
Abstract. To characterize synchronisation strategies in
the tracking of auditory rhythm with rhythmic ®nger
tapping, the adaptation process after unexpected step
changes of an interstimulus interval (ISI) of 500 ms
was investigated. Step changes of 2% (10 ms), 4% (20
ms), and 10% (50 ms) of ISI were applied to the
stimulus sequence. Synchronisation patterns of 5 sub-
jects were analyzed based on synchronisation error
(SE) and interresponse intervals (IRI). A strategy shift
contigent upon the size of the introduced step change
was detected. After small ISI changes, rapid IRI
matching to the new ISI was accompanied by tempo-
rarily enlarged SE values, which slowly returned to
preferred SE values before the step change. Large ISI
changes showed quick SE adaptations accompanied by
a temporary overcorrection of IRI. Response asymme-
try between ISI decreases and increases emerged,
showing a stronger adaptation during ISI increases.
A two-dimensional di�erence equation was formulated
to simulate the time series of intertap intervals and
explain the control process during IRI and SE adjust-
ments. The system constants were optimized to min-
imalize the deviations between the computed and the
observed response trajectories, consisting of the time
series of SE and IRI. It was shown that a successful
model ®t using a linear two-dimensional di�erence
equation was based on the size and direction of the ISI
changes. MANOVA procedures showed that di�eren-
ces in equation parameters during small and large step
changes were statistically signi®cant �P < 0:05�. It is
therefore suggested that a uniform model accounting
for synchronization responses to all step changes
would require the introduction of nonlinear system
properties.

1 Introduction

Recent theories explaining the control of rhythmic
movement in human motor performance assume the
existence of internal timekeepers contributing to the
generation and control of repetitive, sequential move-
ments (Ivry and Keele 1989; Kugler and Turvey 1987).
These movements may range from repetitive motor acts,
as found in gait or ®nger tapping, to complex patterns
with an intricately proportionate timing relationship, as
displayed in music or athletic performance (Sha�er
1980). The observation that movement patterns can be
executed rhythmically without the presence of external
timing cues or feedback (Wing and Kristo�ersen 1973)
strongly supports the notion of the existence of internal
timekeeper systems in the brain. Wing and Kristo�ersen
(1973) proposed a timekeeper model that delineated two
levels of time control: a `central clock' in the central
nervous system responsible for tracking time, and a
peripheral source related to the observable movement
response in time which re¯ects the execution process in
the motor system. In the model, both control levels are
assumed to contribute di�erentially to the observed
variability in the actual timing of movement. However,
the time intervals produced by the central clock and the
peripheral execution process were also assumed to be
mutually independent. In spite of considerable theoret-
ical e�ort in mathematical modeling and understanding
of human movement timing, the neural basis of these
systems is not well understood at this point. Timekeep-
ing may actually be achieved by several brain systems
jointly contributing to this function in multilevel and/or
parallel information processing circuits (Turvey et al.
1989). Di�erent motor tasks may also involve di�erent
timekeeper systems.

A special subset in rhythmic motor timing tasks
consists of movements synchronized to external
rhythms, e.g., auditory, tactile, or visual rhythmic pat-
terns. During execution of these movements internal
timekeepers have to be adjusted to track external timing
cues. Sensorimotor synchronization underlies and facil-
itates many tasks of daily living from functional work
activities to complex artistic (music, dance) and athletic
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performance. Simple synchronization tasks such as the
widely studied ®nger-tapping paradigms to a steady or
¯uctuating metronome beat are seemingly simple to
perform, but the mathematical analysis and models of
the actual response patterns are very complex and still
raise questions regarding exact synchronization mecha-
nisms and sensorimotor translations.

