
Abstract. This paper presents a mathematical model for
the learning of accurate human arm movements. Its
main features are that the movement is the superposition
of smooth submovements, the intrinsic deviation of arm
movements is considered, visual and kinesthetic feed-
back are integrated in the motion control, and the
movement duration and accuracy are optimized with
practice. This model is consistent with the jerky arm
movements of infants, and may explain how the adult
motion behavior emerges from the infant behavior.
Comparison with measurements of adult movements
shows that the kinematics of accurate movements are
well predicted by the model.

1 Introduction

1.1 Motivation

Human arm movements are smooth, have generally
symmetrical velocity pro®les, and can be described well
using mathematical models maximizing smoothness
(Flash and Hogan 1985; Uno et al. 1989). A close
examination of arm movements of infants (von Hofsten
and Roennqvist 1993) and accurate arm movements of
adults shows that the movement is, however, segmented
in submovements (Milner and Ijaz 1990; Milner 1992).
With increasing accuracy the velocity pro®le of adult
movements also becomes increasingly asymmetrical.

The work described in this paper was motivated by
these features of human arm movements, which are not
well captured by existing models. We investigated how
humans adapt their behavior in order to perform accu-
rate movements. We did it in the constructive way: by
realizing a model of this learning.

1.2 Review of the literature

For more than 100 years, reaching movements have
been studied in order to infer the visual and motor
control of arm movements (Woodworth 1899; Fitts
1954; Georgopoulos 1986; Jeannerod 1988). Woodworth
(1899) performed some of the ®rst quantitative experi-
ments and found that the movements are composed of
two phases: an approach phase followed by an adjust-
ment phase. Fitts et al. (1954) investigated the speed/
accuracy trade-o�. Subjects were instructed to perform
reaching movements as fast and precisely as possible,
and the movement time and accuracy were recorded.
Fitts observed that the movement time is a linear
function of the logarithm of the movement amplitude
divided by the movement duration. This mathematical
relation, called Fitts' law, is reproduced by the model of
Crossman and Goodeve (1983). According to this model
the movement is composed of a sequence of submove-
ments not overlapping in time, and each submovement
progresses half of the remaining distance to the target.
Schmidt (1979) found that in very fast movements
directed to the same end location, the end position has a
standard deviation around the target position propor-
tional to the amplitude divided by the duration, i.e., to
the mean velocity. The variation of the trajectory during
repeated movements has been measured in many
studies (Georgopoulos 1986; Paulignan et al. 1991a,b;
Shadmehr and Mussa-Ivaldi 1994).

In the model of Meyer et al. (1988, 1990) the move-
ment is composed of a sequence of submovements not
overlapping in time, as in the model of Goodeve. Cor-
responding to the ®nding of Schmidt, the amplitude of
each submovement is a Gauss-distributed random vari-
able with standard deviation proportional to the mean
velocity of this submovement. The mean amplitude of
the submovements is determined such that the time of
the overall movement is minimized. The resulting
mathematical law generalizes Fitts' law: for an increas-
ing number of submovements Meyer's law converges to
Fitts' law.

In Meyer's model, each submovement ends before the
next submovement begins. This is not consistent with the
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movement kinematics measured by Milner and Ijaz
(1990). In their experiment, subjects moved a peg into a
hole 0.2 m away, for holes of four di�erent diameters.
They found that the motion velocity is modulated with
the hole diameter, and the velocity pro®le has small
oscillations (Fig. 1). Using these measurements, Milner
showed that the movement can be represented well as
the superposition of smooth submovements (Milner
1992), as proposed previously by Morasso (1981; Flash
and Henis 1991; Henis and Flash 1995). Milner further
suggested that these submovements correspond to visual
corrections. The hypothesis that human movements are
composed of discretely generated submovements is
consistent with many experiments (Woodworth 1899)
Langolf et al. 1976; Abend et al. 1982; Crossman and
Goodeve 1983; Vallbo and Wessberg 1993).

Several other models of reaching movements have
been proposed recently (Bullock et al. 1993; Hirayama et
al. 1993; Plamondon 1995a,b). The trajectories gener-
ated using these models have smooth velocity pro®les
and reproduce the speed/accuracy trade-o� found in
human movements. In all these models, however, the
velocity pro®les have qualitative di�erences with the
pro®les measured by Milner. In particular, the small
oscillations are not reproduced. In addition, the models
of Plamondon (1995a, b) and Kawato (Hirayama et al.
1993), as well as Meyer's model, do not consider the
visual feedback.

Ho� (1992) used optimal control theory to model the
control of reaching movements. He formulated the mo-
tion planning as a second-order linear feedback system
with the jerk as control variable, and required that the
movement minimizes the integral of the square of the
jerk. Using this model, he could simulate reaching
movements with ®nal accuracy constraints and pertur-

bation of the target position. Some facts, however, speak
against this model: it is continuous, which is not consis-
tent with the discrete nature of motions found previously
(Langolf et al. 1976; Schmidt 1979; Abend et al. 1982;
Milner et al. 1990; Milner 1992); the kinematics of
movements with perturbation of the target position are
better reproduced with a model where the movement is
the superposition of two submovements: one from the
start to the ®rst target and the second from the ®rst to the
second target (Flash and Henis 1991; Henis and Flash
1995); the analytical calculations are complex and must
be completed numerically (Ho� 1992); and ®nally, the
smoothness of human motion may result to a large extent
from muscle mechanics rather than from explicit trajec-
tory control (Krylow and Rymer 1997).

