
Abstract During maximal voluntary contraction
(MVC) with several ®ngers, the following three phe-
nomena are observed: (1) the total force produced by all
the involved ®ngers is shared among the ®ngers in a
speci®c manner (sharing); (2) the force produced by a
given ®nger in a multi-®nger task is smaller than the
force generated by this ®nger in a single-®nger task
(force de®cit); (3) the ®ngers that are not required to
produce any force by instruction are involuntary acti-
vated (enslaving). We studied involuntary force produc-
tion by individual ®ngers (enslaving e�ects, EE) during
tasks when (an)other ®nger(s) of the hand generated
maximal voluntary pressing force in isometric condi-
tions. The subjects (n � 10) were instructed to press as
hard as possible on the force sensors with one, two, three
and four ®ngers acting in parallel in all possible
combinations. The EE were (A) large, the slave ®ngers
always producing a force ranging from 10.9% to 54.7%
of the maximal force produced by the ®nger in the
single-®nger task; (B) nearly symmetrical; (C) larger for
the neighboring ®ngers; and (D) non-additive. In most
cases, the EE from two or three ®ngers were smaller than
the EE from at least one ®nger (this phenomenon was
coined occlusion). The occlusion cannot be explained
only by anatomical musculo-tendinous connections.
Therefore, neural factors contribute substantially to
the EE. A neural network model that accounts for all the
three e�ects has been developed. The model consists of
three layers: the input layer that models a central neural
drive; the hidden layer modeling transformation of the
central drive into an input signal to the muscles serving
several ®ngers simultaneously (multi-digit muscles); and
the output layer representing ®nger force output. The
output of the hidden layer is set inversely proportional
to the number of ®ngers involved. In addition, direct
connections between the input and output layers repre-
sent signals to the hand muscles serving individual
®ngers (uni-digit muscles). The network was validated

using three di�erent training sets. Single digit muscles
contributed from 25% to 50% of the total ®nger force.
The master matrix and the enslaving matrix were
computed; they characterize the ability of a given ®nger
to enslave other ®ngers and its ability to be enslaved.
Overall, the neural network modeling suggests that no
direct correspondence exists between neural command
to an individual ®nger and ®nger force. To produce a
desired ®nger force, a command sent to an intended
®nger should be scaled in accordance with the com-
mands sent to the other ®ngers.

1 Introduction

During maximal voluntary force production by several
®ngers acting in parallel, the total force is shared among
involved ®ngers in a speci®c manner (sharing), while the
force produced by a given ®nger in a multi-®nger task is
smaller than the force generated by this ®nger in a
single-®nger task (force de®cit, Li et al. 1998a,b). Force
sharing among individual ®ngers is a typical example of
the motor redundancy problem: many di�erent combi-
nations of individual ®nger forces can achieve the same
total force. This problem, also known as Bernstein's
problem (Bernstein 1967), has been experimentally
addressed at the level of individual muscles contributing
to a joint torque (for reviews, see Crowninshield and
Brand 1981b; Zatsiorsky and Prilutsky 1992; Latash
1996; Prilutsky et al. 1996) and individual joints
contributing to a multi-joint motion (Rosenbaum et al.
1993). Previous studies have shown that the central
nervous system (CNS) does not use all of the conceivable
options for solving such problems. It prefers a single
solution (a sharing pattern in ®nger force production
tasks) and employs this solution for a range of total
force values (Li et al. 1998a, b).

The prevailing approach in modeling the redundancy
problem is based on an assumption that the CNS is
using a certain optimization criterion ± in the framework
of such models the brain is replaced by a cost function.
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Though various cost functions have been suggested and
tried (Crowninshield et al. 1978; Herzog 1996; Crown-
inshield and Brand 1981a; Brand et al. 1986; Prilutsky
and Zatsiorsky 1994), the majority of the employed cost
functions fall in one group: they provide a minimal norm
solution (Kuo 1994). A norm N� (^xin)1/n where xi is a
performance variable (e.g. muscle force, force per unit of
muscle cross-sectional area, the moment produced by a
certain muscle, or the mechanical work produced at a
joint) has been introduced and then minimized. How-
ever, the optimization approach can only account for the
sharing phenomena and does not address other phe-
nomena, such as force de®cit.

The contribution of individual ®ngers to total force
production is a convenient phenomenon for investiga-
ting the Bernstein problem. Finger forces can easily be
measured (cf. with the muscle-tendon forces) and the
sharing calculation is rudimentary ± the total output/
force is merely a sum of individual inputs/®nger forces.

Force de®cit among ®ngers (Ohstuki 1981) is similar
to the well-known phenomenon of bilateral de®cit
(Schantz et al. 1989; Howard and Enoka 1991). In both
cases the maximal force generated by an individual ef-
fector (®nger, arm, leg) in a multi-e�ector task is less
than the force in a single-e�ector task. In the multi-
®nger tasks the force de®cit was explained by the ceiling
hypothesis: the total neural drive to all the ®ngers is
somehow limited and, as a result, the activation of a
given ®nger reduces the drive to the other ®ngers (Li
et al. 1998a,b).

With the present study we investigated e�ects that
have been termed enslaving e�ects. Maximal isometric
activation of some ®ngers is always accompanied by ac-
tivity of the other ®ngers. When a subject is asked to press
maximally with one, two, or three ®ngers, other ®ngers of
the hand also produce a certain force. The explicitly in-
volved ®ngers are addressed as master ®ngers while other
force-producing ®ngers are termed slave ®ngers.