Mathematical analysis of timing and variability of
synchronized ®nger tapping should reveal two basic
types of information: (1) how motor timing is controlled
in a series of tapping movements; (2) how internal tap
timing is synchronized to the external timekeeper. In
general, this information is derived from two directly
measurable variables: (1) phase deviations between tap
event and stimulus event (SE = synchronization error)
and (2) di�erences between interresponse intervals (IRI)
and interstimulus intervals (ISI) (Vorberg and Wing
1996). The goal in a synchronization task is to produce a
response sequence with the same actual period as the
external stimulus sequence and with a zero phase devi-
ation between the response event and the stimulus event.
However, the actual timing of synchronized motor acts
¯uctuates at each response such that response trains
show considerable statistical variability due to various
external and internal factors and sources of noise
(Gilden et al. 1995; Schulze 1992; Vos and Helsper 1997;
Wing and Kristo�ersen 1973). The ¯uctuations in re-
sponse timing necessitate continuous time adjustments
in phase and period durations in order to maintain
stable synchronization states. Models of optimal cor-
rection strategies have been proposed before, based on
di�erential assessments of the source of the variance in
motor timing (Vorberg and Wing 1996). These time
adjustments, however, are constrained by the fact that in
an ongoing synchronization task, phase and period
corrections cannot be accomplished separately and in-
dependently. Corrections in one system (e.g., phase

timing) in an unperturbed isochronous tapping task will
o�set timing in the other system because of the boun-
dary conditions in sequential tapping responses where
tap events mark successive tap intervals. This issue can
be further demonstrated in ISI sequences with unantic-
ipated step changes in interval duration. After the step
change, the original phase relationship can only be re-
stored by temporary overcorrection, i.e., a deliberate
timing error in the tapping period (Fig. 1). Likewise, an
immediate adjustment of the period will create tempo-
rarily a larger phase SE.

The interdependence of phase and period timing has
been recognized before. For example, Mates (1994a,b)
proposed a detailed timekeeper model speci®cally for
synchronization to an external isochronous rhythmic
timekeeper which comprised a period and a phase
correction mechanism. The mathematical equations
describe in detail all internal and external variables
determining the synchronization process and the dif-
ferent sources of noise perturbing the process. How-
ever, the equations assume independence between phase
and period corrections, expressing the concept that
phase relationships between tap and rhythmic signal
re¯ect a positional embeddedness of IRI into the ISI
sequence, whereas period corrections refer to serial
adjustments, i.e., direct matching and correction of IRI
and ISI durations. Hary and Moore (1987) have argued
for a motor timing model during steady and systemat-
ically varying metronome periods that introduces two
alternative phase reset strategies to maintain stability of
the interval duration in tapping sequences. The tap
event times were determined by adding to the internal
reference interval either the previous tap event time or
the stimulus event time. However, their model has been
critized as not corresponding well to observed data
sequences on several issues, e.g., poor SE estimation,
small feedback from SE correction, second-order

Fig. 1. Relationship between (1) the successive interstimulus
intervals (ISI), (2) the controled systems interresponse interval
(IRI) and (3) the accumulating synchronization error (SE).
After stimulus 3, ISI s3 is increased by 20% . IRI r3 remains
unchanged because the system is uncertain about the next ISI
s4. SE e3 follows logically and in¯uences e4 together with the
next controlled IRI r4
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structure of timekeeper model despite very low corre-
lations beyond lag 1 (Mates 1994a). Vorberg and Wing
(1996) have proposed a theoretical model for met-
ronome synchronizations which introduces a phase
correction scheme to adjust synchrony between the
metronome and IRI period. Although in theory those
models exhibit strong robustness to maintain synchro-
nization, empirical veri®cation is not unequivocal. For
example, a recent analysis of autocorrelations of syn-
chronization errors and interresponse intervals during
®nger tapping to a metronome showed di�erent pat-
terns (Thaut and Schauer 1997). Whereas IRI auto-
correlations were signi®cantly negative at lag 1, as
predicted by Wing and Kristo�ersen's model (1973), SE
autocorrelations showed positive lag 1 autocorrelations,
indicating di�erent adaptation strategies for phase and
period corrections. Ivry and Hazeltine (1995) provided
data that support interval matching rather than beat
stimulus matching as the foundation for synchroniza-
tion timing based on the observation that temporal
variability of tapping intervals was similar under con-
tinuous or discontinuous ISI conditions, i.e., feedback
from external phase corrections was not necessary to
maintain internal rhythmic stability. In using auditory
rhythm to entrain gait patterns with Parkinson's disease
(PD) patients, we found rapid step synchronization to
auditory rhythm, leading to enhanced gait performance
(McIntosh et al. 1997; Miller et al. 1996; Thaut et al.
1996). Since aspects of internal timekeeper function are
highly compromised in PD due to de®cits in basal
ganglia function, successful rhythmic entrainment based
on sequential phase corrections of a poorly matched or
unstable internal clock appears a highly unlikely
mechanism.