`Reaching' movements of infants are saccadic, i.e.,
composed of submotions. Von Hofsten et al. measured
these movements and found that they can be described
as a sequence of smooth submovements (von Hofsten
1991). They also observed how infants adapt their
movements at about the sixth month from a sequence of
nearly equal, well separated submovements, to an asym-
metrical velocity pro®le as observedbyMilner and Ijaz for
the adult movements, with a large initial submovement
followed by a sequence of small submovements.

1.3 Aims

In this paper a mathematical model will be presented for
the generation of reaching movement by humans. This
model is based on the hypothesis that the movement is
composed of discretely generated submotions. It con-
siders the intrinsic deviation of arm movements, and
feedback from vision and proprioception. It may explain
how newborns adapt their reaching strategy to their
current capabilities and slowly learn the adult behavior.
It also explains how the speed-accuracy trade-o� may be
solved by adults.

In the models cited above, the movement parameters
are calculated analytically, or with a long `learning
phase' that can hardly be related to the way infants learn
reaching movements. In contrast, in our model, the
adult behavior has to be learned from the infant's be-
havior in the way the infant learns (von Hofsten and
Roennqvist 1993), i.e., by trial and error and in a rea-
sonable number of movements. Qualitative and quanti-
tative predictions of the model will be compared with the
movements of infants measured by Von Hofsten (1991)
and with the movements of adults measured by (Milner
and Ijaz 1990; Milner 1992).

2 Model description

Before describing the model, let us introduce two
simpli®cations. First, only the hand trajectory is
modeled. The limb and muscle dynamics are not
modeled. Second, the movement is modeled in one
dimension only. This is partly justi®ed by the fact that

Fig. 1. Velocity pro®le of movements measured by Milner and Ijaz
(1990), where subjects had to place a peg into one of four holes of
di�erent diameters /. As one can see, the movement kinematics
depends on the required accuracy. The overall velocity pro®les were
measured, and the submovements (dotted lines) were simulated using
an interactive program (Milner 1992)
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adult hand movements are approximately straight in
the (extrinsic) Cartesian space (Atkeson and Hollerbach
1985; Flash and Hogan 1985; Hollerbach and Atkeson
1987; Uno et al. 1989). `Goal-directed' movements of
infants are obviously not straight, but the model can
easily be generalized to several dimensions. The di�er-
ent hypotheses the model is based upon will now be
listed.

2.1 Superposition hypothesis and submotion shape

The movement is composed of discretely generated
submovements (Figs. 1, 4) (Morasso 1981; Flash and
Henis 1992; Milner 1992) which may overlap in time. All
the submovements have the same shape. More precisely
let

x�t�; 0 � t � T �1�
be a movement with amplitude D with a weak accuracy
constraint. We consider that this movement is composed
of only one submovement (Milner 1992). A movement
requiring greater accuracy is assumed to be composed of
n submovements xi with amplitude Di and duration Ti,
i � 1 . . . n. The shape of each of these submotions is
determined by

xi�t� � Di

D
x

Ti

T
t

� �
; 0 � t � Ti : �2�

As suggested in Milner and Ijaz (1990), the submotion
shape is di�erent for each subject, i.e., it is a personal-
ized feature.

2.2 Deviation of one submotion

Corresponding to the ®ndings of Schmidt (1979), the
amplitude Di of each submovement xi is a stochastic
variable with mean value Di

1 and standard deviation

ri � C1
Di

T i
�3�

where C1 is a constant with unit seconds. This equation
implies that the deviation is proportional to the mean
velocity of the submovement. C1 is identi®ed using (3)
with the parameters D and T of movements with weak
accuracy constraints (composed of only one submove-
ment).

2.3 Movement control

The movement control scheme is depicted in Fig. 2.
Vision and proprioception check whether the target is

reached. If not, a new submotion is generated. This is
repeated iteratively until the target is reached.

If the submotions do not overlap in time, then the
position after each submotion can be directly measured
at the end of the submotion. Each submovement is
performed independently of the previous one, and a
`feedback correction' is performed only after checking
the condition `target reached?'. Each submovement has
an error associated with it (3), but this error can be
automatically corrected during execution of the move-
ment because the decision to generate the next submo-
tion relies on sensory information, i.e., information
about the actual movement which includes information
about the error. Since errors are corrected as the
movement progresses an exact plan of the movement is
not required prior to its generation.

If a submotion starts before the previous one has been
completed, then the position at the end of the ®rst
submotion must be inferred while the movement is un-
der way in order to generate an appropriate new sub-
movement. In this case, the movement control is more
complex, because each submovement will depend on the
previous one.