The goal of this study was twofold: ®rst, to study
interaction among the ®ngers and the enslaving e�ects
during multi-®nger force production; second, to develop
and test a neural network model that accounts for all the
three phenomena ± sharing, force de®cit, and enslaving.

2 Methods

2.1 Subjects

Ten right-handed university male students (weight 77.5 � 8.5 kg,
height 1.73 � 0.04 m; hand length from the middle ®ngertip to the
distal crease of the wrist 0.192 � 0.005 m) served as subjects.
The subjects had no previous history of neuropathies or trauma to
the upper limbs. All subjects gave informed consent according
to the procedures approved by the Compliance O�ce of The
Pennsylvania State University.

2.2 Apparatus

Four uni-directional piezoelectric sensors (Model 208A03, Pi-
zeotronic) were used for force measurement. The sensors were

mounted on a steel frame (140 mm ´ 90 mm). Steel plates
(20 mm ´ 25 mm) were a�xed to the sensors to provide ®nger
contact areas. Cotton tapes were attached to the upper surface of
the plates to increase friction and prevent the in¯uence of ®nger
skin temperature on the measurements. Sensors were distributed
30 mm apart in the adduction-abduction direction of the ®ngers.
The position of the sensors could be adjusted in a range of 60 mm
in the longitudinal direction of the ®nger to ®t an individual sub-
ject's anatomy.

A wooden board was made to support and stabilize the forearm
and wrist to secure a constant con®guration of the posture. The
surface of the sensors, the support of the wrist, and the forearm
were aligned in the same horizontal plane. The left hand was nat-
urally resting on the thigh. Force signals from the sensors were
connected to separate AC/DC conditioners (M482M66, Pi-
zeotronic). A 12-bit analog-digital convector was used for digitizing
analog output. A PC 486 microcomputer was utilized for control,
acquisition, and processing. See Fig. 1 for a schematic illustration
of the experimental setup.

2.3 Procedure

During testing, the subject was seated in a chair facing the testing
table with his upper arm at approximately 45° of abduction in the
frontal plane and 45° of ¯exion in the sagittal plane, and the elbow
at approximately 45° of ¯exion (Fig. 1).

Subjects were told to press maximally with various combina-
tions of the four ®ngers: the index (I), middle (M), ring (R), and
little (L) ®ngers. All 15 combinations were utilized. They are I, M,
R, L, IM, IR, IL, MR, ML, RL, IMR, IML, IRL, MRL, and
IMRL, respectively. For each combination, subjects were in-
structed to keep the uninvolved ®ngers on the sensors, but no at-
tention was paid to these ®ngers during pressing. It was emphasized
that subjects should not try to lift the uninvolved ®ngers in any
circumstances. In case the subjects felt the uninvolved ®ngers were
unconsciously producing forces, they were instructed to let them to
do so. The subjects were given several practice trials before testing.
At the beginning of each trial prior to the force production of the
®ngers, the program automatically adjusted the initial value of the
sensor signals to zero.

The order of the 15 combinations was randomized. Two con-
secutive trials were performed for each ®nger combination. The
total duration of a trial was approximately 5 s, with a period of
about 2 s required for the maximum force production. The second
of the two trials was used in the analysis. Breaks of 30 s were given
after each trial to avoid fatigue. During the rest period, the subjects
were allowed to take the ®ngers o� the sensors and relax the
muscles.

Fig. 1. Schematic drawing of the experimental setup
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2.4 Data processing and statistical analysis

The digital signals were converted into force values and digitally
low-pass ®ltered at 10 Hz with a second-order Butterworth ®lter.
The forces of individual ®ngers at the instant of maximal total force
production were measured for further analysis.

To characterize the interaction e�ects among the ®ngers, a
nonlinear regression model of the second order was employed

Fi;j �
X4
m�1

AimXm;j �
X4
m�1

X4
l�1

BilmXi;jXm;j �1�

where i, l, m � 1, 2, 3, 4 stand for individual ®ngers; i is the ®nger
whose force is being determined; ®ngers 1, 2, 3, 4 correspond to I,
M, R, L, respectively; j stands for one of the 15 ®nger combinations
(I, M, R, L, IM, . . ., IMRL), Fi,j is the force of ®nger i in a ®nger
combination j, Xij � Uij /^Uij; Uij � 1 if the ®nger i is involved in
®nger combination j; and Uij � 0 if the ®nger i is not involved in
the combination j; and A and B are regression coe�cients.

In (1), the ®rst term is linear and the second is a nonlinear
quadratic form. The quadratic form re¯ects the interaction among
the ®ngers. Equation (1) can be written as a matrix expression, the
product of the matrix of regression coe�cients by the vector of
input signals:
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The statistical signi®cance of these terms was estimated in the
following way (Neter et al. 1990). When only the linear term is
included, the error sum of squares is SSE(1). When both the linear
and quadratic terms are included, the error sum of squares is
SSE(2). If SSE(2) is smaller than SSE(1) the reduction of SSE is the
result of adding the quadratic term to the regression model. To test
the signi®cance of the contribution of the quadratic term, the
percentage reduction of SSE was calculated as

Reduction �%� � SSE (1)ÿ SSE (2)

SSE (1)
� 100% �3�

To estimate the magnitude of the enslaving e�ects, the force
produced by an uninvolved ®nger was expressed as a percent of the
maximal force produced by this ®nger in a single-®nger task. Two-
tailed Student's t-tests were used for comparison.