Therefore, this study sought to clarify further the
di�erential contributions of phase vs period (or fre-
quency = 1/period) locking mechanisms to rhythmic
synchronization strategies. For this purpose, we devel-
oped an experimental paradigm that, by introducing
random step changes in ISI duration into the rhythmic
signal sequence, forced the subject to prioritize a choice
between phase and period adjustment to maintain
rhythmic ®nger tap synchronization. Furthermore, for
mathematical modeling of the response patterns, a set of
di�erence equations was produced to simulate the ob-
served data patterns. The model was also intended to
develop mathematical control rules to describe the
rhythmic adaptation process, which may help to eluci-
date control functions of timing mechanisms in future
physiological research.

To elucidate phase vs period synchronization
strategies further, we investigated two additional ques-
tions:

(1) Would a forced choice between phase vs frequen-
cy locking be dependent on the size of the step
change?

(2) Would a decrease or increase in step changes from
the ISI lead to di�erent synchronization adjust-
ments?

2 Subjects and methods

2.1 Subjects

Five right-handed undergraduate students without any
known motor, cognitive, or sensory impairment volun-
teered to participate in the experiment. Their mean age
was 22.3 years. The group consisted of 2 male and 3
female participants. The experimental trials were con-
ducted for each subject on 5 separate days spread out
over 2 weeks, with each testing session lasting for about
1 h.

2.2 Apparatus

Participants tapped in synchrony with an external
rhythmic stimulus using a hand-held `pencil-shaped'
electrode which was tapped on a ground copper plate.
The electrode was connected through a 1 megaohm
resistor to a 9 volt battery terminal so the timing of a tap
event was determined by the change in electrode voltage
from 9 volt to ground potential. Software was written (in
C+) utilizing a Scienti®c Solutions A-D Board and
LabPac software subroutines to deliver the stimuli and
record and analyze the data on an IBM compatible PC.
The electrode data were recorded at 1000 samples per
second, yielding measurements of SE, IRI, and ISI at a 1
ms resolution. The auditory stimulus was generated with
a Grass Audio Click-Tone Module at a frequency of 2
KHz with a 30 ms duration tone burst, 5 cycle rise and
fall times, and was delivered to the subject via head-
phones at a level of 60 dB above the subject's auditory
threshold. The occurrence of tap and rhythmic stimuli
was measured at the onset of voltage de¯ection.

2.3 Experimental procedure

Subjects tracked perturbed auditory stimulus sequences
at 2 Hz (ISI = 500 ms). A 60 stimulus sequence was
delivered beginning with an ISI of 500 ms and changed
to a new ISI value randomly chosen between the 25th
and 30th event. ISI changes were either 10, 20, or 50 ms.
Multiple trials were performed to reduce random
variability in IRI which would mask small changes in
stimulus rate in the rhythmic sequence. Twenty-®ve
trials of each task were performed for each ISI change.
Six trials, one for each of the six interval changes, were
presented to the subjects within one block. The presen-
tation order of the six interval changes (+10, ÿ10, +20,
ÿ20, +50, ÿ50) was randomized within each block.
Each subject performed 25 trial blocks. Rests were given
between each block.

