

An alternative to the spotlight metaphor proposed by
Desimone and Duncan (1995) is that the control of at-
tention is highly distributed through the cortex, without
any explicit saliency map for registering potentially in-
teresting areas of the input (Koch and Ullman 1985).
This general model possesses the following main features
(Desimone and Duncan 1995). (1) At some points be-
tween input and response, objects in the visual input
compete for limited processing capacity. (2) The
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competition is biased in part by bottom-up neural
mechanisms that separate ®gures from their background
(in both space and time) and in part by top-down
mechanisms that select objects of relevance to current
behavior. (3) Objects act as wholes in neural competi-
tion. The construction of object representations from the
conjunction of many di�erent features appears, in many
cases, to occur in parallel across the visual ®eld before
individual objects are selected and, hence, prior to any
attentional binding. (4) Though the matter remains
controversial, according to their analysis, attention is
not a high-speed mental spotlight that scans each item in
the visual ®eld. Rather, attention is an emergent prop-
erty of slow, competitive interactions that work in par-
allel across the visual ®eld.

The aim of this paper, inspired by Desimone and
Duncan (1995), is to develop a model to explore the
emergent dynamic property of covert selective visual
attention from a neurocomputational point of view. A
two-layered network of phase oscillators is used as the
selective attention module: the underlying neurophysio-
logical reason to employ phase oscillators will be dis-
cussed in Sect. 2. Neurophysiological studies have
disclosed a wide variety of brain areas involved in
selective visual attention, including the posterior parietal
cortex (Posner et al. 1984), the frontal cortex (Heilman
and Valenstein 1972), and even the thalamus (Crick 1984;
Rafal and Posner 1987). However, our knowledge of the
neuroanatomical constraints of attention is still incom-
plete (Posner and Petersen 1990). Our model is based on
the cortico-hippocampal interplay, i.e., the top layer
represents the hippocampus and the bottom one corre-
sponds to the visual cortical areas. This neurophysio-
logical constraint derives from the following ®ndings.
The entorhinal cortex provides the major visual cortical
input to the hippocampus (Iijima et al. 1996), and the
information transmitted from the entorhinal cortex can
reach the pyramidal cells directly or indirectly by way of
the granule cells (Amaral and Witter 1989; Lopes da
Silva et al. 1990). In addition, real-time imaging revealed
that neural activity is transferred in a frequency-depen-
dent manner from the entorhinal cortex to the hippo-
campus (Iijima et al. 1996). In that study, the dynamics of
neuronal circuits in the entorhinal-hippocampal system
was studied in slices by optical imaging with high spatial
and temporal resolution. Reverberation of neural activ-
ity was detected in the entorhinal cortex and was more
prominent when the inhibition due to c-aminobutyric
acid (GABA) was slightly suppressed. Neurons in the
super®cial layers of the entorhinal cortex, which send
their axons to the hippocampus, are under strong local
inhibitory control by GABA. Results showed that the
decline in GABA inhibition is frequency-dependent. For
slices in normal solution, stimulus frequencies of 1 Hz
and higher can overcome the local inhibition. For slices
bathed in bicuculline which partly suppresses the inhi-
bition by GABA, the reverberating circuit at 0.1 Hz
might be su�cient to overcome inhibition, resulting in
activation of the perforant pathway.

Furthermore, there are many experiments which
con®rm that the hippocampus is involved in the for-

mation of attention in classical conditioning (for a re-
view, see Schmajuk and Dicarlo 1992), though its precise
role and the mechanism of its interaction with the cortex
are still under discussion. Miller (1991) formulated the
theory of representation of information in the brain
based on corticohippocampal interplay. He assumed
that this representation results from synchronization of
the oscillatory activity of the hippocampus and some
part of the cortex due to a proper choice of time delays
in the connections between these structures.

In this model, selective visual attention is interpreted
as the result of the synchronous oscillation not only
among the cell assemblies in the neuronal pools within
the hippocampus but also between the hippocampus and
some parts of the visual cortex.