3 Results

Table 1 shows the individual ®nger forces at the instant
of maximum total force production in various ®nger
combinations. The pattern of ®nger forces is rather
complex. However, several reproducible phenomena can
be identi®ed. In particular, the ®nger forces in multi-
®nger tasks were always smaller than the forces in the
single-®nger tasks (Ohstuki 1981; Kinoshita et al. 1995;
Li et al. 1998a,b). Within this study we will concentrate
on the interaction among the ®ngers and on the
enslaving e�ects.

Interaction among the ®ngers. The regression coe�-
cients of Eq. (2) are presented in Table 2. The nonlinear
regression model predicted the experimental results quite
accurately (Table 2). The root mean square di�erence
was 1.22 N.

Table 3 shows that the interaction e�ects were very
large. The drastic reduction of the SSE was observed
after the nonlinear, quadratic term was added. In other
words, the force of one of the ®ngers signi®cantly in-
¯uenced the magnitude of the force produced by the
other ®ngers.

Enslaving. In all single-, two-, and three-®nger tasks
the uninvolved (slave) ®ngers produced a certain force.

Table 1. Force of individual
®ngers at the instant of max-
imum total force production in
various tasks (newtons, mean�
SD, 10 subjects)

Task Index Middle Ring Small Total force

I 49.1 � 9.5 10.5 � 6.1 5.5 � 4.1 2.7 � 2.4 67.8 � 17.2
M 14.0 � 7.0 38.0 � 6.4 12.9 � 7.1 4.1 � 3.7 69.0 � 18.2
R 9.4 � 11.2 16.5 � 6.5 29.9 � 7.9 10.6 � 5.1 66.4 � 21.4
L 7.7 � 6.9 6.7 � 5.4 15.0 � 6.1 24.8 � 3.8 54.2 � 17.7
IM 43.3 � 8.9 30.3 � 7.4 7.5 � 5.2 2.9 � 2.5 84.0 � 19.0
IR 37.0 � 10.6 14.5 � 5.0 21.6 � 5.5 9.2 � 6.2 82.3 � 19.5
IL 37.9 � 7.9 8.1 � 3.8 10.4 � 4.2 18.6 � 3.9 75.0 � 15.9
MR 10.4 � 7.3 37.0 � 10.5 27.9 � 8.8 7.7 � 4.5 83.0 � 20.1
ML 11.7 � 7.4 30.4 � 9.1 15.5 � 7.5 16.7 � 5.5 74.3 � 21.0
RL 9.9 � 8.6 19.6 � 8.4 28.5 � 9.0 19.6 � 7.8 77.6 � 19.7
IMR 34.1 � 10.3 32.4 � 6.8 20.0 � 5.1 5.1 � 4.6 91.6 � 21.3
IML 34.8 � 10.2 20.7 � 5.6 11.2 � 7.9 15.8 � 6.9 82.5 � 20.8
IRL 35.5 � 10.1 10.2 � 5.2 19.8 � 7.1 18.0 � 5.3 83.5 � 20.8
MRL 11.6 � 6.3 28.6 � 11.2 27.7 � 8.0 18.1 � 5.4 86.0 � 22.1
IMRL 32.4 � 6.6 26.5 � 8.1 22.1 � 6.4 16.1 � 7.6 97.1 � 22.3

Interaction among the ®ngers. The regression coe�cients of Eq. (2) are presented in Table 2. The non-
linear regression model predicted the experimental results quite accurately (Table 2). The root mean
square di�erence was 1.22 N
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The EE were (A) large, (B) nearly symmetrical, (C)
larger for the neighboring ®ngers, and (D) non-additive
(see Table 4).

A. Uninvolved ®ngers can produce a force as large as
54.7% of their maximum in single-®nger tasks (Table 4,
the data for the ring ®nger when the middle and little
®nger produced maximal force).

B. The in¯uence of ®nger A on ®nger B was ap-
proximately of the same magnitude as the in¯uence of
®nger B on ®nger A (Fig. 2). For example, when the
middle/ring ®nger is maximally active the force of the
ring/middle ®nger equaled 43.1/43.4% of the corre-
sponding maximal force (t � )0.193, p � 0.851). En-
slaving e�ects for the other ®nger pairs were: 27.6 and
28.5% for the index and middle ®ngers (t � 0.023,

p � 0.981); 18.4 and 19.1% for the I and R (t � 0.115,
p � 0.911); 17.6 and 16.5% for the M and L
(t � )0.350, p � 0.734), 50.2 and 42.7% for the R and
L (t � )1.73, p � 0.118), and 10.9 and 15.6% for the I
and L (t � 0.434, p � 0.352). Hence, the e�ects were
approximately symmetrical.

C. In the single-®nger tasks, the EE were larger for
the neighboring ®ngers. The enslaving e�ects produced

Table 2. Regression coe�cients

Finger i Ai1 Ai2 Ai3 Ai4

(a) Linear term
1 (I) 48.1 )37.9 )50.4 )116.8
2 (M) )13.4 35.8 )16.3 )13.8
3 (R) 0.9 )7.0 48.9 49.9
4 (L) )0.1 6.5 )15.6 65.3

Finger i Bi11 Bi12 Bi13 Bi14 Bi22 Bi23 Bi24 Bi33 Bi34 Bi44

(b) Quadratic (interaction) terms
1 (I) 0.4 103.9 100.8 171.9 51.6 109.7 182.5 59.2 197.4 124.0
2 (M) 24.1 52.4 61.4 33.6 2.1 76.7 48.1 32.9 77.2 21.1
3 (R) 4.6 18.7 0.1 )30.8 19.7 30.7 )4.9 )19.1 )28.0 )35.0
4 (L) 2.7 )0.9 38.4 )13.7 )2.7 26.7 )27.0 26.1 )1.3 )41.1

Table 3. The linear regression model versus the model with both
linear and quadratic terms. The error sum of squares and the
percent reduction.