2.4 Data analysis

Tapping patterns of every ISI-change trial were aver-
aged for each subject and across subjects. Mean
response patterns across subjects were plotted for 10
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stimuli prior to and 30 following the step change. Two
coupled linear di�erence equations (see model) were
used to create a best ®t estimate of the SE and IRI
corrections after the step change for each subject and
across subjects. The optimal values of the equation
constants a and b allowed for a smooth representation of
the observed SE and IRI patterns before and after the
step change until the SE and IRI values became
stationary again. The e�ect of the step change size on
the values of a and b was statistically analyzed using
multivariate analysis of variance (MANOVA) proce-
dures.

3 Model of synchronization

The model was based on the following general descrip-
tion of the experiment. A series of equally spaced `clicks'
were provided to the subject as synchronization stimuli
over a period long enough to allow the subject to adapt
to the stimulus and provide a corresponding series of
`taps' as the synchronization response. A steady-state
condition was considered to have been achieved when
the taps were in synchrony with the clicks, according to
the subject's perception. This steady-state condition
provided an initial stationary point for the model to be
developed. At a random point in the stimulus sequence,
the stimulus interval was changed to a new constant
value, and the subjects were given su�cient time to
synchronize their responses to the new stimulus interval.
The second condition moved the stationary point, and
the former system state served as the initial condition of
the new relaxation process. The mathematical model
was developed to simulate the rhythmic adaptation
process adequately during this steady-state shift.

For clari®cation, the events occurring in absolute
time will be indicated by capital letters, and time inter-
vals will be indicated by lower-case letters:

Rn�1 � Rn � rn �1�
Sn�1 � Sn � sn �2�
Here Rn and Sn denote the absolute response times and
stimulus times, while rn and sn denote the time intervals
between two successive response times and stimulus
times. The synchronisation error en expresses the time
interval between the stimulus time Sn�1 and the corre-
sponding response time Rn�1:

en � Rn�1 ÿ Sn�1 �3�
As a consequence of this de®nition, the synchronisation
error is positive if the response occurs after the stimulus
and negative if it occurs before the stimulus. Also, the
®rst valid synchronisation error (at n � 1) occurs after
the stimulus interval sn has been established, i.e., after
two stimuli have occurred.

Inserting (1) and (2) into (3) and increasing the index
n by 1 results in

en�1 � en � rn�1 ÿ sn�1 �4a�

To understand the relationship between the controled
response interval rn and the corresponding synchroni-
zation error en induced by the stimulus interval sn, refer
to Fig. 1. By adding the appropriate time arrows, it
follows that

en � rn�1 � sn�1 � en�1 �4b�
which also follows directly from (4a).

Figure 1 displays the relationships between successive
stimuli and the responses of a theoretical controler
without any noise. After stimulus S3, the stimulus in-
terval s3 is decreased by approximately 33% for better
visualization. The response interval r3 remains un-
changed because the controler has no anticipatory in-
formation to adapt to the new stimulus interval. After
the next stimulus S4, the theoretical controler can adapt
the response interval r4, based on the last response in-
terval, the synchronization error, and/or the recognized
stimulus interval:

rn�1 � F �rn; en; sn� �5�
The formal expression F �rn; en; sn� contains all func-

tional dependencies of the immediately following re-
sponse interval �n� 1� on the current rn, en, and sn in a
mathematical formula and is called the controler func-
tion. The time series for rn and en can be calculated by
simultaneous application of the coupled di�erence
equations given by (5) and

en�1 � en ÿ sn�1 � F �rn; en; sn� �6�
Equation (6) follows from (4) by inserting (5). Both

equations describe a discrete dynamic system with the
state variables rn and en and the driving force sn. The
goal of further e�orts is to design the controler function
to be as simple as possible, while predicting the actual
behavior of the biological system.