2 Selective visual attention model

This model consists of two-layer phase oscillators. The
bottom layer involves the visual perception input layer,
while each oscillator (denoted as CO in the following
text) in it represents the pertaining cells which are
ÔboundÕ into one assembly for coding for a particular
object. The top layer is related to the hippocampus. As
mentioned in Sect. 1, many experimental results con®rm
that the hippocampus is involved in the formation of
attention in classical conditioning (for a review, see
Schmajuk and Dicarlo 1992), and the neurophysiolog-
ical data reviewed in this paper support the following
arguments. (1) Hippocampal pyramidal activity in CA3
and CA1 is correlated with the presentation of simple
and compound conditioned stimuli. (2) Hippocampal
CA1 and CA3 activity increases during acquisition and
decreases during extinction of classical conditioning.
Thus, the CA1 and CA3 hippocampal regions are
thought to be related to the top layer in our model.
Each phase oscillator in it simulates a hippocampal
pyramidal cell or an assembly of pyramidal cells
participating in selective attention, and is denoted as
HO. Moreover, in our model, the top layer is assumed to
have long-range connections. Coupling among HOs may
be achieved by putative interneurons with wide-ranging
axon collateral systems which are not simulated in this
model (for a review see BuzsaÂ ki and Chrobak 1995).

The dynamics of the network is described by:

dh h
i

dt
� xh

i � u
XNh

j�1
sin�hh ÿ hh

i � � b
XN c

k�1
sin�hc

k ÿ hh
i � �1�

dhc
k

dt
� xc

k � b
XNh

i�1
sin�hh

i ÿ hc
k� �2�

where i � 1; . . . ;N h; k � 1; . . . ;Nc the superscripts h and
c denote the oscillators in the hippocampus and the
visual cortex, respectively. hh

i and hc
k represent the phases

of the HOs and COs, and xh
i ;x

c
k are natural frequencies

of the oscillators separately. The hippocampus layer has
long-range (all-to-all) connections. Every HO interacts
with other all Nh)1 HOs, and the coupling strength
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between any two HOs is the same and denoted as u. In
order to simplify the analysis, connections between COs
are ignored. Each CO interacts with all the HOs with the
coupling strength b.

This network is developed on the inspiration of the
model suggested by Kryukov (1991) in which a network
of phase oscillators was proposed for attention model-
ing. In that work, the idea that the spetohippocampus
region is a central executive of the attention system was
proposed. The spetohippocampus region is simulated by
a central oscillator, while the peripheral oscillators
coupled with this central oscillator represent the cortical
columns. The regime of partial synchronization in such
an attention network was studied in detail by Kazano-
vich and Borisyuk (1994). Here partial synchronization
means that only some proportion of the peripheral os-
cillators has current frequencies similar to that of the
central oscillator, while current frequencies of other
peripheral oscillators are quite di�erent. Instead of only
using one central oscillator for the hippocampal model,
we employ a large number of oscillators to simulate the
hippocampal region in (1) and (2). This is the essential
di�erence between our model and the one considered by
Kryukov (1991) and Kazanovich and Borisyuk (1994).

The underlying neurophysiological evidence for em-
ploying phase oscillators comes from a large variety of
oscillations discovered in neural systems. Stimulus-
evoked oscillation of neural activity has been reported in
many systems, such as the cerebral cortex of mammals
and the brain of insects (Freeman 1978; Eckhorn et al.
1988; Gray and Singer 1989; Gelperin and Tank 1990;
Laurent and Davidowitz 1994; Laurent and Naraghi
1994). Also, it is found that under some conditions the
oscillations become coherent both in adjacent and dis-
tant groups of neurons. The hippocampus exhibits
rhythmic oscillatory ®eld potentials at theta (4±12 Hz)
and gamma (40±100 Hz) frequencies during its activat-
ed, exploration-associated state. More important is the
fact that the neocortical projection from the super®cial
layers of the entorhinal cortex to the dentate, CA3, and
CA1 regions also exhibits theta-modulated gamma-
oscillations. These oscillations entrain the discharge of
layers II-III neurons that innervate the hippocampus
(for a review, see BuzsaÂ ki and Chrobak 1995).