Figure 3 illustrates this situation. Before starting the
movement, a plan of the motion corresponding to the
desired precision and amplitude is formed and stored in
a memory. This plan comprises the amplitudes Di and
durations Ti of the submovements of which the move-
ments will be composed. The realized amplitude is not
exactly Di, but ~Di � Di. ~Di is evaluated using a�erent
information from vision and proprioception available
prior to the onset time of submotion xi�1. We denote this
evaluation as D�iji�.2 The remaining distance to the target
is calculated as

Dr;�iji� � Dr;�iÿ1jiÿ1� ÿ D�iji� : �4�
If Dr;�iji� � 0, then the movement is completed; otherwise
the next submotion with amplitude

2 We use a notation coming from the theory of stochastic processes
(Bar-Shalom and Fortman (1988). The subscript �iji� of the esti-
mation p�iji� of parameter pi indicates that the estimation is per-
formed using all the information available at the time that pi must
be evaluated, i.e., in our case before the next submotion xi�1 is
generated.

1 The mean value p of a stochastic variable p is a more intuitive
name for the expected value E�p�.

Fig. 2. Control scheme of reaching motions composed of submotions
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D�i�1ji� � Di�1 � E�iji� �5�
and duration Ti is generated.

3 This amplitude is chosen
in order to compensate for the di�erence

E�iji� � Di ÿ D�iji� �6�
between the planned and realized movement amplitudes.

In summary, when the submotions overlap, a plan
and some memory are needed in order to perform ac-
curate movements. The basic strategy, however, remains
unchanged (compare Figs. 2 and 3). A biologically
plausible algorithm for evaluating the parameters D�iji�
and T�iji� of the current submotion, based on the in-
variance of submotion shape to time scaling (2), is
proposed in the Appendix.

2.4 Timing of the overall motion

The time RTi between the start of two consecutive
submotions xi and xi�1 is proportional to Ti:

RTi � C2Ti : �7�

This equation insures that enough time is available for
identifying the execution error of the current submotion
before the onset of the next submotion, enabling the
next submotion to correct for this error. The duration of
a movement composed of n submotions is

T �
Xnÿ1
i�1

RTi � Tn : �8�

In (7), C2 in¯uences not only the movement duration, but
also its precision. Two submotions overlapping in time
may have a larger deviation than when they do not
overlap, because when they overlap, the execution errors
of both submotions are superposed. In this case the
execution error of the ®rst submovement cannot be
perfectly identi®ed before the second starts. C2 can, thus,
be used to control the deviation of the overall movement.

In order for ith submotion xi to perform an e�cient
correction, it must not only start after the previous
submotion xiÿ1 has been well identi®ed [as stated by (7)],
but it must also start after the submotion xiÿ2 has been
completed (otherwise the parameters of submotions xiÿ1
and xiÿ2 could be identi®ed only in combination).
Therefore, the following equation is used instead of (7)
for calculating the time between the onset of two con-
secutive submotions:

RTi � max�C2Ti;C3Tiÿ1 ÿ C2Tiÿ1� �9�
where C3; 0:5 < C3 < 1, is close to 1.

2.5 Uncertainty of the motion amplitude

Each submovement is performed open-loop, i.e., no
correction occurs during a submovement. The correction
performed by a submotion is not perfect, because of
muscle compliance, because the identi®cation of the
current submotion is not perfect, but primarily because
of the error brought by this new submovement.

As all the submotion parameters are stochastic vari-
ables, the amplitude of the overall movement also is a
stochastic variable. The uncertainty r�t� about the cur-
rent movement is de®ned as the standard deviation of
the prediction of the end position of the current sub-
motion at time t, when many movements with the same
plan have been performed. Generally, the uncertainty
about the current submovement should decrease with
time, independently of the algorithm used for evaluating
the parameters of this submovement. This uncertainty is
minimal at the end of the (sub)movement.

The exact evolution of uncertainty during the move-
ment is unknown, although it must be decreasing. In
order to simplify its computation, this uncertainty is
modeled by a linear decreasing function of the time.
Further, it is assumed that each new submovement
produces an error independent of the uncertainty at
movement onset.

If the movement is composed of only one submotion,
x1, the uncertainty will be r1 � C1D1=T1. If the movement
is composed of two submovements, then the uncertainty
due to the ®rst submotion, r1, will decrease linearly with a

Fig. 3. Control scheme of quantized motions when submovements
overlap. Di and Ti are respectively the amplitude and duration of the
ith submotion xi, and Dr�iji� denotes the expectation of the distance to
the target at the onset time of submotion xi�1, given information prior
to this time (rmeans remaining)

3 Ti also has a slight error (Schmidt 1979) that must be evaluated.
This is performed in the algorithm of the Appendix. For simpli®-
city, however, we neglect this error in the model.
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factor C4 until the second submovement onset. At this
time, RT1, the uncertainty due to the ®rst submotion is

�1ÿ C4RT1�r1 : �10�
The uncertainty due to both submotions at time RT1 is

r � �1ÿ C4RT1�r1 � r2 : �11�
For movements composed of only two submotions, this
will be the uncertainty at the end position. Similarly, the
uncertainty resulting after movements composed of n
submovements is (Fig. 4):

r �
Xnÿ1
i�1

max 0; 1ÿ C4

Xnÿ1
j�i

RTj

 !
ri � rn : �12�

We note that the number of submotions n is neither ®xed
nor learned during the movements. It simply emerges
from the feedback process and the condition that the
movement is completed when the remaining distance
Dr;�iji� � 0 (Fig. 3).