The ®rst step is the common simpli®cation of the
controler F ��� by linearization at a point of the dynamic
system which satis®es the stationary conditions. This
point, which is characterized analytically by a system
state in which the system variables hold constant values,
yields the so-called stationarity conditions:

rn�1 � rn �7a�
en�1 � en n � 1; 2; 3; . . . ;1 �7b�
This system state can only exist if the driving force sn is
constant long enough for the response to adapt to the
constant stimulus intervals indicated by sP1.

sn � sP1 forn > nR �8�
The number nR denotes the stimulus index indicating the
time demand for system relaxation.

To estimate the stationary values of rn and en, the
stationarity conditions (7a), (7b), and (8) are inserted
into (5) and (6) and solved for the state variables. One
obtains the coordinates of the stationary point as

rn � sP1 �9a�
sP1 � F �sP1; en; sP1� �9b�
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The stationary response interval is called rP1 and is equal
to the interstimulus interval sP1 according to (9a).

The stationary synchronization error is given implic-
itely by the solution of (9b) for en and is called eP1, so
that the following expression is valid:

sP1 � F �sP1; eP1; sP1� �10�
In the state space with the dimensions of response
interval rn and synchronisation error en, the stationary
point of the system described by (5) and (6) is therefore
frP1; eP1g. Near this point, we assume the controler to be
a linear function of its input variables. This implies the
linear dependence of the controler function output on
the di�erence between the initial conditions and the
current system state:

F �� / rn ÿ rP1; en ÿ eP1; sn ÿ sP1 �11�
The linear approximation is performed by a Taylor
series expansion of F ��� about the stationary point,
neglecting the terms of order higher than 1:

F �r; e; s� � F �sP1; eP1; sP1� � @F
@r
� �r ÿ sP1�

� @F
@e
� �eÿ eP1� � @F

@s
� �sÿ sP1� �12�

Incorporating the parameters a, b, and c for the partial
di�erentials (evaluated at the stationary point) in (12)
and applying (10), one obtains as the controler function

F �rn; en; sn� � a � rn � b � en � sP1 � �1ÿ a�
ÿ b � eP1 � c � �sn ÿ sP1� �13�

If the stimulus interval is changed to the new stimulus
interval sn � sP2, the stationary point is shifted. To
estimate this shift, (5) and (6) are applied after inserting
the speci®ed controler (13) and the stationarity condi-
tions (7a, b). The coordinates of the shifted stationary
point are the solution of this proccess:

rn � sP2 �14a�
en � eP2 �14b�
The value of eP2 is given implicitly by

sP2 � F �sP2; eP2; sP2� �15�
according to (9b) and using the speci®ed controler (13).

Because the controler F ��� is de®ned in (13) and has
to satisfy this condition, the coordinates of the shifted
stationary point fsP2; eP2g are substituted into the right
side of (15). The resulting equation leads to the de-
scription of the relationship between the parameter c
and the ®nal stationary synchronization error eP2:

c � 1ÿ aÿ b � eP2 ÿ eP1

sP2 ÿ sP1
�16�

It becomes clear that the value of system parameter c is
determined by the in¯uence of the stimulus intervals
before and after changes and the associated stationary
synchronisation errors eP1 and eP2.

Summarizing (5), (6), (13), and (16), it is noted that
the dynamic system is completely described by the pa-