Finger i SSE(1) SSE(2) Reduction %

1 (I) 367.1 26.9 92.7
2 (M) 226.2 39.5 82.5
3 (R) 106.6 8.3 92.2
4 (L) 73.3 14.8 79.8

Table 4. Enslaving e�ects in
the multiple-®nger force pro-
duction, % of the maximal
force in the single ®nger tasks.
Average data � SD

Master ®ngers Enslaved ®ngers

I M R L

I 100.0 � 0.0 27.7 � 16.6 17.9 � 12.8 10.9 � 8.9
M 27.6 � 11.7 100.0 � 0.0 43.0 � 22.7 15.6 � 12.1
R 17.3 � 20.0 44.2 � 16.7 100.0 � 0.0 41.8 � 18.0
L 14.6 � 13.0 17.5 � 14.1 51.5 � 21.8 100.0 � 0.0
IM 88.6 � 9.1 81.5 � 21.7 24.4 � 15.5 11.3 � 9.5
IR 74.9 � 15.6 37.7 � 10.4 73.5 � 12.2 34.7 � 19.6
IL 79.3 � 18.6 20.9 � 9.5 34.9 � 11.8 75.0 � 9.1
MR 21.2 � 15.0 97.3 � 22.2 94.0 � 17.4 31.5 � 19.4
ML 23.3 � 12.9 81.7 � 24.3 54.7 � 29.1 67.3 � 19.2
RL 14.1 � 11.4 46.8 � 19.8 97.6 � 11.9 87.3 � 7.8
IMR 69.0 � 13.8 86.5 � 16.0 68.4 � 15.6 20.8 � 18.7
IML 71.8 � 17.6 57.7 � 23.9 36.1 � 17.6 61.9 � 20.7
IRL 72.5 � 15.5 27.7 � 14.3 65.7 � 13.3 71.8 � 13.7
MRL 23.8 � 12.1 75.3 � 25.9 92.7 � 14.1 72.1 � 14.9
IMRL 67.1 � 12.8 71.3 � 21.5 74.9 � 14.0 63.8 � 25.7

Note: boldfaced are the percentages that are not due to the enslaving e�ects

Fig. 2. Force enslaving among ®ngers during single-®nger tasks. The
arrows originated from master ®ngers and point at slave ®nger.
The values besides the lines show the enslaving e�ects (in % of the
maximal ®nger force). The line thickness is proportional to
the magnitude of the enslaving. Note that the enslaving e�ects are
nearly symmetrical
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by the index ®ngers were 27.7%, 17.9%, and 10.9% for
the M, R, and L ®ngers, respectively. The enslaving ef-
fects generated by the little ®nger were 51.5%, 17.5%,
and 14.6% for the R, M, and I ®ngers. The more distant
the ®ngers, the smaller the enslaving e�ects.

D. The EE were non-additive. In two- and three-®n-
ger tasks the magnitude of the EE was always smaller
than the sum of individual e�ects from the same set of
®ngers (Table 5). Even more, in a majority of cases the
EE from two and three ®ngers was smaller than the ef-
fect from just one ®nger. We coined this phenomenon
occlusion. For instance, in the IM task the ring ®nger
was activated to the level of 24.4% of its maximal force.
In the M tasks the level of activation was 43.0%. The
same is true for other ®ngers and tasks. The occlusion
was not observed in only two cases: (a) the R ®nger in
the ML task and (b) the M ®nger in the RL task. The
occlusion was always recorded in the three-®nger tasks.
The EE for the three-®nger combinations were con-

stantly smaller than at least in one of the single-®nger
tasks and one of the two-®nger tasks.

An illustrative example of the force-force relation-
ships in individual attempts is presented in Fig. 3.
With the exception of the little ®nger in the I and M
tasks, the enslaving force started to increase with the
®rst rise of the master force level. There is no perceptible
threshold. This ®nding suggests that the slacks in the
anatomical intertendinous connections were negligible.
The force-force functions were increasing (have positive
derivatives) but in the majority of cases could barely be
considered exactly linear.

4 Neural network modeling

Available anatomical and physiological evidence was
used to construct a three-layer network with direct
input-output connections, a basic network (Fig. 4).

4.1 Basic network

The basic network incorporated the following ideas/
hypotheses:

1. Existence of two groups of muscles and muscle
compartments. Each muscle/compartment of the ®rst
group serves an individual ®nger (uni-digit muscles)
and each muscle/compartment of the second group
serves several ®ngers (multi-digit muscles). The ®rst
group of muscles is represented in the neural network
by a direct one-to-one connection from the input to

Table 5. Non-additivity and occlusion of EE. Enslaving force in
two- and three-®nger tasks as a % of the maximal EE in a one-
®nger task

Slave
®nger

Two-®nger tasks Three-®nger
tasks

IR II MR ML RL IM

I 0.77 0.84 0.51 0.86
M 0.85 0.47 1.06 0.63
R 0.68 1.06 0.47 0.70
L 0.81 0.75 0.72 0.48

Fig. 3. Force-force curves of master ®nger and enslaving ®ngers
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the output layer. The second group is represented by
the hidden layer and its multiple connections.

2. The `ceiling' phenomenon was modeled by speci®c
transfer characteristics of the hidden layer neurons:
the output of the hidden layer was set as inversely
proportional to the number of ®ngers involved. Note
that in the model the `ceiling' e�ects are only assigned
to the multi-digit muscles of the hand.