Following from these neurophysiological experi-
ments, we are prompted to use phase oscillators to
describe the elements of both the bottom and top
layers. On the other hand, the relationship between the
frequency band and selective attention is, at present,
very unclear. In relevant experimental results, gamma-
rhythm has been shown to be more likely involved
in cognition operations than other frequencies band
including theta-rhythm (for review, see Ritz and
Sejnowski 1997). For example, in the visual cortex,
gamma-oscillations can be evoked by visual stimula-
tion. Synchronous oscillatory activity in the gamma-
band occurs in both awake and alert states of the
brain. Furthermore, it has been suggested that cortical
oscillations in the gamma-frequency band might un-
derlie the binding of several features into a single per-
ceptual entity (Milner 1974; Malsburg 1981; Singer and

Gray 1995). From these results, we hypothesize that
gamma-oscillations in both the visual cortex and hip-
pocampus are involved in selective visual attention.
Thus, only the gamma-rhythm of the CO and HO
layers is dealt with in our model, although to date no
direct evidence is available to support or refute the role
of theta-oscillations in visual attention. Note that the
mathematical formulation of the model is invariant
with regard to the choice of the speci®c frequency band
of phase oscillators.

Moreover, in this model, feature binding is assumed
to be completed before selective visual attention. This
assumption is consistent with the conclusion that objects
act as wholes in neural competition (Desimone and
Duncan 1995). According to current understanding,
di�erent features of a particular object are represented
by cells which are spatially distributed across multiple
visual areas in the brain. Thus, a binding process which
helps group feature cells together is crucially required
for the neural system. Under the circumstances that each
cell may be involved in more than one cell assembly at a
given time, the synchronization of neuronal activity is
assumed to provide an appropriate label for identifying
those cells representing a particular object (Schillen and
KoÈ nig 1994). A earlier hypothesis proposed by Milner
(1974) and Malsburg and Schneider (1986) suggested
that binding is achieved by the synchronous oscillatory
activity of cells responding to di�erent properties of the
same object. This hypothesis implies that no matter
whether these cells are located in the same cortical col-
umn (or layer), they can be instantly bound to an as-
sembly when they respond to the features of the same
object at a given time. The plausibility of binding by
synchrony has been increased by some new ®ndings in
recent neuroscience research (for a review, see Treisman
1996). Thus, an assembly which is bound together to
represent a particular object is assumed to be simulated
by a cortical oscillator CO in our model, and cells be-
longing to such a CO might be distributed across dif-
ferent cortical columns (or layers).

Since the formation and segregation of these cell
assemblies are performed in a stimulus-dependent
manner (Gray et al. 1989; Engel et al. 1991a,b), the
existence of COs is stimulus-dependent. Dynamic link
architecture suggests that rapid synaptic plasticity is the
potential mechanism underlying feature binding (Mals-
burg 1995). Through rapid reversible synaptic plasticity,
the synaptic weight J ij between neurons j and i can vary
on a fast time scale. If the neurons i and j ®re syn-
chronously, the dynamic weight J ij is rapidly increased
from a resting value to the maximal value set by the
permanent synaptic strength. If both neurons are active
but ®re asynchronously, the synaptic weight is rapidly
decreased to zero. When there is no more activity in one
or both of the neurons, the dynamic weight slowly falls
back to the resting value, with the time constant of
short-memory. According to above theoretical hypoth-
esis (Malsburg 1995), it is reasonable to assume that the
interactions within the same assembly CO are stronger
than that between any di�erent COs in the sense of
feature binding, although cells belonging to each CO
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might be distributed across multiple visual areas in the
brain. Therefore, in order to simplify the analysis, the
connections between COs are neglected in this model.

3 Representing attention state by synchronization
of HOs

First, we discuss the dynamics in the population of
interacting HOs when there are no visual stimuli (i.e.,
b=0).