rameters a and b, once eP1 and eP2 are determined. The
equations describe mathematically all possible patterns
in the time series of the synchronization errors and re-
sponse intervals of an oscillator driven by a series of
external stimuli, and whose response intervals are lin-
early dependent on three factors: (1) the preceding in-
terval, (2) two succeeding stimulus intervals, and (3) the
synchronization error. The last factor may be interpre-
ted as the phase di�erence between the pacemaker and
the oscillator at the discrete stimulus moments. The
values of a and b determine the di�erent temporal be-
haviors or the synchronisation strategies, respectively, of
the system (see Fig. 5). It can be shown that the relax-
ation behavior of the model with certain system con-
stants a and b ®ts very well the data of experiments with
small and large unexpected steps of ISI. The ®t between
model data frn; eng and experimental data fIRIn; SEng
was performed by a steplike optimization process of the
model constants a and b. In every step, the model con-
stants were adjusted incrementally, and the maximum
value of all the distances was calculated between the
points frn; eng and fIRIn; SEng of the given experiment.
The process was directed to ®nd certain values of the
model constants a and b that minimize the di�erences
between both trajectories in state space.

4 Results

4.1 Large ISI changes (�50 ms)

The averaged responses of IRI and SE to 25 unexpected
step changes of 50 ms are shown in Fig. 2. Ten responses
before and 30 responses after the period change are
plotted. Figure 2a shows how the IRI at tap no. 11
remained at a 500 ms duration since there was no prior
knowledge of the rate change and taps in our study
sample were anticipatory to the beat. As a consequence
of the ISI change, the SE (Fig. 2b) increased to around
ÿ50 ms. The response strategy in the next few taps was
to increase the IRI, temporarily overshooting the new
ISI value (tap no. 12 = about 560 ms; tap no. 13 = 578
ms; tap no. 14 = 570 ms; tap no. 15 = 565 ms, tap no.
16 = 552 ms) in order to return the SE value within
approximately 9 taps back to its previous phase
relationship. A similar pattern was observable when
the ISI was decreased (Fig. 2c, d). There was a slight
di�erence between ISI decrease vs increase. The phase
alignment to ISI increases appeared `stronger', i.e., the
SE returned faster to baseline values and even overcor-
rected before returning toward prestep change values.
The broken lines in Fig. 2 mark the computed best ®t
response pattern based on (5) and (6) in the model,
tracking the SE and IRI correction process.

4.2 Small ISI changes

Averaged response patterns of IRI and SE to 25 step
changes of 20 ms and 10 ms are shown in Fig. 3 and 4,
respectively. The response patterns were markedly
di�erent than to large step changes. The new ISI value
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was matched by an immediate IRI adjustment within
approximateley 1±3 taps after the step change without
IRI overcorrection. This period adjustment temporarily
increased the SE, which returned slowly to baseline
values, leading to long time demands for system
relaxation, i.e., return to steady state. There was a slight
asymmetry between ISI increase and decrease in both
the 10 and the 20 ms conditions, where rapid period
matching was more evident during ISI increase (fre-
quency decrease), which caused a slower SE recovery
than during the ISI decrease (frequency increase).

4.3. Model ®t

Table 1 shows the values of the constants a and b of the
di�erence equations (5) and (6) for all step change

conditions. In order to assess the model ®t, three
additional mathematical values were provided by ®tting
the values of the equation constants to the grand means
of IRI and SE across all subjects and trials: (1) the
maximal time deviation between the measured and the
modeled IRI durations, (2) the Pearson correlation
coe�cient between the time series of observed IRIs and
corresponding simulated response intervals ri, (3) the
Pearson correlation coe�cient between the time series of
observed SEs and simulated synchronization errors ei.
Correlations were computed across the whole stimulus
series 1±40. The high correlation values indicated that
approximately 80% of the variability of IRI and SE
were explained by our model. The maximal time error
between measured and modeled IRI durations was 7 ms,
which equaled the noise in the observed data. The values
of the system constants showed a clear dependence on

Fig. 2. Mean IRI (a) and SE (b) responses to ISI
increase and ISI decrease (c IRI, d SE) at 50-ms
ISI step changes, indicated by broken vertical
lines
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the size and direction of the ISI step change. In Fig. 5,
the values of a and b of the ®tted di�erence equations (5)
and (6) are shown averaged for each individual (broken
lines) and for the total sample (solid line) across all step
changes.