3. The enslaving e�ects were modeled by the connection
weights from the hidden to the output layer.

The model consists of three layers: the input layer
that models a central neural drive; the hidden layer
modeling extrinsic ®nger ¯exors serving several ®ngers
simultaneously; and the output layer representing ®nger
force output. Note the existence of direct input-output
connections that model intrinsic hand muscles serving
individual ®ngers.

4.2 Mathematical description of the network functioning

The net input to the jth unit of the hidden layer from the
input layer is

s�1�j �
X4
i�1

w�1�ij xi j � 1; 2; 3; 4 �4�

where w�1�ij are connection weights from the ith unit in
the input layer to the jth unit in the hidden layer. The
transfer characteristic of input/output in the hidden
layer is described as

zj � f1�s�1�j � �
w�1�jj xj

s�1�j

j � 1; 2; 3; 4 �5�

where zj is the output from the hidden layer. The net
input to the kth unit in the output layer �s�2�k � from
the hidden layer is expressed as

s�2�k �
X4
j�1

w�2�jk zj � vkxk k � 1; 2; 3; 4 �6�

where w�2�jk are connection weights from the jth unit in
the hidden layer to the kth unit in the output layer. vk are
the connection weights directly from the kth unit in the
input layer to the kth unit in the output layer. An
identity input/output transfer relationship was de®ned at
the output layer, i.e.,

yk � f2�s�2�k � � s�2�k k � 1; 2; 3; 4 �7�
The inputs to the network were set at xi � 1, if ®nger i
was involved in the task, or xi � 0 otherwise. The
weights from the input layer to the hidden layer were set
as a unit constant �w�1�ij � 1�.

4.3 Training by using backpropagation

The network was trained using a backpropagation
algorithm (Bose and Liang 1996). Let the training exem-
plar set be f~x�l�;~d�l�g15i�l, where
~x�l� � �x1�l�; x2�l�; x3�l�; x4�l��T is the input pattern

vector to the network and
~d�l� � �d1�l�; d2�l�; d3�l�; d4�l��T is the desired output

vector corresponding to the input pattern~x�l�:
xi(l) � 1 if the ®nger is intended to produce force

0 if the ®nger is not intended to produce
force

where i � 1, 2, 3, 4, indicating the ®ngers, l � 1, 2, . . .,
15, indicating the 15 ®nger combinations, and~d�l� is the
®nger force output from experiment for a given ®nger
combination task l. The sum of squares of the error over
all input units of all exemplars is de®ned by

E �
X15
i�1

1
2

X4
k

� 1�yk�l� ÿ dk�l��2
( )

�8�

The objective is to adjust the network weights (w�2�jk
and vk, where j, k � 1, 2, 3, 4) to minimize the error
function E. The gradient descent method was used to
train the networks by repeatedly presenting the training
exemplar set.

Since the basic network contains connections directly
from the input layer to the output layer, the functions
provided by commercially available software packages
such as Neural Network Toolbox (Mathworks) were not
applicable. We programmed the process in the envi-
ronment of Matlab (Mathworks).

4.4 Results of the training

On application of the backpropagation algorithm with a
set of initial weights, a satisfactory result for this
problem was obtained after 500 epochs with a learning
rate of 0.01. Figure 5 is a plot of root mean square
(RMS) error generated in the training process as a
function of epochs when the network was trained by all
15 combinations. The error serves as a measure for
performance of the network. The ®nal network values
yielded a RMS error between the results of the

Fig. 4. Basic network. The index, middle, ring and little ®nger
correspond to 1, 2, 3, and 4, respectively
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experiment and the network output of 1.14 N. This
value is smaller than the magnitude of the standard
deviation of force production for any of the individual
®ngers. It was concluded that the predicted ®nger forces
closely matched the experimental data.

The following matrix of the connection weights w(2),
also called a connection matrix, and the gain vector [v]
were calculated. The rows of the connection matrix, i,
correspond to the outgoing signals from the hidden layer
and the columns correspond to the units/®ngers of the
output layer, j.

�w�2�� �
32:7 9:1 3:8 3:7
14:2 29:0 13:6 3:5
9:0 20:2 22:4 10:9
8:8 7:6 16:0 17:2

2664
3775 �v� �

16:9
10:1
8:3
7:2

2664
3775
�9�

4.5 Network recall and validation

Figure 6a±c are the plots of the simulated results (open
circles) generated in the recall phase and compared to
the experimental results (solid circles).

The network was validated in three ways.

1. The training set included all 15 tasks. The ®nal net-
work values were compared with the experimentally
recorded data (Fig. 6a). As already mentioned, all the
predicted values of the ®nger forces were close to
those registered in the experiments; the di�erences
were much smaller than one standard deviation. The
RMS di�erence was 1.14 N.

2. The training sets included only 14 tasks. The task that
was not included in the training was used for valida-
tion. This procedure was repeated 15 times. The re-
sults are presented in Fig. 6b. The RMS di�erence for
the 15 untrained ®nger combinations was 2.22 N.
Again the predicted values were in the range of�1 SD.

3. Network training was performed on the four sets that
did not include: (a) one-®nger tasks, four tasks total;

(b) two-®nger tasks, six tasks total; (c) three-®nger
tasks, three tasks total; and (d) a four-®nger task, one
task. Hence, the training was performed on 11-, 9-,
12-, and 14-task sets, respectively. The ®nger force
values for the tasks that were not used in the training
sets were calculated and compared with those that
were experimentally recorded. The RMS equaled
3.18 N for the one-®nger tasks, 2.08 N for the two-
®nger task, 2.18 N for the three-®nger tasks, and
0.57 N for the four-®nger task. All of these tasks were
not included in the training sets. The grand average
RMS was 2.30 N. Again, the di�erence between the
predicted and recorded values was in the range of
�1 SD (Fig. 6c).