Early in 1967, such all-to-all coupled self-oscillators
were considered by Winfree on his attempt to under-
stand physiological clocks in terms of individual cellular
oscillators. Without resorting to specialized models but
only phenomenologically, Winfree (1967) discovered
that such oscillator populations exhibit a phenomenon
reminiscent of a phase transition: collective rhythm
suddenly emerges in the population when the coupling
strength exceeds a critical value. It was realized after-
wards that the dynamic behavior in (1) with b =0 is too
complex to be solved mathematically. Therefore, most
of the work on these all-to-all coupled oscillators focuses
on an easier but more important question: Under what
conditions is there a stable solution in which some or all
of the oscillators are running with the same frequency
(Kuramoto 1975, 1984, Yamaguchi and Shimizu 1984;
Ermentrout 1985; Daido 1986, 1987; Sakaguchi and
Kuramoto 1986)? For the systems having the form
d/i=dt � wi � v

PN
j�1 sin�/j ÿ /i��i � 1; . . . ;N�, the

condition was obtained by Ermentrout (1985). It is
stated as follows. Let wi be randomly distributed in the
interval ��wÿ b; �w� b� with mean �w and density
f �wÿ �w�. If f �wÿ �w� is symmetric and nonincreasing,
phaselocking occurs if and only if

b
vN
� c� f � �3�

where the function c(f) is of the form c�f � �
2
R 1
0

�������������
1ÿ u2
p

f �u� du, and u is related to w through the
change of variables u � �wÿ �w�=b. Under the change of
variables w! u, there is )1 £ u £ 1. According to (3),
for a given all-to-all coupled system, the synchronization
condition is in¯uenced by the number of oscillators, the
coupling strength, and the ÔvarianceÕ of the native
frequency of oscillators. Function c�f � gives a threshold
range in which these factors are taken into account, c�f �
is dependent on the density function of the random
native frequency w through the way of f �u�. For the
uniform density function f �wÿ �w�; it is easy to judge
that f(u)=1/2. Substituting f(u)=1/2 into c�f � �
2
R 1
0

�������������
1ÿ u2
p

f �u� du, we can obtain c(f)=p/4. Similar
to most other work, this condition is derived in the
situation N ® ¥; whether it still works when N is ®nite
remains to be answered. Considering that the number of
neurons in the brain is much smaller than that in the
systems which statistical physics can handle and larger
than that deterministic theories can be applied to, we
investigate in this section the conditions of global
synchronization for the systems consisting of a ®nite
number of oscillators by employing computer simula-

tion. Our computer experiments are limited to the scope
of N £ 500.

Two possible states exist for the HOs layer when there
are no visual stimuli. One is global synchronization in
the sense that all the HOs run at the same frequency
(denoted as X), while their phases are di�erent from each
other, but the phase di�erence between any two HOs is
locked in a constant. The other is global desynchroni-
zation, which means that all the HOs cannot reach a
common frequency. Occassionally, another situation
happens, in which only some of the HOs are synchro-
nous. In order to simplify the analysis, we classify such a
partial synchronization in the hippocampus as the sec-
ond kind, i.e., global desynchronization. While global
synchronization occurs in (1) with b = 0,
dhh

i =dt � X�i � 1; . . . ;Nh� is satis®ed. Adding the same
sides of (1) separately, it is easy to derive:

X � 1

Nh

XNh

i�1
xh

i �4�

Take b � 0. The initial phases of HOs were chosen
randomly according to a uniform distribution in the
range [0, 2p]. The natural frequencies xh

i �i � 1; . . . ;N h�
of the HOs range randomly within �xh

0 ÿ a;xh
0 � a� with

a uniform density, where a represents the maximum
deviation of the frequencies of HOs from a given con-
stant xh

0. In the limit N ® ¥, there is X � xh
0. Observe

the dynamic behavior in the HOs layer while setting
a; N h, and u ®xed and slowly changing xh

0 from one
value to another. No qualitative e�ects on the syn-
chronization of HOs are found; the only result is that the
synchronization frequency X has been changed by way
of (4). Hence, we only discuss the e�ect of parameters a,
Nh and u on the dynamics of system (1) with b = 0.