4.4 MANOVA statistics

Statistical analysis of di�erences in rhythmic adaptation
strategies across step change conditions was carried out
by comparing the mean values of the model constants
®tted to the individual subjects' means of IRI and SE,
rather than the actual response data at certain stimulus
events. The e�ect of step size on the size of the system

constants was examined using MANOVA procedures.
The results are shown in Table 2. Di�erences in model
constants were insigni®cant between 10 and 20 ms step
changes, suggesting similar synchronization strategies
for those two conditions. However, the statistically
signi®cant di�erences between small and large step
changes for a and b support the dependence of a and
b on the extension of larger ISI changes beyond 2% and
4% of the ISI.

5 Discussion

Two distinct synchronization strategies emerged during
ISI step change trials contingent upon the size of the ISI

Fig. 3. Mean IRI (a) and SE (b) responses to ISI
increase and ISI decrease (c IRI, d SE) at 20-ms
ISI step changes, indicated by broken vertical
lines
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change. Larger perturbations (10% of ISI) caused
subjects to realign baseline phaselocking of SE and
adjust the IRI to the new intervals in similar time scales.

Rapid phase adaptation resulted in a simultaneous
temporary timing error in the IRI which needed to be
overcorrected to allow for a quick phase correction
process. However, rhythmic synchronization during
small perturbations (2% and 4% of ISI) was achieved
by quickly matching the duration of IRI to the new ISI
period and tolerating temporary SE deviations, which
recovered gradually to baseline values. The latter
strategy suggests that until a certain threshold of change
in the ISI is reached, rhythmic synchronization may be
primarily driven by duration or period matching and less
by a continuous realignment based on the positional
time error between the occurrence of the stimulus cue
and the tap event, i.e. period locking appears rather than
phase locking. Furthermore, an interesting asymmetry
in SE and IRI adjustments occurred in our study

Fig. 4. Mean IRI (a) and SE (b) responses to ISI
increase and ISI decrease (c IRI, d SE) at 10-ms
ISI step changes, indicated by broken vertical
lines

Table 1. Data of model ®t: values for a and b, maximal time de-
viations between measured and modeled IRI durations, correlation
coe�cients between measured and modeled IRIs and SEs

Step size
(ms)

a b Deviation
(s)

corrIRI corrSE

+10 0.605 )0.057 0.006 0.643 0.763
) 10 0.623 )0.006 0.004 0.784 0.951
+20 0.585 )0.083 0.006 0.891 0.909
) 20 0.522 )0.035 0.007 0.879 0.902
+50 0.431 )0.496 0.004 0.990 0.973
) 50 0.340 )0.189 0.006 0.981 0.965
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between ISI increases and decreases. With large step
changes, the SE return to baseline values appeared
stronger during ISI increases than decreases. With small
step changes where fast IRI matching was prioritized,
IRI adjustment appeared quicker in ISI increases than
decreases. One may conclude that ISI increases (fre-
quency deceleration) lead to a stronger adaptation
process than decreases, and this process is applied to

the time parameter (SE or IRI) that is dominant during
response adaptation.

Based on the data in our study and using the de-
scriptive model as a process presentation, one may
postulate that during rhythmic synchronization the fol-
lowing task hierarchy emerges: ®rst, a time interval is
marked by two stimulus events which generates a precise
period template in the brain. The subject embeds this
template through ®nger tapping into the stimulus se-
quence with a certain phase deviation that is set not to
exceed a certain percentage threshold of the target in-
terval (preferred synchronization error). Within this
phase error, the subject perceives him/herself to be in
synchrony with the rhythmic cue, and synchronization
would be primarily driven by direct period matching of
IRI to ISI. Only if the phase and period matching error
exceeds the threshold setting, phase alignment must
temporarily take priority in order to reestablish per-
ceived event-to-action coincidence.