Instead of using equation (12), the uncertainty r
could be determined by performing many movements,
using the algorithm in the Appendix to evaluate the
submotion parameters and performing a statistical
analysis of the ®nal position error. Although this would
be more biologically realistic, we chose not to do it be-
cause it is computationally intensive and would lead to a
similar uncertainty evolution (Figs. 4, A1). We note that
in the biological system, the evaluation of the parame-
ters of the current submotions are performed online by
the biological hardware, and thus do not require addi-
tional computation time.

2.6 Motion optimization

The movements cannot be performed at arbitrarily high
speed, because the uncertainty grows with movement

speed [see (3) and (12)]. We assume that humans learn
movements optimal with respect to duration and
precision by repetition. More precisely, they may learn
to correlate movement parameters with the desired
accuracy by minimizing the cost function

cost � time� C5 uncertainty ; �13�

where C5 is a constant weighting the relative importance
of duration and accuracy in the optimization. The
submotion parameters providing the fastest movements
for a desired accuracy are selected.

The end of the movement is composed of submotions
characterized by �D3; T3� which are the smallest possible
submotions (Milner 1992; Vallbo and Wessberg 1993).
Placing larger and faster submotions at the beginning of
the movement results in a higher precision than when
they are placed at the middle or the end of the move-
ment. Large submotions would lead to large errors if
they occurred near the end of the movement (12). We
assume that only the ®rst two submotions [i.e., the pa-
rameters �D1; T1;D2; T2�] are optimized. This strategy
corresponds to the observation that visually guided
motions seem to be composed of an approach phase
followed by an adjustment phase (Woodworth 1899;
Jeannerod 1988). This also corresponds to a lower cost
(13), and may have been learned in a ®rst step.

Using the particular form of the uncertainty in (12),
it is possible to calculate the optimal solution analyti-
cally. However, this solution would be speci®c to this
equation and could not be applied if the uncertainty
function had another shape. For example, using the
algorithm in the Appendix, the uncertainty function
would be slightly di�erent from (12) and would vary
from subject to subject. In addition, humans probably
do not compute the optimal solution, but rather learn it
with repetition.

2.7 Model's parameters

The above model depends on seven constants:
C1; . . . ;C5;D3; T3. These constants are related to move-
ments features and can be unambiguously identi®ed
using experimental data. This identi®cation will be
described in detail in Sect. 4.1, using the data of (Milner
and Ijaz 1990; Milner 1992) to obtain numerical values.
How a plan �D1; T1;D2; T2� corresponding to a fast and
accurate movement to the target is learned by trial and
error, will be explained in Sect. 4.2.

3 Motion adaptation by infants

This section will examine how the model described
above corresponds to the observation of the evolution of
reaching movements by infants. It will, in particular, be
shown how the planning emerges from experience
gained in performing movements.

Fig. 4. Timing �Ti;RTi� of the di�erent submotions (dashed lines) of
which a movement is composed, and evolution of the uncertainty r of
the end position of the current submotion (continuous line). RTi is the
time between the onset of submovements xi and xi�1
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3.1 Experimental observations

We begin by summarizing features of movements of
young infants observed by von Hofsten et al. (von
Hofsten 1991; van Hofsten and Roennqvist 1993):

(a) In newborns, the vision capabilities are not yet well
developed and the tracking capabilities are very re-
stricted. Force, also, is not yet well controlled
(Forssberg et al. 1991).

(b) The movements of infants until about 6 months of
age are formed of approximately equal, well sepa-
rated submovements (Fig. 5).

(c) With maturation, both limb control and tracking are
improved.

(d) The speed of all submovements also decreases with
maturation.

(e) At about the sixth month, infants modify their
movement patterns from a sequence of approxi-
mately equal submotions to an asymmetrical veloc-
ity pro®le characteristic of adult movements (Fig. 5).

3.2 Model correlates

3.2.1 Newborn behavior. How are these features re¯ect-
ed in the model? A weak movement control, as
newborns have [observation (a)], means that C1, i.e.,
the deviation, will be high and C4, the factor controlling
the decrease of the deviation during the movement, will
be small. Poor tracking capabilities also contribute to a
small C4.

If there is not enough time between two consecutive
submotions, the uncertainty about the end position will
increase with each submovement [Eqn. (12)]. This has
several consequences:

± It places constraints on C2: C2 must be large enough
that the uncertainty does not increase with each
submovement.

± With a large C2, the movement will be a sequence of
submotions rather than a continuous movement. The
movement almost stops after each submotion.

± Besides considerations regarding precision, there may
be other reasons for the newborn strategy of per-
forming a sequence of well-spaced, approximately
equal submotions toward the target. As the uncer-
tainty is not increasing with each submovement, only
the parameters of the next submovement need to be
known in advance. Using equal submotions makes
the planning even more trivial. The infant has only to
perform small submotions until the target is reached
(Fig. 2). This very simple iterative control strategy,
and the fact that in this way almost no experience and
no plan are required, correspond to the conditions
met by newborns.