Overall, the network worked quite well.

4.6 Training of [w(1)] and [w(2)]

In the basic network, the connection weights from the
input layer to the middle layer, [w(1)], were set to units.
The selection was based on the idea that when the input
signal is transmitted to the middle layer it is equally
shared among the involved ®ngers. At the next stage of
analysis this assumption was removed and both layers of
the network were trained by the backpropagation
procedure. The connection weights were computed
(Table 6). The connection weights [w(2)] were similar
(but not exactly equal) to the connection weights of the
basic model. The same is true for the gain coe�cients,
[v]. Hence, the model is robust with respect to the
procedures used to estimate the connection weights.

After application of Eqs. (1) and (2) the output sig-
nals from the hidden layer were determined (Table 7).
Their sum was close to 1 (in the main model it was set
exactly at 1) and with few exceptions the individual
output signals were close to 1/n (in the main model the
signals were set precisely at 1/n). The largest deviation
from the values 0.5/0.5 that were assumed in the main
model was observed in the RL ®nger combination, 0.87
and 0.19. In one-®nger tasks, the sum

P � 1.00.
The closeness of the sum of the output signals from the

hidden layer to 1 supports the ceiling hypothesis. It ap-
pears that during maximal voluntary contraction of the
®ngers the central signal to the multi-digit muscles is
limited in magnitude and is shared between all involved
®ngers. The performance of the modi®ed model with
coe�cients [w(1)] computed from the experimental data
was slightly worse than the performance of the basic
model (RMS � 1.30). Because of the good performance
of the basic model, its simplicity, and obvious operation,
we prefer the basic model to its more complicated vari-
ants.

4.7 Contribution of uni-digit and multi-digit muscles
(v vs. w(2) contribution)

The network permits estimation of the contribution of
uni-digit muscles (mainly intrinsic muscles of the hand)
and multi-digit muscles (mainly the extrinsic hand

Fig. 5. The root mean square error of ®nger force as a function of
training epochs
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Fig. 6. Predicted vs. experimental results. The ®gures are for di�erent
training protocols: (a) The network was trained by all 15 combina-
tions. (b) The network was trained 15 times using 14 combinations
each time. (c) The network was trained 4 times, without 1-, 2-, 3-, 4-
®nger combinations respectively
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muscles) to the total force production. The results are
presented in Fig 7. In di�erent tasks, the uni-digit
muscles contribute from 25% to 50% of the force
produced by a given ®nger.

4.8 Normalized matrices

The coe�cients of the connection matrix as well as the
gain coe�cients have the dimensionality of force; thus
they are expressed in newtons per one unit of (dimen-
sionless) command. The connection matrix cannot be

immediately applied to compare sharing patterns in
people with di�erent force potential, for instance in
strength athletes and untrained women. To do that, two
normalized matrices are suggested. The elements of the
®rst matrix, called the master matrix, are normalized in
rows with respect to w�2�ii , i.e.,

wM
ij �

w�2�ij

w�2�ii

� 100% i; j � 1; 2; 3; 4 �10�

The coe�cients w�2�ij (i ¹ j) characterize the force pro-
duced by the enslaved ®ngers as a percentage of the
master ®nger force.

The elements of the second matrix, called the en-
slaving matrix, are normalized with respect to w�2�jj , that
is, the normalization is done in columns. They charac-
terize the potential level of enslaving of a given ®nger.

wE
ij �

w�2�ij

w�2�jj

� 100% i; j � 1; 2; 3; 4 �11�

For instance, the index ®nger can be enslaved up to a
level of 43.4% of its direct activation by the activation of
the middle ®nger, 27.5% by the ring ®nger, and 26.9%
by the little ®nger.

The master matrix and enslaving matrix are listed in
Table 8.

Table 6. The training results of the modi®ed model, [w(1)], [w(2)], and [v]

Finger Connection weights from the input to the hidden
layer, w�1�ij

Connection weights from the hidden to the output
layer, w�2�ij

vj

1 2 3 4 1 2 3 4

1 11.6 16.2 12.9 4.2 32.0 10.5 4.6 3.3 17.6
2 8.1 13.2 9.5 5.3 12.6 30.6 13.3 2.9 8.5
3 14.2 11.5 14.9 20.3 9.0 18.0 23.7 10.7 5.8
4 13.5 10.6 2.2 4.8 8.6 5.9 15.3 16.3 8.2

Table 7. Output of the middle layer

Finger Task

IM IR IL MR ML RL IMR IML IRL MRL IMRL

1 0.59 0.45 0.46 0 0 0 0.34 0.35 0.29 0 0.24
2 0.45 0 0 0.54 0.56 0 0.32 0.33 0 0.37 0.26
3 0 0.53 0 0.61 0 0.87 0.40 0 0.50 0.56 0.38
4 0 0 0.53 0 0.47 0.19 0 0.33 0.16 0.16 0.14P

1.04 0.98 0.99 1.15 1.03 1.06 1.06 1.01 0.95 1.09 1.02

Note the output from the middle layer in the four one-®nger tasks was exactly 1.0

Fig. 7. Relative contribution of uni-digit (intrinsic) muscles in
di�erent tasks. The contributions of the extrinsic muscles are 100%
minus the contribution of the intrinsic muscles