Furthermore, our data indicate that the period
matching process after ISI perturbations was accom-
plished very rapidly and precisely, and that systematic
tracking of period errors still took place at a 2% and 4%
variation level of the tracking interval. Interestingly,
these percentage levels lie below the approximate 5%
value of the Weber fraction commonly accepted as the
perception threshold for changes in interval durations
used in this study (Getty 1975). These values are also
below the coe�cients of variation of IRI and SE re-
sponses (around 5% of the stimulus interval) found in
previous synchronization research (e.g., Thaut et al.
1997), which may indicate variance boundaries for
normal response ¯uctuations in synchronization tasks.
There may be a di�erence in the perception of systematic
variation (change in ISI interval to a new constant value)
vs continuous ¯uctuations in the IRI response patterns
that allow for this precise adjustment to small ISI
changes. However, the rapid adaptation to systematic
ISI changes after a very small number of repetitions (1 to
3) emphasizes the ability of the auditory system to build
very fast temporal templates. Although there is strong
support for the existence of cognitive tracking schemes
of rhythm in motor performance (Pressing et al. 1996),
our data also indicate the ability of rhythmic sensory
information in the auditory system to control motor
response timing very directly below levels of cognitive
awareness, which may imply the existence of purely
physiological auditory-motor entrainment mechanisms.

The observed multiple synchronization strategies are
expressed in our brief mathematical model through ad-
justments in the equation constants. Thus, our model
accomplishes not only a smooth simulation of the ob-
served response patterns as a pure description but also
expresses the functionality of the equation parameters
which control the shift in synchronization response.
According to our suggested di�erence equations (5) and
(6), a sequential tap interval is computed on the basis of
a weighted sum of the preceding tap interval and the
preceding synchronisation error. The strategy shift ap-
pears in our model as an adjustment of the weights at-
tributed to a and b. At small ISI changes, the small value

Fig. 5. The dependence of the linear system constants a and b on the
size and direction of the ISI changes. Broken lines display the a- and
b-values of the intraindividually averaged responses, and solid lines
connect the a- and b-values of the averaged responses across all
subjects

249



of b represents the disregard for adjustments of SE
¯uctuations to maintain synchrony with a rhythmic
stimulus sequence in favor of interval matching. This is
true for ISI decreases as well as increases, with the ex-
ception of a certain hysteresis shown in Fig. 5. At large
ISI changes, the larger corrective in¯uence of phase
adjustments is re¯ected by an expansion of b by a factor
of about 10 and a slight reduction in a.

Lastly, our model required a di�erent set of `cali-
brations' of the equation constants for di�erent step
changes to simulate the empirically observed shift in
synchronization strategy. Therefore, rhythmic synchro-
nization strategies may not be expressed su�ciently
through linear models. For future research, a self-regu-
latory model should be designed in which a given set of
parameters in a di�erence equation simulates synchro-
nization responses to step changes of all sizes. However,
if these parameters are de®ned as dependent on the
system variables SE and IRI, the ensuing model would
have to be one describing a nonlinear system.

The source of noise in the remaining residuals of the
®t process and the meaning of the system constant c
re¯ecting the stationary conditions prior to and after the
ISI change could not be investigated here and remain
open for further work.
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Table 2. Descriptive and
MANOVA statistics for a and
b. Each cell contains 10 cases.
The cases are counted in-
dependently of the direction of
ISI change. Di� 1, 2 means the
di�erence between 10 and 20 ms
changes, di� 2, 3 means the
di�erence between 20 and 50 ms
changes

Step size a b

(Group mean) SD Variance (Group mean) SD Variance

�10 ms 0.601 0.121 0.015 )0.057 0.044 0.002
�20 ms 0.503 0.139 0.019 )0.097 0.064 0.004
�50 ms 0.340 0.150 0.023 )0.332 0.127 0.016

Probabilities F-value Probabilities F-value
di� 1, 2 P = 0.121 2.561 P = 0.305 1.094
di� 2, 3 P = 0.013 7.034 P = 0.000 37.669
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