3.2.2 Evolution of movement patterns. Observation (c) is
modeled by an increase in C1 and a decrease in C4.
Applying observation (d) to the model will also result in
more accuracy [see Eqn. (3)]. The submotions and the
overall movement are, thus, becoming more accurate.
As they become more accurate the `strategy' of the
newborn can be modi®ed in order to minimize the
movement duration:

± The submovements may overlap more, i.e., C2 can be
reduced. The movement will then be more continu-
ous.

± The two ®rst submotions may be larger.

We emphasize that this is not really a new `strategy'
(Fig. 3), but emerges from the basic strategy depicted in
Fig. 2, as the movement is practiced.

The infant performs many movements. It may ob-
serve the duration and precision of each movement and
memorize the best movements, i.e., store the submotion
parameters minimizing the cost (13). A plan of the
movement can be formed, which consists of a set of
these parameters whose values depend upon the desired
accuracy.

The evolution of infants' reaching [observation (e)]
can be modeled in this way. The infant's behavior seems
to converge to the optimal solution given by our model,
i.e., optimization with respect to movement duration
and accuracy.

4 Speed/accuracy trade-o� by adults

The velocity pro®le of adults depends on the required
accuracy. In this section it will be shown how this
behavior emerges from experience gained during per-
forming movements.

Fig. 5. Evolution of the kinematics of reaching movements at about
the sixth month (®gures from (von Holfsten 1991)). Above: velocity
pro®le (thin line) and curvature (thick line) of a typical movement
performed at the age of 19 weeks (� 4:3 months). Below: the same
data at the age of 31 weeks (� 7 months). Note the transport phase in
the ®rst half of the motion, which generally appears at about 6 months

312



4.1 Determination of the model parameters

In our model, besides the plan �D1; T1;D2; T2�, which can
be di�erent for every movement, seven ®xed parameters
D3; T3;C1;C2;C3;C4;C5 determine the movement. As the
prediction of our model will be compared with the
measurements of Milner and Ijaz (1990), the values of
these seven parameters will be determined using the
kinematic features found in their experiment (Milner
and Ijaz 1990; Milner 1992).

First, we specify that more than 95% of the move-
ments to each target hole must be successful. Expressed
mathematically, the movement end position is Gauss-
distributed with deviation

r � hole diameter

4
: �14�

The constant C1 � 0:024 s is determined from Eqns. (3)
and (14), using experimental values D � 0:207 m and
T � 0:383 s from movements to the largest hole.
C2 � 0:45 and C3 � 0:90 are computed from statistical
analysis of the ®rst submovements. Statistical analysis of
the last submotions of movements with high accuracy,
i.e., to the two smallest holes, gives D3 � 0:1 m and
T3 � 0:2 s. In the terminal movement phase composed of
minimal submotions �D3; T3�, a new submotion is
generated every C2T3 � 90 ms, corresponding approxi-
mately to the frequency found in Miall (1996).
C4 � 0:008 is determined such that

�1ÿ C4RT3�r3 � 0 : �15�
This insures that the minimal submotions, following the
third submotion, do not increase the uncertainty. The
uncertainty (12) then becomes

r � �1ÿC4�RT1 � RT2��r1 � �1ÿC4RT2�r2 � r3 : �16�
Finally, C5 is tuned so that the maximum velocity of a
movement with six submotions corresponds approxi-
mately to the mean maximum velocity of movements to
a hole of diameter 0.0111 m.

4.2 Movement kinematics

Using (12) for estimating the uncertainty, the parameters
�D1; T1;D2; T2� were perturbed stochastically. More
precisely, after each movement these parameters were
modi®ed by a Gauss-distributed perturbation (with rDi

= 0.03 m and rTi � 0:02 s, i � 1; 2). The parameters
minimizing the cost (13) and ful®lling the required
accuracy were memorized. One thousand movements
were performed for each of seven di�erent values of the
uncertainty r between 0.001 and 0.014 m; thus altogeth-
er 7� 1000 learning movements were used.

After this learning phase, the movement duration,
time of the maximal velocity and the velocity maxima of
the movements corresponding to the di�erent accuracy
constraints were computed.

We emphasize that the number of submovements, n,
is not part of the plan. The plan consists only of the

parameters of the ®rst two submotions. The total num-
ber of submotions results from these parameters and the
control process constituting the movement (Fig. 3). The
term n appears here only because the uncertainty was
calculated using (12) rather than using the standard
deviation of the endpoint error.

Note that a learning phase of 1000 movements rep-
resents roughly a time of 1 h. For learning movements
corresponding to di�erent uncertainties, the learning
period corresponds to several hours or a few days. This
time is not too large and is a possible learning time for
humans.

Figure 6 shows that the simulated movement kine-
matics is qualitatively similar to the experimental kine-
matics (compare Figs. 1 and 6). As one can see in Fig. 7,
the values predicted by the model, while not exactly
matching the experimental values quantitatively, do
correspond closely to these values. Note that only the
parameter C5 was tuned to adjust the model behavior to
the experimental one. Better matching might be ob-
tained by tuning other parameters.