When u is given, computational simulation experi-
ments show that the dynamics of the HOs layer strongly
depends on a and Nh. For a ®xed Nh, there exists
a critical value a(s). If a £ a(s) is satis®ed, global syn-
chronization happens in the HOs layer, otherwise HOs
do not work at a common frequency. This means that a
network with smaller deviations of initial frequencies
from each other more easily reaches synchronization
than one with larger deviations. On the other hand, for a
given a, the more HOs the network contains, the more
easily it achieves synchronization. There also exists a
critical value Nh(s) for which if Nh ³ Nh(s), global syn-
chronization happens in the HOs layer, otherwise HOs
do not work at a common frequency. Moreover, a linear
relation between a(s) and Nh can be summarized from
our simulation experiments. In a good approximation,
this relation can be described as:

a�s� � A� BNh �5�
While u is alerted, it is worth noting an interesting
phenomenon. The coupling strength u determines the
slope B of the line a(s) = A+BNh, and furthermore, the
quantitative law as B � �3=4�u is con®rmed by a large
number of numerical experiments in the scope of Nh £
500. Two examples with u = 0.4 and u = 0.6 are
shown in Fig. 1: For parameter value u = 0.4, there is
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A = 0.71, B = 0.31, and for u = 0.6, there is A =
)1.06, B = 0.48. Numerical results reveal that the value
of BNh in (5) is de®nitely larger than the value of A,
especially for relatively greater Nh. Thus, A can be
neglected in a good approximation in (5), and we have
B � a�s�=Nh. Considering B � a�s�=N h, above law
B � �3=4�u can be expressed as a�s�=uNh � 3=4. This
means that the threshold for global synchronization in
HOs layer is a=uNh � �a�s�=uNh � 3=4�, and if a=uNh >
3=4, it will be impossible to phaselock for HOs. Our
computational experiments show that not only qualita-
tively but also quantitatively the threshold accords with
the analytical result (3) in a good approximation, i.e.,
both the ®nite-size or in®nite-size systems of phase
oscillators described by (1) with b = 0 have the same
critical condition for global synchronization.

These results suggest that the extent of synchroniza-
tion can be used to qualitatively measure the attention
state of this attention network from a neurocomputa-
tional point of view. For instance, the line a(s) = A+
BNh divides the a)Nh plane into two regions. Parameters
(Nh, a) below that line are related to the preparing states
for attention, while other parameters above that line
correspond to the states incapable of attention. It will be
shown in the following sections that the network with
parameters (Nh, a) which are above but near the line
a(s)= A+BNh also has an e�ective attention.

4 Selective attention

In this section, we will illustrate through several
computer simulation experiments how selection atten-
tion is realized in the network of phase oscillators.

After preprocessing including feature binding, the
entire information of a stimulus corresponding to an
object in the visual ®eld is represented by (xc, b). A
larger coupling coe�cient b is assumed to correspond to
the object having a stronger competitive advantage, and
xc is assumed to represent this object's relevance to
current behavior, which can be seen clearly from the
given numerical experiments. Take Nh = 50, xh

0 � 55:0,

and u=0.4, we can estimate X=54.0 from (4) and
a(s)=16.2 from (5). In order to show that networks with
a parameter a slightly larger than a(s) still possess an
e�ective attention capacity, here we set a=17.0. Now
there are Nc=10 di�erent stimuli, and their initial fre-
quencies are in the range xc={17.2, 31.5, 35.6, 40.0,
48.2, 60.6, 67.2, 78.0, 86.8, 89.3}. To examine what
stimuli are the targets of selective attention, we ®rst set
b � 0:2, implying that the coupling strength between
every CO and the HOs layer is equal. The results are
displayed in Fig. 2, in which two stimuli xc=48.2 and
xc=60.6 are focussed on, other stimuli remaining out-
side the focus of attention. During the entire selective
attention process, the average frequency of global syn-
chronization between the HOs layer and two target
stimuli equals X in a good approximation. It can be seen
that the network has the tendency to select stimuli whose
frequencies are near to X. Apparently, X is relevant to
every HO and is stored in parallel in the HOs layer, and
thus we can think that X has the meaning of working
memory, and that the information of current behavior is
stored in X as a part content of working memory. This is
consistent with the ®nding that the hippocampus could
provide a useful working memory (Olton 1983).