Table 8. The master matrix
and enslaving matrix (%) Master matrix, % master ®nger force Enslaving matrix, % same ®nger maximal force

1 2 3 4 1 2 3 4

1 100.0 27.8 11.6 11.3 100.0 31.4 17.0 21.5
2 49.0 100.0 46.9 12.1 43.4 100.0 60.7 20.3
3 40.2 90.2 100.0 48.7 27.5 69.7 100.0 63.4
4 51.2 44.2 93.0 100.0 26.9 26.2 71.4 100.0
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5 Discussion

5.1 Finger interaction

Interdependent action of ®ngers has been an object of
both anatomical (Fahrer 1981) and neurophysiological
(Schieber 1991) research. In particular, studies of ®nger
kinematics have shown that voluntary extension/¯exion
of one ®nger can induce accompanying involuntary
¯exion/extension of other ®ngers. Interaction e�ects, in
particular enslaving, are a quantitative outcome/mea-
sure of the combined action of several factors.

The following mechanisms might have contributed to
the interaction/enslaving e�ects: (a) peripheral mechan-
ical coupling, (b) multi-digit motor units in the extrinsic
¯exor and extensor muscles, and (c) diverging central
commands. At a peripheral level, enslaving can be ex-
plained by the multiple mechanical connections between
the tendons (juncturae tendinum) and muscle compart-
ments of m. ¯exor digitorum super®cialis and ¯exor
digitorum profundus that act on all four ®ngers (Fahrer
1981; Schroeder et al. 1990; Leijnse et al. 1993; Leijnse
1997). In a recent paper, Leijnse (1997) presented a
biomechanical model of anatomical and functional in-
terconnections between two deep ¯exor tendons.
Though mechanical coupling between the tendons of the
extrinsic ®nger ¯exors in the forearm seems to be certain
(see, for instance, Fahrer 1981; Kilbreath and Gandevia
1994; Leijnse 1997), the contribution from these me-
chanical connections during isometric tasks is not evi-
dent. This is especially true for non-adjacent ®ngers,
such as the index ®nger and the little ®nger. The dis-
covered phenomenon of the EE occlusion can barely be
explained only by the mechanical interconnections
among muscles and tendons and suggests a substantial
contribution of neural factors into the EE. Existence of
co-activation was con®rmed by the experiments on a
hand in which all intertendinous connections were sur-
gically removed (Leijnse 1997).

Some motor units of the extrinsic ¯exor and extensor
muscles may have insertion to the tendons of di�erent
digits. Multi-digit motor units as well as single-digit
units have been found in the forearm muscles of mon-
keys (Eccles et al. 1968). However, when compared with
humans, monkeys have less `dexterity', i.e. lower ability
to move ®ngers independently (Kimura and Vandewolf
1970). The proportion of the multi- and single-digit
motor units in the extrinsic muscles serving human ®n-
gers remains unknown. For instance, Kilbreath and
Gandevia (1994) reported that when subjects lifted
weights exceeding 2.5% MVC with one ®nger, portions
of m. ¯exor digitorium profundus serving other ®ngers
were also active. In the cerebral cortex, the representa-
tions of di�erent ®ngers in the primary motor cortex
overlap extensively. This has been shown in both single
neuron studies in monkeys (Schieber and Hibbard 1993)
and blood ¯ow measurements in humans (Sanes et al.
1995). Lejinse (1997), studying a patient with surgically
removed passive connections between all deep ¯exor
tendons, found that the master and enslaving forces
were strictly proportional. In this subject, the EE can

only result from co-activation or from passive connec-
tions between the muscle bellies.

Hence, our data agreed with the postulate that the
inter-®nger force transfer is caused by several factors.

5.2 Neural network modeling

According to Iberall and Fagg (1996, p. 244) hand
function is `an ideal candidate for using neural net-
works'. However, until now, the grasping ± the number
of ®ngers, selecting the opposition, and selecting, a hand
opening size ± has only been modeled by the neural
networks (Iberall et al. 1989; Uno et al. 1993; Iberall and
Fagg 1996). This study concentrates on other aspects of
hand and ®nger motion.

The neural network is based on the following two
ideas. (1) A central neural drive is delivered to the two
groups of muscles: (a) single-digit muscles, mainly in-
trinsic muscles of the hand (this neural drive is not
shared among the muscles/®ngers) and (b) multi-digit
muscles, mainly extrinsic muscles in the forearm. (2) The
drive to the multi-digit muscles is shared among speci®c
muscle compartments serving singular digits.

5.2.1 How does the net work? One of the advantages of
the developed network is its simplicity. Owing to the
uncomplicated structure of the network, the limited
assortment of neurons, and a restricted number of
postulations, the network machinery is easy to under-
stand and describe as a matrix equation.

F1
F2
F3
F4

0BBB@
1CCCA � 1

n

w�2�11 w�2�11 w�2�11 w�2�11
w�2�11 w�2�11 w�2�11 w�2�11
w�2�11 w�2�11 w�2�11 w�2�11
w�2�11 w�2�11 w�2�11 w�2�11

2666664

3777775 �
x1
x2
x3
x4

0BBB@
1CCCA

�

v1 0 0 0

0 v2 0 0

0 0 v3 0

0 0 0 v4

0BBB@
1CCCA �

x1
x2
x3
x4

0BBB@
1CCCA �12�

where n is the number of ®ngers involved in the task.
As an example, consider the activity of the middle

®nger in the one- and two-®nger tasks. Based on the
model, in the one-®nger task the one-digit muscles
should contribute 10.1 N and the multi-digit muscles
29.0 N (in total 39.1 N; the experimental value was
38.0 N). In the two-®nger task with the index and mid-
dle ®ngers active, the contribution of the one-digit
muscles is the same as previously, 10.1 N; the contri-
bution from the multi-digit muscles is
0.5 ´ (29.0 + 9.1) � 19.1 N. In total, the predicted
force should be 29.2 N. The real force was 30.3 N.