Fig. 6. Simulated movements (continuous lines) with their submotions
(dotted lines). Both movements have an amplitude of 0.2 m. The upper
®gure corresponds to an uncertainty r � 0:014 m (corresponding to a
hole diameter / � 0:056 m in the experiment of Milner and Ijaz 1990)
and the lower ®gure to r � 0:0072 m (corresponding to a diameter
/ � 0:029 m)
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4.3 Movement deviation

We also examined the deviation along the movement
trajectory. Minimal jerk submovements (Flash and
Hogan 1985), with parameters found by optimization,
were used to simulate movements. One thousand
movements were generated for uncertainties between
r � 0:001 m and r � 0:014 m. The submotion ampli-
tudes and durations were stochastically perturbed with a
Gaussian distribution and standard deviation corre-
sponding to these parameters. The value of rDi was
chosen according to (3) with C1 � 0:024, i.e., corre-
sponding the results of Milner (Milner and Ijaz 1990;
Milner 1992).

rTi � 0:0035� 0:0572Ti �17�
is the least-square estimation of the measurements of
Schmidt (1979).

The deviations of movements made to a relatively
large hole and a small hole are shown in Fig. 8. We see

there that, as expected, the deviation is larger during the
movement and decreases towards its end. This is con-
sistent with experimental ®ndings (Georgopoulos 1981;
Paulignan et al. 1991a,b; Shadmehr and Mussa-Ivadi
1994). With increasing accuracy, the deviation becomes
smaller at the movement endpoint.

5 Discussion

The di�erent hypotheses, results and limitations of the
model will now be examined.

Motion discretization and submotion shape. Given the
phasic and burst-like nature of the activity of many of
the output neurons of the motor cortex (Fetz et al.
1980), it is quite possible that there may be discrete
activity units at the level of the central nervous system
that correspond to the hypothesized submovements of
our model. These activity units could be modulated in
amplitude and, to a limited extent, in duration as well.
However, the principal means of extending the duration
of a movement would be by the superposition of a
sequence of activity units. The irregularity of unnatu-
rally slow movements (Vallbo and Wessberg 1993;
Milner and Ijaz 1990) suggests that they are constructed
in this way.

The smoothness of individual submovements probably
results from the intrinsic properties of muscles (Krylow
and Rymer 1997) and integrating properties of neural
pathways. The distinctiveness and similarity of submo-
tion shapes for an individual subject aremore likely due to
unique characteristics of muscle activation patterns.

Smoothness of the overall movement would be
achieved with practice, by adjusting the amplitude and
timing of successive submovements by trial and error.
Ultimately, the movement could appear very smooth,
despite the discrete nature of the underlying command.
In our model the smoothness arises from the smoothness
of the submotions and their linear superposition (Mor-
asso 1981, 1983). It is neither planned nor built into the
cost function. The skilled movements that evolve after
months or years of training may represent the outcome
of a process in which movements are optimized within
the constraints of task goals. Our model suggests that, in
contrast to previous ®ndings (Flash and Hogan 1985;
Uno et al. 1989; Ho� 1992) smoothness is not directly
optimized. Smoothness might rather emerge from the
dynamics of muscles and neural pathways and from the
minimization of neurophysiologically plausible variables
such as muscle activation and movement time.

Superposition hypothesis. Our modeling focused on the
hand kinematics and neglected the dynamics. For
simplicity, only submotion kinematics were used, but
the submotions probably correspond to dynamical units
of motion. Recent ®ndings suggestive of movement
primitives may be related to these units of motion.

Fig. 7. Comparison of predicted (dashed lines) with experimental
(continuous lines) kinematic features. From top to bottom are shown:
the velocity maxima (curves with negative slopes), the movement
duration (curves with positive slopes), and the time of the velocity
maxima

Fig. 8. Hand position for movements toward a hole simulated using
our model. Continuous line, mean, dashed line, mean � standard
deviation. Left: uncertainty r � 0:0635 m corresponding to a hole
diameter / � 0:254 m in the experiment of (Milner and Ijaz 1998);
right, uncertainty r � 0:0028 m corresponding to a hole diameter
/ � 0:111 m
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Mussa-Ivaldi, Giszter and Bizzi (Bizzi et al. 1991;
Mussa-Ivaldi et al. 1994) found that the force ®elds
measured at the endpoint of the frog hindlimb during
electrical stimulation of the premotor layers of the gray
matter were additive: the force ®eld produced by the
simultaneous stimulation of two sites was approximately
equal to the sum of the force ®elds obtained from sep-
arate stimulation. Mussa-Ivaldi and Giszter (1992) fur-
ther suggested that these force ®elds, characterized by an
attractor point, may correspond to movements. The
overall movement may be realized by the linear combi-
nation of a few `primitive' force ®elds. It has also been
hypothesized, more generally, that the cortical maps
coding the motor control may be represented as a linear
function of potential ®elds with dynamics characterized
by an attractor point (Morasso and Sanguineti 1995).

The superposition hypothesis in our model may be
related to the linearity of force ®elds. The movement
would arise as the linear superposition of force ®elds
corresponding to submotions. In this view, the submo-
tion of our model would re¯ect the kinematics resulting
from `force ®eld submotions'.