It is interesting to make an estimation of the range of
CO natural frequencies for those cortical oscillators,
which work synchronously with the HOs. Suppose the
kth CO is synchronized by the HOs layer after a tran-
sient process, we can substitute the frequency dhc

k=dt in
(2) by X and obtain the expression Xÿ xc

k � b
PNh

i�1
sin�hh

i ÿ hc
k�. Apparently, the necessary condition for the

kth CO to run synchronously with HOs is jXÿ xc
kj �

bNh. This condition can be tested by the example shown
in Fig. 2. Thus, knowing the initial natural frequencies
xc

k, we can roughly predict or estimate those visual
stimuli to be targetted. This estimation jXÿ xc

kj � bN h

Fig. 1. Linear functional relation between the critical frequency
deviation a(s) and the number Nh of hippocampus oscillators (HOs) in
the network without stimuli input.Open circles (solid circles) represent
the exact simulation results with u = 0.6 (u � 0:4)

Fig. 2. Selective attention in the network with a = 17.0. The other
parameters are given in the text. The evolution of every HO's
frequency dhh

i =dt �i � 1; . . . ;Nh� is shown at the top of the ®gure, and
that of every CO's frequency dhc

k=dt �k � 1; . . . ;Nc� at the bottom
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is consistent with the results of Kazanovich and Boris-
yuk (1994). In their work, a similar estimation is used to
distinguish the peripheral oscillators which can be syn-
chronized by the central oscillator.

Changing the state of the attention network by in-
creasing the value of parameter a from 17.0 in Fig. 2 to
21.0 in Fig. 3, it can be observed immediately that no
object enters the focus of attention. A large scale of
desynchronization occurred in the HOs. This example
demonstrates that overly large frequency deviations of
HOs from the constant xh

0 do not ensure that the at-
tention system has the capacity to perform visual selec-
tive attention.

One factor in¯uencing selectivity is the bottom-up
mechanism, i.e., the visual stimuli have a considerable
e�ect on the targets of visual attention. It is very easy,
for example, to ®nd an unique target in an array of
homogeneous nontargets, perhaps re¯ecting an enduring
competitive bias towards local inhomogeneities. Such a
psychophysical experiment is simulated in Fig. 4, in
which the inhomogeneous stimulus is (xc, b) = (40.0,
0.5), and the other nine oscillators representing homo-
geneous stimuli have the same parameters as (xc, b) =
(25.0, 0.2).

When there is only one stimulus in the visual ®eld, a
very interesting phenomenon can be observed in this
system for some proper parameters. The only stimulus
targetted at the beginning is no longer at the focus of
attention after a period of time. For instance, if the
network has the parameters Nh=50, xh

0 � 40:0, u=0.4,
a=16.0, Nc=1, xc=35.0, 0.54 £ b £ 0.61, and the initial
phases hh

i of HOs were chosen randomly according to a
uniform distribution in the range [)4.0, +4.0], the single
stimulus object is focussed on by HOs at once. But when
t ³ 4.0, this object is not the target of the attention
system any longer; an example with b � 0:60 is displayed
in Fig. 5. The numerical result simulates the situation in

which the neural system is too tired of the single dull
stimulus to preserve attention for a long time. On the
other hand, from a large number of numerical experi-
ments we ®nd that this distraction of attention can be
inhibited by employing another two stimuli. As shown in
Fig. 6, the stimulus (xc, b)=(35.0, 0.60) can remain in
the focus of attention forever after two stimulus inputs
(xc, b)=(25.0, 0.10) and (xc, b)=(20.0, 0.30) are pre-
sented together from the beginning. The underlying
dynamic mechanism for such a phenomenon is not clear
and needs further investigation.