According to a hypothesis suggested by Ohtsuki
(1981), the force de®cit is a result of ipsilateral syner-
gistic inhibition: activation of one ®nger inhibits activity
of its adjacent ®ngers. In general, the existence of syn-
ergistic inhibition in the neuromotor system ± as op-
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posed to reciprocal inhibition ± has not been con®rmed
in the literature. The network model accounts for the
force de®cit as well as for sharing and enslaving. Ac-
cording to the model, all the three phenomena are a
consequence of the existence of the uni- and multi-digit
muscles.

5.2.2 Comparing with minimal norm optimization. The
optimization approach has been broadly used to explore
the sharing/motor redundancy problem at the level of
individual muscles and their contribution to a total joint
torque (for the latest reviews, see Bogert 1994; Herzog
1996). However, because individual muscle forces can-
not be measured immediately, the optimization results
cannot be directly validated. It seems natural to employ
an optimization method for the ®nger force sharing
where all the ®nger forces can be directly measured.
Various optimization techniques and cost functions have
been used in the literature to examine how individual
muscles contribute to the resultant moment at a joint.
For instance, in the review paper by Zatsiorsky and
Prilutsky (1992), 26 di�erent cost functions are analyzed.

In this study, the optimization is based on the pre-
sumption that the CNS is trying to minimize a certain
norm of the relative force values (% of Fmi). More for-
mally, the problem can be formulated as follows:

Minimize

g�Fi� �
Xn

i

Fi

Fmi

� �p
 !1

p

�13�

Subject to constraint function:

h�Fi� �
Xn

i�1
Fi � Ftot �14�

where i stands for a ®nger involved in a task, Fi are
individual ®nger forces, p is value of power (p > 1), and
n is the number of ®ngers involved in the tasks (n � 2, 3,
4). Ftot is the total force level achieved by all the involved
®ngers. The model can be stated as follows: ®nd the
force-sharing pattern by minimizing a certain norm of
relative force. To solve the problem we used the method
of Lagrange multipliers and, as a result, arrived at the
following forces of the individual ®ngers.

Fi � Ftot
Fmi� � p

pÿ1Pn
k�1

Fmk� � p
pÿ1

�15�

Figure 8 re¯ects the accuracy of ®nger force predic-
tion by optimizing the cost function ± the norm of rel-
ative force ± while changing values of the power
(1 < p < 100). Three tasks, IM, IMR, and IMRL,
were chosen as examples. Generally, when an appro-
priate power value was chosen the model predicted the
force sharing among ®ngers quite well. For the IM task
the best prediction occurred at p � 3.5, at which the
RMS error was 0.02 N. For the IMR and IMRL tasks,
the larger the p, the smaller the errors. The RMS errors

at p � 100 for the IMR and IMRL tasks were 1.76 N
and 0.58 N, respectively.

As compared with neural network modeling, the op-
timization approach seems to be less e�cient for the
following reasons:

1. Only force sharing is modeled. The method does not
address the force de®cit and enslaving.

2. A di�erent motor task requires a separate optimiza-
tion procedure.

3. The parameters of the cost function do not have a
simple anatomical or physiological meaning. They are
just mathematical abstractions. For instance, why is
the optimal power value in the IM task equal to 3.5?
The similarity of the experimental and predicted re-
sults does not imply that the ways of solving the
problem are also similar. The CNS is evidently using
other ways ± not the cost function minimization ± to
solve the redundancy problem.

5.2.3 What does the network really model? The suggested
network portrays a transformation of the central neural
command into ®nger force values. If there were no
interaction and interconnection among ®ngers, the
command, 0 or 1, would transform into ®nger forces
in a straightforward manner. Mathematically, the com-
mand should simply be multiplied by gain coe�cients.
However, both the anatomical facts, speci®cally the
existence of extrinsic muscles with multiple tendons to
the individual ®ngers (Schieber 1991; Schroeder et al.
1990; Kilbreath and Gandevia 1994), and the experi-
mental phenomena, speci®cally force de®cit and enslav-
ing, do not permit us to accept the straightforward
relationship between the voluntary command to an
individual ®nger and the level of the force produced by
this ®nger.

The implicit idea behind the suggested network is that
all the three reported phenomena ± sharing pattern, force
de®cit, and enslaving ± are a consequence of the inter-
connections among the ®ngers. These interconnections
are both peripheral (on the muscle-tendon level) and
central (on the level of the CNS). The central intercon-

Fig. 8. The root mean square error of ®nger force as a function of the
power of the minimal norm cost function. The x axis is scaled in
logarithmic unit
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nections result in conjoint activation of the compart-
ments of the extrinsic muscles serving di�erent ®ngers.

If the network adequately represents reality, it means
that there is no direct correspondence/proportionality
between the `intensity' of the neural command to an
individual ®nger (whatever this `intensity' is and without
regard to how the 'intensity' is measured) and the ®nger
force. This conclusion is in a good agreement with the
data of Schieber (1991) obtained on monkeys. In multi-
®nger tasks, to produce a given ®nger force it is not
enough to send a properly scaled command to the
muscles serving the ®nger; the commands to other ®n-
gers should also be assessed and controlled.
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