Motion timing and sensory feedback. The hypothesis
which we introduced concerning the motion timing
(Sect. 2.4) is di�cult to verify for human motion.
Although we cannot yet test our hypothesis directly, new
methods for recording brain activity, such as MEG, may
soon provide the means to make the necessary measure-
ments (Conway et al. 1995). As it stands, our hypothesis
simply re¯ects the dependence of accuracy on the
amount of overlap between consecutive submotions. It
insures that su�cient time will be available to evaluate
the outcome of the current submovement.

Examination of movements performed while tracking
a moving target suggests that submotions may be gen-
erated regularly with a sampling time of about 120 ms or
multiples of it (Miall 1996). Such ®xed sampling time is
incorporated in our model only from the third submo-
tion onward. It could be incorporated into the ®rst two
submotions by using the discrete version of (9).

Duration and accuracy optimization. The hypothesis
that the movement duration and accuracy are optimized
during movements, is very powerful. Using seven
parameters that can be directly determined from exper-
imental data and tuning only one of these, the model is
able to predict the movement kinematics quite well for a
large range of endpoint accuracy. It should be noted,
though, that a set of parameters di�erent from those
determined by the model might result in a lower value of
the cost function (Fetz et al. 1980). This is because the
model incorporates timing constraints that restrict the
search to a small domain of the parameter space so that
learning can occur in a relatively short time.

Our model improves on Meyer's model by integrating
feedback, generating correct movement kinematics and
variation along the movement trajectory. It is also su-
perior to Ho�'s model (Ho� 1992) in the sense that it

requires seven parameters instead of eleven, tunes only
one of them, does not require any analytical computa-
tion, presents a learning scheme consistent with the
learning by trial and error observed in humans, and
predicts the duration (which was not the case in Ho�'s
model).

That only the ®rst two submotions are optimized,
corresponds to the observation that visually guided
motions are composed of an approach phase followed
by an adjustment phase (Woodworth 1899; Jeannerod
1988). In this view, the `plan' for performing movements
corresponding to a required accuracy consists of the
parameters of the ®rst two submotions. The rest of the
movement does not require any plan.

Newborns do not have to possess any plan. Following
experience and memorization capabilities, infants may
learn a plan during the ®rst 6 months. In our learning
scheme, as with infants (von Hofsten and Roennqvist
1993), current actions are learned from past actions. We
note that the learning of a motion plan by infants seems
to coincide with the appearance of a middle-term
memory (Grunwaldt et al. 1960; Hellbruegge 1965).

Not only a model, but an algorithm. Generating move-
ments with discrete submovements provides a very
economical way of planning smooth movements for
machines and computer animated ®gures (de Boor 1978;
Takayama and Kano 1995). Our model explains how a
system with continuous feedback and intermittent
correction with stereotyped submotions can optimize
movements with respect to duration and accuracy. It
also provides an algorithm for learning these move-
ments, which can be used for learning optimal motions
with a robot guided by a vision system (Brooks 1998;
Burdet and Luthiger 1998).

Learning an optimal velocity pro®le might also be
useful for very fast pick-and-place manipulators used in
industry. Using common symmetrical velocity pro®les,
the end-e�ector oscillates about the movement endpoint
for a period of the same order as the time required for
the transport phase (Codourey 1991). Asymmetrical
velocity pro®les have also been shown to minimize these
oscillations (Codourey 1991) and thus to minimize the
e�ective movement time. Optimal movements for fast
pick-and-place manipulation might be learned using the
algorithm described in this paper.

Investigating the strategies of impedance control used
by humans during the stabilization phase of goal-di-
rected movements may lead to a more profound insight
into the control of these motions and in turn to im-
proved control of fast pick-and-place manipulation.

Acknowledgements. We would like to thank Markus Brunner for
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Appendix. Algorithm for estimating the endposition

This appendix proposes a tracking algorithm for a movement
composed of superposed stereotyped submovements. The uncer-
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tainty at the end of the current submovement can be computed, as
will be exempli®ed for a movement composed of two submotions.
The result is similar to the function of (12).

This algorithm is a model of tracking which humans perform
using visual and proprioceptive information. It is biologically jus-
ti®ed, in the sense that humans possess both an internal model of
the motor task (Shadmehr and Mussa-Ivaldi 1994; Shadmehr and
Brashers-Krug 1997); i.e., are able to predict the movement tra-
jectory, and the ability to track moving objects (von Hofsten and
Roennqvist 1993). Furthermore, identifying the submotions by
minimizing the di�erence between the planned submotion and its
realization, as in the following algorithm, is a biologically plausible
strategy (Kawato and Gomi 1992; Gomi and Kawato 1992).

Human arm movements are stereoptyped (Atkeson and Hol-
lerbach 1985). Furthermore, di�erent subjects have reproducible
but individual movement patterns (Milner and Ijaz 1990). The
following tracking algorithm utilizes the corresponding invariance
of the trajectory under time scaling (2).