Fig. 3. Selective attention in the network with a = 21.0. The other
parameters are the same as in Fig. 2

Fig. 4. Selective attention to a unique target (xc, b) = (40.0, 0.5)
which is presented together with nine other homogeneous nontargets
(xc, b) = (25.0, 0.2). The parameters in the network are the same as
in Fig. 2 except xh

0 � 50:0

Fig. 5. The single targetted stimulus moves outside the focus of
attention after a period of time. The relevant parameters are given in
the text
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5 Attention shifting from a set of stimuli to another one

The basic feature of the selective visual attention system
is to shift the focus of attention from one object to
another. In this network, attention shifting is realized in
such a way that the HOs run synchronously with some
COs at ®rst and then with other COs. This shifting may
be caused by top-down or bottom-up mechanisms, and
in most cases, the true explanation is probably a
cooperation of these two mechanisms.

For this network (1) and (2), one of the most re-
markable advantages lies in the quick attention shifting
among di�erent stimuli. Choose the parameters Nh =
50, xh

0 � 35:0, u = 0.4, Nc = 10, b = 0.2, a = a(s)+
0.8 = 17.0. According to (4), the average natural fre-
quency of HOs is X=34.0. Assume that in the visual
®eld there are ten stimulus inputs in total, after pre-
processing these inputs have the frequencies:
xc = {17.2, 31.5, 35.6, 40.0, 48.2, 59.6, 67.2, 78.0, 86.8,
89.3}, respectively. After a transient process, the net-
work selects three stimuli with xc={31.5, 35.6, 40.0}. As
mentioned in Sect. 4, the average frequency X (or xh

0) is
assumed to represent the information of current be-
havior which is stored as a part of the working memory.
This implies that di�erent current behavior corresponds
to di�erent values of xh

0. When t ³ 2.4, suppose that the
current behavior is changed, and the value of xh

0 is
changed to 65.0 under the control of the control struc-
tures of the attention system. Repeating the above sim-
ulation, it is found that attention shifts to another two
stimuli with xc = {59.6, 67.2} immediately. The entire
attention shifting process is shown in Fig. 7.

To compare the attention capacity among di�erent
systems, we give another example in which all the pa-
rameters are the same as in Fig. 7 except Nh = 100. As
shown in Fig. 8, ®ve stimuli with xc = {17.2, 31.5, 35.6,

40.0, 48.2} are the targets of attention at the beginning
(t < 2.4), and the network instantly shifts attention to
another four stimuli with xc={48.2, 59.6, 67.2, 78.0}
after the attentional state of the network is changed
from xh

0 � 35:0 to xh
0 � 65:0. Apparently, when the

number of HOs is increased, the network can focus on
more stimuli than before. It can be concluded that the
attention system containing larger HOs has a stronger
attention capacity.

The above two examples are mediated by the top-
down mechanism, but this network can also accomplish
shifting attention mediated by a bottom-up mechanism.

Fig. 6. Keeping the stimulus in Fig. 5 in the focus of attention by
adding two stimuli described by (xc, b) = (25.0, 0.10) and (xc, b) =
(20.0, 0.30)

Fig. 7. Attention shifting after the attentional state of the network is
changed from xh

0 � 35:0 to xh
0 � 65:0. The network contains Nh =

50 HOs and a = 17.0. The other parameters are given in the text

Fig. 8. Attention shifting after the attentional state of the network is
changed from xh

0 � 35:0 to xh
0 � 35:0. The network contains Nh =

100 HOs. The other parameters are the same as in Fig. 7
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This has been tested in numerical examples which are
not given in this paper.

It is interesting to compare the above results with
those on spontaneous attention switching reported in
Borisyuk and Borisyuk (1997). The common character
for their work and ours is the employment of phase
oscillators in attention models. Both models view the
selective attention as the result of the synchronization
between some oscillators in the bottom layer represent-
ing the input stimuli and the top layer representing the
hippocampus. Another similarity between the two
models lies in the attention shifting pattern: the top layer
runs synchronously with some oscillators in the bottom
(input) layer at ®rst, and then with other oscillators in
the bottom layer. On the other hand, there are several
di�erences between our results and theirs. In their work,
attention shifting is induced through increasing the
coupling strength between the central oscillator and
stimuli outside the `focus of attention'. The more the
average frequency value of the central oscillator is at-
tracted by a stimulus which is outside the `focus of at-
tention', the nearer the network comes to the point of
attention switching. In our method, the direct reason for
attention shifting is to change the parameter xh