A.1 De®nitions

Consider a movement x�t� composed of submotions:

x�t� �
Xn

i�1
xi�t ÿ ti�; (A1)

where ti is the start of the ith submotion

xi�t� � Di u
t
Ti

� �
; 0 � t � Ti (A2)

with Di and Ti the amplitude and duration of ith submotion and u a
normalized submotion, i.e., a movement of unit amplitude per-
formed in a unit time.

Let x1 be the plan of the ®rst submotion. The actual movement,
y, will be slightly di�erent from x1. We assume that y is a submo-
tion of the same shape as x1 but with di�erent amplitude and du-
ration:

y�t� � I�1jt� � D�1jt�u
t

T�1jt�

� �
: (A3)

Let

e�t� � y�t� ÿ x1�t� (A4)

be the position error at time t. The amplitude D�1jt�, duration T�1jt�
and integral parameter I�1jt� of a submovement are adapted during
the movement to approximate y by minimizing the squared error,
e2, at each time. I�1jt� is a parameter corresponding to constant
error.

Once the parameters of the ®rst submotion have been identi®ed,
the error relative to the ®rst planned submotion can be corrected by
modifying the amplitude of the second submovement. This can be
performed iteratively for all subsequent submotions. In this way, it
is possible to perform accurate movements despite the intrinsic
deviation of submovements.

A.2 The algorithm

The gradient estimator (Slotine and Li 1991) is used for learning
the best estimation of the parameters D�ijt�, T�ijt� and I�ijt� at time t.
This gives the following algorithm:

D�ij0� � Di; T�ij0� � Ti; I�ij0� � Ii;

t � RTiÿ1;

While t < RTi Do

t � t � dt;

dD�ijt� � ÿcD
@�e2�
@D

� cDe�t�u t

T̂�ijt�

 !
;

D�ijt� � D�ijtÿdt� � dD�ijt�;

dT�ijt� � ÿcT
@�e2�
@T
� cT e�t� _u t

T�ijt�

� �
ÿ 1

T 2
�ijt�

 !
;

T�ijt� � T�ijtÿdt� � dT�ijt�;

dI�ijt� � ÿcI
@�e2�
@I
� cI e�t�;

I�ijt� � I�ijtÿdt� � dI�ijt�;

End (While);

In the above adaptation laws, cD, cT and cI are positive learning
factors.

The above algorithm can be used iteratively for each submotion
xi from i � 1 to i � n, i.e., along the entire movement trajectory.
Setting RT1 � 0, the ®rst integral parameter I�1jRT1� will correct for
error in determining the beginning of the ®rst submotion. From the
second submotion onward, the integral term will correct for the
portion of the error of the preceding submotion not yet identi®ed at
the onset time of the current submotion.

A.3 Simulation

This algorithm was tested by simulating many movements com-
posed of di�erent number of submovements. It succeeded in
bringing the prediction error to zero at the end of the movement in
all cases. This proves that it is able to identify the submotion pa-
rameters well.

We now present results for movements of amplitude D � 0:200
m with a standard deviation of the end position r � 0:014 m. The
parameters �D1; T1;D2; T2� were found by using (12) and perform-
ing optimization relative to the cost function of (13). One thousand
movements were performed using these parameters. The mean and
standard deviation at the end of the current submotion were
computed every millisecond.

It turned out that all 1000 movements were composed of two
submotions. Figure A1 shows the error in the expectation of the
current submotion endpoint for three movements and the mean of
this error (the `uncertainty'). One sees that the uncertainty is de-
creasing monotonously with time except at the onset of the second
submovement. This curve can be roughly approximated by a
stepwise linear function, corresponding to (12).

The simulation of the above algorithm requires the computation
of the parameters of each submotion using random generators, the
error in each time step and the statistics. To avoid this time-inten-
sive computation, we chose to use (12) for the uncertainty, instead
of calculating it as the standard deviation over many movements.
With a real biological system most of this computation is not re-
quired, because it is implemented in the biological hardware.

A.4 Practical applications of the algorithm

The above algorithm can be used not only for the model described
in this paper, but also for predicting the kinematics of human
motions. This may have applications in physiology and teleopera-
tion. For example, recent experiments (Gomi and Kawato 1996)
were designed for measuring the muscle impedance at the hand
along two-dimensional planar movements. The hand was slightly
perturbed during the movement, and sti�ness was computed by
comparing the perturbed trajectory with the mean trajectory of
unperturbed movements of the same duration, with the same start
and endpoint.
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In general, the current movement (before perturbation) has the
same shape as the mean movement, but is scaled relative to it
(Milner and Ijaz 1990; Atkeson and Hollerbach 1985). Using the
mean trajectory to represent the undisturbed movement without
scaling, as was done in (Gomi and Kawato 1996), would result in
an error in estimating the muscle impedance. We used real data to
show that the above algorithm can be used to scale the parameters
of the mean movement trajectory so that it precisely approximates
the current movement (Franklin and Milner 1997). Using such a
representation of the current movement would greatly reduce the
potential for error in estimating muscle impedance. As discussions
about neurophysiological hypotheses critically depend on quanti-
tative values of impedance parameters of muscles (Katayama and
Kawato 1993), improving the measurement is important for the
evaluation of these hypotheses.
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