0, which is
related to the information of current behavior in the
brain. The closer the frequency of a cortical oscillator is
to the new xh

0, the easier it is for it to become the target
of attention shifting. It can be seen that our results
simulated the top-down mechanism, while their work
concentrated on the attention shifting caused by the
bottom-up mechanism. In addition, when attention
shifting occurs in Borisyuk and Borisyuk (1997), the
average frequency of the central oscillator is always
drawn to the average frequency of the targetted group of
cortical oscillators. The situation is otherwise in our
results, i.e., the frequencies of the targetted COs are
bound to the synchronization frequency of the HOs. The
reason for this di�erence probably lies in the models
themselves. The top layer includes only one central os-
cillator in Borisyuk and Borisyuk (1997), while in our
model it consists of a large number of oscillators. In
particular, interactions within the HOs layer are
stronger than those between HOs and COs. The last
important di�erence is the existence of spontaneous
switching of the attention focus in their model. This
interesting mode can be used to explain the phenomenon
of attention shifting between two sets of input stimuli
having equal competitive advantages. In our results,
such a mode of spontaneous switching of attention focus
has not been found yet.

6 Discussion

We have proposed a neural network model for covert
selective visual attention. From a neurocomputational
point of view, it illustrates that the attention mechanism
suggested by Desimone and Duncan (1995) is possible,
although this mechanism is totally di�erent from the
spotlight metaphor. In order to stress the characteristics
of this model, it is worth comparing it with the other

computational models which are usually employed to
explain the selective attention mechanism of the spotlight
metaphor. First, in other models, a topographic saliency
map is usually necessary for registering potentially
interesting areas of input. Through one or more of such
maps that do not code for particular features, but rather
for how di�erent or how salient a particular stimulus is
relative to its neighborhood, a winner-take-all mecha-
nism selects the currently most interesting feature in the
map and directs attention to its location through a gating
mechanism. Apparently, these models employ a serial
process that analyzes each object one at a time. In our
model, it need not employ such a saliency map. No
matter whether a region within a scene is ÔconspicuousÕ or
ÔsalientÕ, the information in this region has an equal
opportunity to enter the attention system. The compe-
tition is performed among all the objects in the visual
®eld in a parallel manner. The more relevant to the
current behavior an object is, the stronger competitive
advantage it has. The ®nal targets are the objects which
can be synchronized by the hippocampus. It can be seen
that in our model, the control of attention is not limited
to certain cortical oscillators coding for some particular
objects in the visual ®eld, whereas it takes e�ect across
the whole COs layer. From a neurocomputational point
of view, our results demonstrate that attention is an
emergent property of the dynamic cell assemblies re-
sponding to the entire visual ®eld.

Second, in this model, selective visual attention re-
sults from a natural evolution of a nonlinear system
equation, and no external perturbation is necessary in
this process. This means that selective attention is the
emergent dynamic property of this two-layered network
containing a large number of elements. However, in
order to obtain a proper attention network, a particular
weight for a training network or a particular local win-
ner-take-all rule for the gating mechanism is usually
imposed in other networks.

Finally, compared with the ®xed structures in many
attention systems, in this model the top layer can be
adjusted quickly according to the current behavior and
external stimuli. For example, the coupling strength u
may vary on a fast time scale (small fractions of a sec-
ond) through the rapidly reversible synaptic plasticity of
dynamic link architecture proposed by Malsburg (1981,
1995). Also, the number of HOs taking part in selective
attention can be functionally changed according to the
dynamical cell assembly hypothesis (Fujii et al. 1996). In
a sense, this re¯ects the idea that vision is an active
process. Therefore, we conjecture that the hippocampus
need not always keep the attention state, but only when
attention is necessary. It is proposed that a desired cell
assembly having appropriate parameters u and Nh will
be organized and picked up from the large neuronal pool
in the hippocampus whenever attention is needed. For
the neural system, such a pattern may be an optimum
working method.
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